2193 safety switch unlocked фанук ошибка

1 час назад, andrey2147 сказал:

Первое действие ремонтника.

Извините, не ремонтник. Ремонтник сказал, что на станке выскакивает ошибка, я разместил об этом пост.

Спасибо Vengeance, показал ваще сообщение, через минут 10 прибежал довольный ремонтник и сообщил, что всё заработало.

Номер

Сообщение

Описание

0001

ОШИБКА TH

Во время считывания с устройства ввода обнаружена ошибка TH. Код, вызвавший при считывании ошибку TH, и количество операторов до него от блока можно проверить в окне диагностики.

0002

ОШИБКА TV

Ошибка TV обнаружена в единичном блоке.

Проверка TV может быть отменена присвоением TVC в параметре ном. 0000#0 значения «0».

0003

СЛИШКОМ МНОГО ЗНАКОВ

Данные введены с большим количеством символов, чем разрешено для оператора ЧПУ. Количество допустимых символов варьируется в зависимости от функции и слова.

0004

АДРЕС НЕ НАЙДЕН

Адрес слов(а) ЧПУ + числовое значение не соответствуют формату слова. Данный сигнал тревоги выдается также, если пользовательская макрокоманда не содержит зарезервированного слова или не соответствует синтаксису.

0005

ОТСУТСТВУЮТ ДАННЫЕ ПОСЛЕ АДРЕСА

Адрес слов(а) ЧПУ + числовое значение не соответствуют формату слова. Данный сигнал тревоги выдается также, если пользовательская макрокоманда не содержит зарезервированного слова или не соответствует синтаксису.

0006

НЕВЕРНОЕ ИСПОЛЬЗОВАНИЕ ЗНАКА МИНУС

Знак минус (-) был задан в команде ЧПУ или в системной переменной, где задание знак минус не разрешено.

0007

НЕВЕРНОЕ ИСПОЛЬЗОВАНИЕ ДЕСЯТИЧНОЙ ТОЧКИ

Десятичная точка (.) была задана в адресе, где нельзя задать десятичную точку, либо были заданы две десятичные точки.

0009

НЕВЕРНЫЙ АДРЕС ЧУ

Был задан неверный адрес, либо не задан параметр 1020.

0010

НЕВЕРНЫЙ G-КОД

Задан неиспользуемый G-код.

0011

НУЛЕВАЯ ПОДАЧА (КОМАНДА)

Скорость подачи резания, предписанная F кодом, была задана равной 0. Данный сигнал тревоги порождается также, если задан чрезвычайно малый F-код, предписанный для S-кода в команде жесткого нарезания резьбы, так как инструмент не может нарезать при заданном шаге.

0015

СЛИШКОМ МНОГО ОСЕЙ ОДНОВРЕМЕННО

Команда перемещения была задана для большего числа осей, чем доступно для функции одновременного управления осями.

Либо разделите запрограммированные оси перемещения на два блока.

0020

ПРЕВЫШЕНИЕ ДОПУСКА ПО РАДИУСУ

Была задана дуга, для которой разность по радиусу в начальной и конечной точках превышает значение, заданное в параметре ном. 3410. Проверьте коды центра дуги I, J и K в программе. Траектория инструмента, если в параметре ном. 3410 задано большое значение, представляет собой спираль.

0021

НЕВЕРНЫЙ ВЫБОР ПЛОСКОСТИ

Команды выбора плоскости с G17 по G19 ошибочны. Перепрограммируйте так, чтобы те же 3 основные параллельные оси не были заданы одновременно.

Этот сигнал тревоги порождается также, если задана ось, которая не должна быть указана для обработки плоскости, например, для круговой интерполяции.

Для 0i -TD опция винтовой интерполяции необходима для активации спецификации 3 или более осей для блока G02/G03.

0022

НЕ ОБНАРУЖЕНА КОМАНДА R ИЛИ I, J, K

В команде круговой интерполяции отсутствует радиус дуги R или координата I, J или K расстояния между начальной точкой и центром дуги.

0023

НЕВЕРНАЯ КОМАНДА РАДИУСА

Для команды радиуса дуги R задано отрицательное значение. В серии T дуга с углом более 180° не может быть задана посредством команды R. Измените программу.

0025

КРУГОВОЕ РЕЗАНИЕ В УСКОРЕННОМ РЕЖИМЕ (F0)

F0 (ускоренный подвод при подаче с однозначным F-кодом или обратной подаче) был задан во время круговой интерполяции (G02, G03).

0027

НЕ ЗАДАНЫ ОСИ В G43/G44

Не заданы оси в блоках G43 и G44 для коррекции на длину инструмента типа С.

Коррекция не отменена, но другая ось смещена для коррекции на длину инструмента типа С.

Несколько осей задано для одного блока, когда тип коррекции на длину инструмента — C.

0028

НЕВЕРНЫЙ ВЫБОР ПЛОСКОСТИ

Команды выбора плоскости с G17 по G19 ошибочны. Перепрограммируйте так, чтобы те же 3 основные параллельные оси не были заданы одновременно. Этот сигнал тревоги порождается также, если задана ось, которая не должна быть указана для обработки плоскости, например, для круговой интерполяции.

Для 0i -TD опция винтовой интерполяции необходима для активации спецификации 3 или более осей для блока G02/G03.

0029

НЕВЕРНАЯ ВЕЛИЧИНА КОРРЕКЦИИ

Коррекция с неверным номером

0030

НЕВЕРНЫЙ НОМЕР КОРРЕКЦИИ

Был задан неверный номер коррекции.

0031

НЕВЕРНАЯ КОМАНДА Р В G10

Ввод данных для ном. L команды G10 или соответствующей функции не активирован. Не задан адрес настройки данных, например, P или R. Была задана команда адреса, не связанная с настройкой данных. Адрес меняется вместе с номером L.

Знак или десятичная запятая заданного адреса ошибочны, или заданный адрес находится за пределами диапазона.

0032

НЕВЕРНАЯ ВЕЛИЧИНА КОРРЕКЦИИ В G10

При установке величины коррекции с помощью G10 или при записи величины коррекции с помощью системных переменных величина коррекции оказалась избыточной.

0033

НЕТ ПЕРЕСЕЧЕНИЯ ПРИ КОРРЕКЦИИ НА РЕЖУЩИЙ ИНСТРУМЕНТ

Нет пересечения при расчете пересечения для коррекции на радиус инструмента/на радиус вершины инструмента. Измените программу.

0034

КРУГОВОЕ ДВИЖЕНИЕ В БЛОКЕ ЗАПУСКА/ВЫХОДА ЗАПРЕЩЕНО

При коррекции на радиус инструмента / на радиус вершины инструмента запуск или отмена выполняются в режиме G02 или G03. Измените программу.

0035

НЕЛЬЗЯ ЗАДАТЬ G31

1) Нельзя задать G31. Этот сигнал тревоги генерируется, если не отменен G-код (например, для коррекции на радиус инструмента / на радиус вершины инструмента) группы 07.

2) Пропуск по пределу крутящего момента не был задан в команде пропуска по пределу крутящего момента (G31P98 или P99). Задайте пропуск по пределу крутящего момента в окне РМС или другим способом.

0037

НЕВОЗМОЖНО ИЗМЕНИТЬ ПЛОСКОСТЬ В G41/G42

Плоскость коррекции G17/G18/G19 была изменена в ходе коррекции на режущий инструмент или на радиус вершины инструмента. Измените программу.

0038

СТОЛКНОВЕНИЕ В БЛОКЕ КРУГОВОГО ПЕРЕМЕЩЕНИЯ

Зарез происходит при коррекции на радиус инструмента / на радиус вершины инструмента, так как начальная или конечная точки дуги совпадают с центром дуги. Измените программу.

0039

CHF/CNR НЕ РАЗРЕШЕНЫ В G41, G42

Снятие фаски или скругление угла R заданы при запуске, отмене или переключении между G41 и G42 в командах G41 и G42 (коррекция на радиус вершины инструмента). Программа может привести к зарезу при снятии фаски или скруглении угла. Измените программу.

0041

СТОЛКНОВЕНИЕ ПРИ КОРРЕКЦИИ НА РЕЖУЩИЙ ИНСТРУМЕНТ

При коррекции на радиус инструмента / на радиус вершины инструмента возможно избыточное резание. Измените программу.

0042

G45/G48 НЕ РАЗРЕШЕНЫ ПРИ CRC

Смещение инструмента (от G45 до G48) задано в режиме коррекции на радиус инструмента. Измените программу.

0044

G27-G30 НЕ ДОПУСКАЮТСЯ ПРИ ФИКСИРОВАННОМ ЦИКЛЕ

Одна из команд от G27 до G30 (G29 только для серии M) задана в режиме постоянного цикла. Измените программу.

0045

НЕ НАЙДЕН АДРЕС Q (G73/G83)

В цикле скоростного сверления с периодическим выводом или в цикле сверления с периодическим выводом величина реза за раз не задается адресом Q, либо задано Q0. Измените программу.

0046

НЕВЕРНАЯ КОМАНДА ВОЗВРАТА НА РЕФЕРЕНТНУЮ ПОЗИЦИЮ

Ошибка команды возврата во вторую, третью или четвертую референтную позицию. (Ошибка команды P-адреса.)

0050

ЗАПРЕЩЕНО СНЯТИЕ ФАСКИ/ СКРУГЛЕНИЕ УГЛА В БЛОКЕ НАРЕЗАНИЯ РЕЗЬБЫ

Блок снятия фаски или скругления угла задан в блоке нарезания резьбы. Измените программу.

0051

НЕТ ПЕРЕМЕЩЕНИЯ ПОСЛЕ СКРУГЛЕНИЯ УГЛА / СНЯТИЯ ФАСКИ

Неверное перемещение или расстояние перемещения в блоке, идущем за снятием фаски или скруглением угла. Измените программу.

0052

КОД ПОСЛЕ СНЯТИЯ ФАСКИ/СКРУГЛЕНИЯ УГЛА НЕ G01

Блоком, следующим за блоком снятия фаски или блоком скругления угла, является не блок G01 (или вертикальная линия). Измените программу.

0053

СЛИШКОМ МНОГО АДРЕСНЫХ КОМАНД

В командах снятия фаски или скругления угла задано два или более I, J, K и R.

0054

ОБРАБОТКА КОНУСА ПОСЛЕ СНЯТИЯ ФАСКИ/ СКРУГЛЕНИЯ УГЛА НЕ РАЗРЕШЕНА

Блок, в котором задано снятие фаски под заданным углом или скругление угла, включает команду обработки конической поверхности. Измените программу.

0055

ОТСУТСТВУЕТ ВЕЛИЧИНА ПЕРЕМЕЩЕНИЯ ПРИ СНЯТИИ ФАСКИ/ СКРУГЛЕНИИ УГЛА

Расстояние перемещения по оси, заданное в блоке, содержащем снятие фаски или скругление угла, меньше, чем величина снятия фаски или скругления угла. Измените программу.

0056

ОТСУТСТВУЮТ КОНЕЧНАЯ ТОЧКА И УГОЛ ПРИ СНЯТИИ ФАСКИ/ СКРУГЛЕНИИ УГЛА

При прямом программировании размеров чертежа и конечная точка, и угол были заданы в блоке, следующим за блоком, в котором был задан только угол (Aa). Измените программу.

0057

НЕТ РЕШЕНИЯ КОНЦА БЛОКА

В программировании непосредственно по размерам чертежа неверно вычислена конечная точка блока. Измените программу.

0058

НЕ НАЙДЕНА КОНЕЧНАЯ ТОЧКА

В программировании непосредственно по размерам чертежа не найдена конечная точка блока. Измените программу.

0060

НЕ НАЙДЕН ПОРЯДКОВЫЙ НОМЕР

[Внешний ввод данных/вывод данных]

Заданный номер не найден при поиске по номеру программы и по порядковому номеру.

Был выдан запрос на ввод/выод для величины коррекции для данных инструмента, но номер инструмента после включения питания не вводился. Данные инструмента, соответствующие введенному номеру инструмента, не найдены.

[Поиск номера внешней заготовки]

Программа, соответствующую заданной заготовке, не найдена. [Перезапуск программы]

В спецификации порядкового номера перезапуска программы не найден заданный порядковый номер.

0061

КОМАНДА P ИЛИ Q ОТСУТСТВУЕТ В БЛОКЕ МНОГОКРАТНО ПОВТОРЯЕМЫХ ЦИКЛОВ

Не задан адрес Р или Q в команде многократно повторяемого цикла (G70, G71, G72 или G73).

0062

ВЕЛИЧИНА РЕЗАНИЯ НЕВЕРНА В ЦИКЛЕ ЧЕРНОВОГО РЕЗАНИЯ

Был задан ноль или отрицательное значение многократно повторяемого цикла черновой обработки резанием (G71 или G72) в качестве глубины реза.

0063

НЕ НАЙДЕН БЛОК ЗАДАННОГО НОМЕРА ПОСЛЕДОВАТЕЛЬНОСТИ

Не найден порядковый номер, заданный адресами P и Q в команде многократно повторяемого цикла (G70, G71, G72 или G73).

0064

ФОРМА ЧИСТОВОЙ ОБРАБОТКИ НЕ ИЗМЕНЯЕТСЯ МОНОТОННО (ПЕРВЫЕ ОСИ)

В программе чистовой обработки для многократно повторяемого цикла черновой обработки резанием (G71 или G72) команда для первой оси плоскости задавала монотонное увеличение или уменьшение.

0065

G00/G01 НЕ ЯВЛЯЕТСЯ ПЕРВЫМ БЛОКОМ ПРОГРАММЫ ОБРАБОТКИ ФОРМЫ

В первом блоке программы обработки формы, задаваемый P многократно повторяемый стандартный цикл (G70, G71, G72 или G73), G00 или G01 не был заданы.

0066

НЕДОСТУПНАЯ КОМАНДА В БЛОКЕ МНОГОКРАТНО ПОВТОРЯЕМЫХ ЦИКЛОВ

Недоступная команда была обнаружена в командном блоке многократно повторяемых циклов (G70, G71, G72 или G73).

0067

МНОГОКРАТНО ПОВТОРЯЕМЫЕ ЦИКЛЫ НЕ НАХОДЯТСЯ В ПАМЯТИ ПРОГРАММЫ ОБРАБОТКИ ДЕТАЛЕЙ

Команда многократно повторяемого постоянного цикла (G70, G71, G72, или G73) не зарегистрирована в области памяти на магнитных лентах.

0069

ПОСЛЕДНИЙ БЛОК ПРОГРАММЫ ОБРАБОТКИ ФОРМЫ ЯВЛЯЕТСЯ НЕВЕРНОЙ КОМАНДОЙ

В программе чистовой обработки в многократно повторяемом цикле черновой обработки резанием (G70, G71, G72 или G73) команда снятия фаски или скругления угла R в последнем блоке прерывается на середине.

0070

В ПАМЯТИ ОТСУТСТВУЕТ МЕСТО ДЛЯ ПРОГРАММЫ

Недостаточно памяти.

Удалите ненужные программы и повторите попытку.

0071

ДАННЫЕ НЕ НАЙДЕНЫ

1) Не найден адрес по запросу.

2) При поиске по номеру программы не найдена программа с заданным номером.

3) В спецификации номера блока перезапуска программы не найден заданный номер блока.

Проверьте данные.

0072

ДАННЫЕ НЕ НАЙДЕНЫ

Число программ для хранения превысило 400 (одноконтурная система) или 800 (двухконтурная система серии T). Удалите ненужные программы и выполните регистрацию программы снова.

0073

НОМЕР ПРОГРАММЫ УЖЕ ИСПОЛЬЗУЕТСЯ

Заданный номер программы уже используется. Измените номер программы или удалите ненужные программы и выполните регистрацию программы снова.

0074

НОМЕР ПРОГРАММЫ УЖЕ ИСПОЛЬЗУЕТСЯ

Номер программы не входит в диапазон от 1 до 9999. Измените номер программы.

0075

ЗАЩИТА

Сделана попытка зарегистрировать программу, номер которой защищен. При согласовании программы был неверно введен пароль для защищенной программы. Была предпринята попытка выбора программы, редактируемой в фоновом режиме, в качестве главной программы. Была предпринята попытка вызова программы, редактируемой в фоновом режиме, в качестве подпрограммы.

0076

ПРОГРАММА НЕ НАЙДЕНА

Заданная программа не найдена при вызове подпрограммы или вызове макрокоманды. Коды M, G, T или S вызываются командой P, отличной от команды в M98, M198, G65, G66 или пользовательской макропрограммы типа прерывания, а программа вызывается специальным адресом. Данный сигнал тревоги также порождается, если программа не найдена при данных вызовах.

0077

СЛИШКОМ МНОГО ВЛОЖЕННЫХ ПОДПРОГРАММ, МАКРОПРОГРАММ

Общее число вызовов подпрограмм и пользовательских макрокоманд превышает допустимый диапазон. Во время подпрограммы из внешней памяти был выполнен вызов подпрограммы.

0078

НЕ НАЙДЕН ПОРЯДКОВЫЙ НОМЕР

Заданный порядковый номер не был найден при поиске по порядковому номеру. Не найден порядковый номер, заданный в переходном пункте назначения в GOTO— и M99P—.

0079

НЕСООТВЕТСТВИЕ ПРОГРАММ

Программа в памяти не соответствует программе, хранящейся на ленте. Несколько программ не подлежат непрерывному согласованию, если параметр ном. 2200#3 имеет значение «1». Задайте в параметре ном. 2200#3 значение «0» перед выполнением сопоставления.

0080

НЕПРАВИЛЬНО ВВЕДЕН СИГНАЛ ДОСТИЖЕНИЯ ПОЛОЖЕНИЯ ИЗМЕРЕНИЯ G37

Если выполняется функция измерения длины инструмента (G37), сигнал достижения положения измерения доходит до 1 во фронтальной части, определенной значением £, заданным в параметре ном.6254. Как альтернатива, сигнал не доходит до 1.

Если используется функция автоматической коррекции на инструмент (G36, G37), сигналы достижения положения измерения (XAE1, XAE2) не доходят до 1 в диапазоне, определенном значением £, заданном в параметрах ном.6254 и ном.6255.

0081

НОМ. КОРРЕКЦИИ G37 НЕ ЗАДАН

Функция измерения длины инструмента (G37) задана без задания H кода. Исправьте программу.

Функция автоматической коррекции ни инструмент (G36, G37) задана без задания Т кода. Исправьте программу.

0082

G37 ЗАДАНО С Н-КОДОМ

Функция измерения длины инструмента (G37) задано вместе с Н кодом в том же блоке.

Исправьте программу.

Функция автоматической коррекции на инструмент (G37) задана в одном блоке с Т-кодом.

Исправьте программу.

0083

НЕВЕРНАЯ КОМАНДА ОСИ G37

Была обнаружена ошибка в спецификации оси функции измерения длины инструмента (G37). Как альтернатива, задана команда перемещения как команда приращения. Исправьте программу.

Была обнаружена ошибка в спецификации оси функции автоматической коррекции на инструмент (G36, G37). Как альтернатива, задана команда перемещения как команда приращения.

Исправьте программу.

0085

ОШИБКА ПЕРЕПОЛНЕНИЯ

Следующий символ был получен от устройства ввода/вывода, подключенного к интерфейсу считывающего перфоратора 1 до того, как он смог считать полученный предварительно символ. Переполнение, ошибка четности или ошибка кадрирования возникли во время считывания интерфейсом устройства считывания/вывода на перфоленту 1. Неверны число битов введенных данных, настройка скорости передачи данных в бодах или номер спецификации устройства ввода/вывода.

0086

DR ОТКЛ.

В ходе процесса ввода/вывода интерфейсом считывания/вывода не перфоленту 1 сигнал готовности ввода набора данных устройства ввода/вывода (DR) был отключен. Возможными причинами являются не включение устройства ввода/вывода, порванный кабель и дефектная печатная плата.

0087

ПЕРЕПОЛНЕНИЕ БУФЕРА

В ходе считывания интерфейс считывающего перфоратора 1, хотя и была дана команда остановки считывания, была введено более 10 символов. Устройство ввода/вывода или печатная плата были дефектными.

0090

НЕ ЗАВЕРШЕН ВОЗВРАТ НА РЕФЕРЕНТНУЮ ПОЗИЦИЮ

1) Нельзя выполнить возврат на референтную позицию обычным образом, поскольку начальная точка возврата на референтную позицию расположена слишком близко к референтному положению, или скорость слишком низкая. Переместите начальную точку от референтной позиции на достаточное расстояние или задайте достаточно высокую скорость для выполнения возврата на референтную позицию.

2) Была попытка задать нулевое положение для детектора абсолютного положения с помощью возврата на референтную позицию, если необходимо задать нулевую точку.

Проверните двигатель вручную минимум на один оборот и установите нулевое положение датчика абсолютного положения, отключив и снова включив ЧПУ и сервоусилитель.

0091

РУЧНОЙ ВОЗВРАТ НА РЕФЕРЕНТНУЮ ПОЗИЦИЮ НЕ ВЫПОЛНЕН ПРИ ОСТАНОВЕ ПОДАЧИ

Невозможно выполнить ручной возврат на референтную позицию, когда автоматическая операция приостановлена. Выполните ручной возврат на референтную позицию, когда автоматическая операция остановлена или сброшена.

0092

ОШИБКА ПРОВЕРКИ ВОЗВРАТА К НАЧАЛУ КООРДИНАТ (G27)

Ось, заданная в G27, не вернулась на референтную позицию. Перепрограммируйте, чтобы ось вернулась на референтную позицию.

0094

ЗАПРЕЩЕН ТИП Р (ИЗМЕНЕНИЕ КООРДИНАТ)

При повторном пуске программы тип Р задать нельзя. (После прерывания автоматической работы выполнена операция установки системы координат). Выполните надлежащую операцию в соответствии с руководством пользователя.

0095

ЗАПРЕЩЕН ТИП Р (ИЗМЕНЕНИЕ ВНЕШНЕГО СМЕЩЕНИЯ)

При повторном пуске программы тип Р задать нельзя. (После прерывания автоматической работы изменена величина внешней коррекции начала координат заготовки). Выполните надлежащую операцию в соответствии с руководством пользователя.

0096

ЗАПРЕЩЕН ТИП Р (ИЗМЕНЕНИЕ СМЕЩЕНИЯ ЗАГОТОВКИ)

При повторном пуске программы тип Р задать нельзя. (После прерывания автоматической работы изменена величина коррекции начала координат заготовки). Выполните надлежащую операцию в соответствии с руководством пользователя.

0097

ЗАПРЕЩЕН ТИП Р (АВТОМАТИЧЕСКОЕ ВЫПОЛНЕНИЕ)

Нельзя указать тип Р при повторном пуске программы. (После включения питания, после аварийного останова или сброса сигналов тревоги 0094 — 0097 автоматическая операция не выполняется). Выполните автоматическую операцию.

0099

ИСПОЛН. MDI НЕ ДОПУСКАЕТСЯ ПОСЛЕ ПОИСКА

После завершения поиска при перезапуске программы с помощью MDI дана команда перемещения.

0109

ОШИБКА ФОРМАТА В G08

В коде G08 после Р задано значение, отличное от 0 или 1, или не задано значение.

0110

ПЕРЕПОЛНЕНИЕ: ЦЕЛАЯ ЧАСТЬ

Целая часть числа вышла за пределы диапазона при арифметических вычислениях.

0111

ПЕРЕПОЛНЕНИЕ: ПЛАВАЮЩ.

Десятичная точка (числовые данные в формате с плавающей точкой) вышла за пределы диапазона при арифметических вычислениях.

0112

ДЕЛЕНИЕ НА НОЛЬ

Была сделана попытка деления на ноль в пользовательской макрокоманде.

0113

НЕВЕРНАЯ КОМАНДА

Запрограммирована функция, которую нельзя использовать в макрокоманде пользователя. Измените программу.

0114

НЕВЕРНЫЙ ФОРМАТ ВЫРАЖЕНИЯ

Формат, используемый в выражении в пользовательском макрооператоре, ошибочный. Ошибка формата записи параметра.

0115

НОМЕР ПЕРЕМЕННОЙ ВНЕ ДИАПАЗОНА

Номер, который нельзя использовать для локальной переменной, общей переменной или системной переменной, заданный в пользовательской макрокоманде.

0116

ПЕРЕМЕННАЯ С ЗАЩИТОЙ ОТ ЗАПИСИ

Была произведена попытка использовать в пользовательской макрокоманде на левой стороне выражение переменной, что можно использовать на правой стороне выражения.

0118

СЛИШКОМ МНОГО ВЛОЖЕНИЙ В СКОБКИ

Слишком много скобок»[ ]» вложено в пользовательской макрокоманде. Уровень вложения, включая функциональные скобки, равен 5.

0119

ЗНАЧЕНИЕ АРГУМЕНТА ВНЕ ДИАПАЗОНА

Значение аргумента функции пользовательской макрокоманды находится вне диапазона.

0122

СЛИШКОМ МНОГО ВЛОЖЕНИЙ МАКРОКОМАНД

В пользовательскую макрокоманду было вложено слишком много вызовов макрокоманд.

0123

НЕВЕРНЫЙ РЕЖИМ ДЛЯ GOTO/WHILE/DO

Оператор GOTO или оператор WHILE-DO обнаружен в главной программе в режиме MDI или прямого ЧПУ.

0124

ОТСУТСТВУЕТ КОНЕЧНЫЙ ОПЕРАТОР

Команда END, соответствующая команде DO, отсутствовала в пользовательской макрокоманде^

0125

ОШИБКА ФОРМАТА МАКРООПЕРАТОРА

Формат, используемый в макрооператоре в пользовательской макрокоманде, ошибочный.

0126

НЕВЕРНЫЙ НОМЕР ЦИКЛА

Номера DO и END в пользовательской макрокоманде ошибочны или превышают допустимый диапазон (диапазон действительных значений: от 1 до 3).

0127

ДУБЛИРОВАНИЕ ОПЕРАТОРА ЧУ, МАКРООПЕРАТОРА

Оператор ЧПУ и макрооператор были заданы в одном блоке.

0128

НЕВЕРНЫЙ ПОРЯДКОВЫЙ НОМЕР МАКРОПРОГРАММЫ

Заданный порядковый номер не найден при поиске порядкового номера. Не найден порядковый номер, заданный как пункт назначения перехода GOTO— и M99P—.

0129

ИСПОЛЬЗОВАНИЕ ‘G’ В КАЧЕСТВЕ АРГУМЕНТА

G используется в качестве аргумента при вызове пользовательской макрокоманды. G нельзя использовать в качестве аргумента.

0130

КОНФЛИКТ ЧПУ И ОСИ РМС

Команда ЧПУ и команда управления осью РМС не были согласованы. Измените программу или цепную схему.

0136

ОСЬ ПОЗИЦИОНИРОВАНИЯ ШПИНДЕЛЯ ОДНОВРЕМЕНО С ДРУГОЙ ОСЬЮ

Ось позиционирования шпинделя и другая ось заданы в одном блоке.

0137

M-КОД И КОМАНДА ПЕРЕМЕЩЕНИЯ В ОДНОМ БЛОКЕ

т

Ось позиционирования шпинделя и другая ось заданы в одном блоке.

0139

НЕЛЬЗЯ ИЗМЕНИТЬ ОСЬ, УПРАВЛЯЕМУЮ РМС

Ось PMC была выбрана для оси, для которой направляется ось PMC.

0140

НОМЕР ПРОГРАММЫ УЖЕ ИСПОЛЬЗУЕТСЯ

Сделана попытка выбрать или удалить в фоновом режиме программу, выбранную в основном режиме. Выполнить правильную операцию для фоновой версии.

0142

НЕВЕРНЫЙ МАСШТАБ

Коэффициент масштабирования составляет 0 раз или 10000 раз или более. Измените настройку коэффициента масштабирования.

(G51P… или G51I J K… или параметр (ном. 5411 или 5421))

0143

ПЕРЕПОЛНЕНИЕ УПРАВЛЯЮЩИХ ДАННЫХ

Переполнение при хранении внутренних данных ЧПУ. Данный сигнал тревоги также порождается, если результаты внутреннего вычисления масштабирования (серия M), поворота системы координат (серия M) и цилиндрической интерполяции переполняют память данных. Он также порождается в ходе ввода величины ручного вмешательства.

0144

НЕВЕРНО ВЫБРАНА ПЛОСКОСТЬ

Плоскость поворота системы координат и плоскость дуги или компенсации на режущий инструмент должны совпадать. Измените программу.

0145

НЕВЕРНОЕ ИСПОЛЬЗОВАНИЕ G12.1/G13.1

Номер оси параметров выбора плоскости ном. 5460 (линейная ось) и ном. 5461(ось вращения) в режиме интерполяции в полярных координатах вне диапазонв (от 1 до числа управляемых осей).

0146

НЕВЕРНОЕ ИСПОЛЬЗОВАНИЕ G-КОДА

При задании или отмене режима интерполяции в полярных координатах G-код должен быть модальной командой G40. В режиме интерполяции в полярных координатах был задан неверный G-код.

В этом режиме могут быть заданы следующие следующие G-коды: G01,G02,G03,G04,G40,G41,G42,G65,G66,G67,

(G90 и G91 для системы G-кодов B или C), G98,G99

0148

ОШИБКА НАСТРОЙКИ

Уровень замедления автоматического изменения скорости подачи при обработке углов находится вне устанавливаемого диапазона оцениваемого угла. Измените параметры (ном.1710-1714)

0149

ОШИБКА ФОРМАТА В G10L3

При регистрации (от G10L3 до G11) данных управления ресурсом инструмента был задан адрес, отличный от Q1, Q2, P1, и P2, или недопустимый адрес.

0150

НЕВЕРНЫЙ НОМЕР ГРУППЫ РЕСУРСА

Номер группы инструментов превысил максимальное допустимое значение. Номер группы инструментов (P после задания G10 L3;) или номер группы, указанный T-кодом управления ресурсом инструмента в программе обработки.

0151

ГРУППА НЕ НАЙДЕНА В ДАННЫХ РЕСУРСА

Группа инструментов, указанная в программе обработки, не задана в данных управления ресурсом инструмента.

0152

ПРЕВЫШЕНО МАКСИМАЛЬНОЕ ЧИСЛО ИНСТРУМЕНТОВ

Число инструментов, зарегистрированных в группе, превысило максимально допустимое число инструментов для регистрации.

01 53

T-КОД НЕ ОБНАРУЖЕН

При регистрации данных ресурса инструмента блок, в котором должен быть задан T-код, не содержит T-кода. Либо, при методе замены инструмента D, задано только M06. Измените программу.

0154

ИНСТРУМЕНТ НЕ ИСПОЛЬЗУЕТСЯ В ГРУППЕ РЕСУРСА

Команда H99, команда D99 или код H/D, заданный параметрами ном. 13265 и ном. 13266, была задана, когда не использовался ни один из входящих в группу инструментов.

0155

НЕВЕРНАЯ КОМАНДА T-КОДА

В программе обработки T-код в блоке, содержащем M06, не соответствует текущей используемой группе. Измените программу.

0156

НЕ НАЙДЕНА КОМАНДА P/L

Команды P и L не заданы в начале программы для настройки группы инструментов. Измените программу.

0157

СЛИШКОМ МНОГО ГРУПП ИНСТРУМЕНТОВ

При регистрации данных управления ресурсом инструмента значения счетчиков блока команды групповой настройки P (номер группы) и L (срок службы инструмента) превысили максимальное число для группы.

0158

ЗНАЧЕНИЕ СРОКА СЛУЖБЫ ИНСТРУМЕНТА ВНЕ ДИАПАЗОНА

Задаваемое значение срока службы слишком большое. Измените настройку.

0159

НЕВЕРНЫЕ ДАННЫЕ РЕСУРСА ИНСТРУМЕНТА

Данные управления ресурсом инструмента повреждены по какой-то причине. Зарегистрируйте данные инструмента в группе инструментов или данные инструмента в группе снова посредством G10L3 или ввода в режиме MDI.

0160

НЕСООТВЕТСТВИЕ М-КОДА ОЖИДАНИЯ

М-код ожидания ошибочный.

Для контуров 1 и 2 заданы различные М-коды ожидания.

0163

НЕВЕРНАЯ КОМАНДА В G68/G69

G68 и G69 не запрограммированы независимо при сбалансированном резании.

0169

НЕВЕРНЫЕ ГЕОМЕТРИЧЕСКИЕ ДАННЫЕ ИНСТРУМЕНТА

Неверные данные о форме инструмента при проверке столкновений. Установите правильные данные или выберите верные данные о форме инструмента.

0175

НЕВЕРНАЯ ОСЬ G07.1

Задана ось, по которой нельзя выполнять цилиндрическую интерполяцию. В блоке G07.1 задана более чем одна ось. Была сделана попытка отмены цилиндрической интерполяции по оси, которая не была в режиме цилиндрической интерполяции.

В режиме цилиндрической интерполяции для задания круговой интерполяции, включая ось вращения (если бит 0 (ROT) параметра ном. 1006 имеет значение 1, и задан параметр ном. 1260), значение параметра оси вращения ном. 1022 для назначения параллельной оси должно быть не 0, а 5, 6 или 7.

0176

ИСПОЛЬЗОВАНИЕ НЕВЕРНОГО G-КОДА (РЕЖИМ G07.1)

Был задан G-код, который не может быть задан в режиме цилиндрической интерполяции. Этот сигнал тревоги также срабатывает, если G-код группы 01 был в задан в модальной группе G00, или был задан код G00. Перед тем, как задать код G00, следует отменить режим цилиндрической интерполяции

0190

ВЫБРАНА НЕВЕРНАЯ ОСЬ (G96)

Неверное значение было задано в P в блоке G96 или в параметре ном. 3770.

0194

КОМАНДА ШПИНДЕЛЯ В СИНХРОННОМ РЕЖИМЕ

Режим управления контуром Cs, команда позиционирования шпинделей или режим жесткого нарезания резьбы метчиком были заданы в режиме синхронного управления шпинделями.

Режим управления контуром Cs или режим жесткого нарезания резьбы метчиком были заданы в режиме синхронного управления шпинделями или простого синхронного управления шпинделями.

0197

ОСЬ С ЗАДАНА В РЕЖИМЕ ШПИНДЕЛЯ

Программа задала перемещение вдоль оси Сб, когда сигнал переключения управления контуром Cs был отключен.

0199

МАКРОСЛОВО НЕ ОПРЕДЕЛЕНО

Использовано не определенное макрослово. Измените макрокоманду пользователя.

0200

НЕВЕРНАЯ КОМАНДА S-КОДА

В режиме жесткого нарезания резьбы метчиком задано значение S, не входящее в диапазон, или не задано совсем. Параметры (ном. 5241 -5243) заданы равными S значению, которое можно задать для жесткого нарезания резьбы. Исправьте параметры или измените программу.

0201

В РЕЖИМЕ ЖЕСТКОГО НАРЕЗАНИЯ РЕЗЬБЫ МЕТЧИКОМ НЕ НАЙДЕНА СКОРОСТЬ ПОДАЧИ

Команда F кода для скорости подачи резания равна нулю.

Если значение F команды гораздо меньше, чем значение команды S, если задана команда жесткого нарезания резьбы метчиком, порождается данный сигнал тревоги. Это происходит потому, что резание невозможно с шагом, заданным программой.

0202

ПЕРЕПОЛНЕНИЕ ПОЛОЖЕНИЯ LSI

В режиме жесткого нарезания резьбы метчиком слишком большая величина распределения импульсов для шпинделей. (Системная ошибка)

0203

ПРОГРАММНОЕ НЕСООТВЕТСТВИЕ ПРИ ЖЕСТКОМ НАРЕЗАНИИ РЕЗЬБЫ МЕТЧИКОМ

В режиме жесткого нарезания резьбы метчиком неверно положение М-кода жесткого режима (М29) или S-команды. Измените программу.

0204

НЕВЕРНАЯ ОПЕРАЦИЯ ОСИ

В режиме жесткого нарезания резьбы метчиком между блоком М-кода жесткого режима (М29) и блоком G84 (или G74) задано перемещение по оси. Измените программу.

0205

СИГНАЛ DI ЖЕСТКОГО РЕЖИМА ВЫКЛЮЧЕН

Несмотря на то, что при жестком нарезании резьбы метчиком задан М-код (М29), во время выполнения блока G84 (или G74) не включен сигнал жесткого режим DI (DGN G061.0). Проверьте цепную схему РМС для выяснения причины, по которой сигнал DI не был включен.

0206

НЕЛЬЗЯ ИЗМЕНИТЬ ПЛОСКОСТЬ (ЖЕСТКОЕ НАРЕЗАНИЕ РЕЗЬБЫ)

Переключение плоскости было задано в жестком режиме. Измените программу.

0207

НЕСООТВЕТСТВИЕ ДАННЫХ ЖЕСТКОГО РЕЖИМА

При жестком нарезании резьбы метчиком заданное расстояние -слишком короткое или слишком длинное.

0210

НЕЛЬЗЯ ЗАДАТЬ М198/М99

1) Во время операции по графику была предпринята попытка выполнения команды М198 или М99. Либо во время работы с прямым ЧПУ была предпринята попытка выполнения команды М198. Измените программу.

2) Во время фрезерования глубоких выемок в многократно повторяющемся постоянном цикле была предпринята попытка выполнения команды М99 с помощью макропрерывания.

0213

НЕВЕРНАЯ КОМАНДА В СИНХРОННОМ РЕЖИМЕ

При управлении осью подачи в ходе синхронной работы произошли следующие ошибки.

1) Программа выдала команду перемещения ведомой оси.

2) Программа выдала команду ручной работы ведомой оси.

3) Программа выдала команду автоматического возврата на референтную позицию без задания ручного возврата на референтную позицию после включения питания.

0214

НЕВЕРНАЯ КОМАНДА В СИНХРОННОМ РЕЖИМЕ

В режиме синхронного управления установлена система координат или выполнена коррекция на длину инструмента (серия M) типа смещения. Исправьте программу.

0217

ДУБЛИРОВАНИЕ G51.2 (КОМАНДЫ)

В режиме G51.2 дополнительно задан G51.2. Измените программу.

0218

НЕ НАЙДЕНА КОМАНДА P/Q

В блоке G51.2 не задано P или Q, либо значение команды вне диапазона. Измените программу. Более подробные сведения о причине появления этого сигнала тревоги при полигональной обточке между шпинделями приведены в DGN ном. 471.

0219

НЕЗАВИСИМОЕ ЗАДАНИЕ G51.2/G50.2

G51.2 и 50.2 были заданы в одном блоке для других команд. Изменить программу в другом блоке.

0220

НЕВЕРНАЯ КОМАНДА В СИНХРОННОМ РЕЖИМЕ

При синхронной операции для синхронной оси задано перемещение с помощью программы ЧПУ или интерфейса РМС осевого управления. Измените программу или проверьте цепную схему PMC.

0221

НЕВЕРНАЯ КОМАНДА В СИНХРОННОМ РЕЖИМЕ

Синхронная операция полигональной обработки и контурное осевое управление Cs или сбалансированное резание выполняются одновременно. Измените программу.

0222

РАБОТА С ПРЯМЫМ ЧПУ ПРИ ФОНОВОМ РЕДАКТИРОВАНИИ ЗАПРЕЩЕНА

Ввод и вывод выполняются одновременно с фоновым редактированием. Выполните правильное действие.

0224

ВОЗВРАТ НА НОЛЬ НЕ ЗАВЕРШЕН

Перед запуском автоматической работы не был выполнен возврат на референтрую позицию.

(Только если бит 0 (ZRNx) параметра ном. 1005 имеет значение 0) Выполните возврат на референтную позицию.

0230

R-КОД НЕ ОБНАРУЖЕН

Глубина реза R не задана в блоке, включающем G161. Либо для R задано отрицательное значение.

Измените программу.

0231

НЕВЕРНЫЙ ФОРМАТ В G10 L52

При вводе программируемого параметра возникли ошибки в заданном формате.

0232

СЛИШКОМ МНОГО КОМАНД ДЛЯ ВИНТОВОЙ ОСИ

В режиме винтовой интерполяции заданы две или три оси в качестве винтовых осей.

0233

УСТРОЙСТВО ЗАНЯТО

При попытке использовать устройство, например, устройство, подсоединенное через интерфейс RS-232-C, обнаружено, что оно используется другими пользователями.

0245

В ЭТОМ БЛОКЕ Т-КОД ЗАПРЕЩЕН

Один из G-кодов, G04, G10, G28, G29 (серия M), G30, G50 (серия T) и G53, который не может быть задан в одном блока с T-кодом, был задан с T-кодом.

0247

НАЙДЕНА ОШИБКА В КОДЕ ВЫВОДА ДАННЫХ

При выводе закодированной программы в качестве кода вывода задано EIA. Задайте ISO.

0314

НЕВЕРНАЯ НАСТРОЙКА ПОЛИГОНАЛЬНОЙ ОСИ

Неверно задана ось при полигональной обточке.

Для полигональной обточки:

1) Не задана ось вращения инструмента.

(Параметр ном. 7610)

Для полигональной обточки между шпинделями:

1) Не заданы действительные шпиндели.

(Параметры ном. 7640 — 7643).

2) Шпиндель, не являющийся последовательным шпинделем.

3) Шпиндель не подсоединен.

0315

НЕВЕРНАЯ КОМАНДА УГЛА КРОМКИ В ЦИКЛЕ РЕЗЬБОНАРЕЗАНИЯ

Неверный угол режущей кромки инструмента задан в многократно повторяемом постоянном цикле резьбонарезания (G76).

0316

НЕВЕРНАЯ ВЕЛИЧИНА РЕЗА В ЦИКЛЕ РЕЗЬБОНАРЕЗАНИЯ

Минимальная глубина реза больше, чем высота резьбы, задана в многократно повторяемом постоянном цикле резьбонарезания (G76).

0317

НЕВЕРНАЯ КОМАНДА НАРЕЗАНИЯ РЕЗЬБЫ В ЦИКЛЕ РЕЗЬБОНАРЕЗАНИЯ

Был задан ноль или отрицательное значение в многократно повторяемом постоянном цикле резьбонарезания (G76) в качестве высоты резьбы или глубины реза.

0318

НЕВЕРНАЯ ВЕЛИЧИНА ОТВОДА В ЦИКЛЕ СВЕРЛЕНИЯ

Хотя направления отвода заданы в многократно повторяемом постоянном цикле отрезания (G74 или G75), задано отрицательное значение для Ad.

0319

НЕВЕРНА КОМАНДА КОНЕЧНОЙ ТОЧКИ В ЦИКЛЕ СВЕРЛЕНИЯ

Хотя расстояние перемещения Ai или Ak задано равным 0 в многократно повторяемом постоянном цикле отрезания (G74 или G75), значение, отличное от 0, задано для U или W.

0320

НЕВЕРНАЯ ВЕЛИЧИНА ПЕРЕМЕЩЕНИЯ/ВЕЛИЧИНА РЕЗА В ЦИКЛЕ СВЕРЛЕНИЯ

Было задано отрицательное значение в многократно повторяемом постоянном цикле отрезания (G74 или G75) как Ai или Ak (расстояние перемещения / глубина реза).

0321

НЕВЕРНОЕ ВРЕМЯ ПОВТОРЕНИЯ В ЦИКЛЕ ПОВТОРЕНИЯ СХЕМЫ

Задан нуль или отрицательное значение в многократно повторяемом постоянном замкнутом цикле (G73) в качестве значения времени повторения.

0322

ЧИСТОВАЯ ОБРАБОТКА ПОСЛЕ ЗАПУСКА

Неверная форма, которая после запуска цикла задана в программе обработки для многократно повторяемого постоянного цикла черновой обработки резанием (G71 или G72).

0323

ПЕРВЫЙ БЛОК ПРОГРАММЫ ОБРАБОТКИ ЯВЛЯЕТСЯ КОМАНДОЙ ТИПА II

Тип II задан в первом блоке программы обработки, заданном командой P в многократно повторяемом постоянном цикле (G71 или G72). Для G71 задано Z(W). Для G72 задано X(U).

0324

МАКРОПРОГРАММА ТИПА ПРЕРЫВАНИЯ ЗАДАНА В МНОГОКРАТНО ПОВТОРЯЕМЫХ ЦИКЛАХ

Макропрограмма типа прерывания была дана в ходе многократно повторяемого постоянного цикла (G70, G71, G72 или G73).

0325

НЕДОСТУПНАЯ КОМАНДА В ПРОГРАММЕ ОБРАБОТКИ ФОРМЫ

Используемая команда была дана в программе обработки для многократно повторяемого постоянного цикла (G70, G71, G72 или G73).

0326

ПОСЛЕДНИЙ БЛОК ПРОГРАММЫ ОБРАБОТКИ ФОРМЫ СОДЕРЖИТ ПРЯМЫЕ РАЗМЕРЫ ЧЕРТЕЖА

В программе чистовой обработки в многократно повторяемом цикле черновой обработки резанием (G70, G71, G72 или G73) команда прямого ввода размеров чертежа в последнем блоке прерывается на середине.

0327

МОДАЛЬНОЕ СОСТОЯНИЕ, НЕ ДОПУСКАЮЩЕЕ МНОГОКРАТНО ПОВТОРЯЕМЫХ ЦИКЛОВ

Многократно повторяемый постоянный цикл (G70, G71, G72 или G73) был задан в модальном состоянии, в котором нельзя задавать многократно повторяемый постоянный цикл.

0328

НЕВЕРНОЕ РАБОЧЕЕ ПОЛОЖЕНИЕ ПРИ КОРРЕКЦИИ НА РАДИУС ВЕРШИНЫ ИНСТРУМЕНТА

Неверная спецификация для стороны заготовки для коррекции на радиус вершины инструмента (G41 или G42) в многократно повторяемом постоянном цикле (G71 или G72).

0329

ФОРМА ЧИСТОВОЙ ОБРАБОТКИ НЕ ИЗМЕНЯЕТСЯ МОНОТОННО (ВТОРЫЕ ОСИ)

В программе чистовой обработки для многократно повторяемого цикла черновой обработки резанием (G71 или G72) команда для второй оси плоскости задавала монотонное увеличение или уменьшение.

0330

НЕВЕРНАЯ КОМАНДА ОСИ В ПОСТОЯННОМ ЦИКЛЕ ОБТОЧКИ

Ось, отличная от плоскости, задана в постоянном цикле (G90, G92 и. G94).

0334

КОРРЕКЦИЯ ВНЕ РАБОЧЕГО ДИАПАЗОНА

Данные коррекции, которая была вне рабочего диапазона, были заданы. (функция предотвращения неисправности)

0336

КОРРЕКЦИЯ НА ИНСТРУМЕНТ ЗАДАНА БОЛЕЕ, ЧЕМ ДВУМ ОСЯМ

Для коррекции на длину инструмента C была сделана попытка задать коррекцию по другим осям без отмены коррекции. Либо для коррекции на длину инструмента C задано несколько осей в блоке G43 или G44.

0337

ПРЕВЫШЕНИЕ МАКСИМАЛЬНОГО ЗНАЧЕНИЯ ПРИРАЩЕНИЯ

Значение команды превысило максимальную величину приращения. (функция предотвращения неисправности)

0338

ОШИБКА КОНТРОЛЬНОЙ СУММЫ

Неверное значение обнаружено в контрольной сумме. (функция предотвращения неисправности)

0345

НЕВЕРНОЕ ПОЛОЖЕНИЕ ОСИ Z ПРИ СМЕНЕ ИНСТРУМЕНТА

Положение смены инструмента по оси Z неверное.

0346

НЕВЕРНЫЙ НОМЕР ИНСТРУМЕНТА ПРИ СМЕНЕ ИНСТРУМЕНТА

Неверный номер инструмента для смены инструмента.

0347

НЕВЕРНАЯ КОМАНДА СМЕНЫ ИНСТРУМЕНТА В ОДНОМ БЛОКЕ.

Смена инструмент задана дважды или более в одном и том же блоке.

0348

НЕ НАЗНАЧЕНО ПОЛОЖЕНИЕ ОСИ Z ПРИ СМЕНЕ ИНСТРУМЕНТА

Шпиндель смены инструмента по оси Z не задан.

0349

ШПИНДЕЛЬ СМЕНЫ ИНСТРУМЕНТА НЕ ОСТАНАВЛИВАЕТСЯ

Остановка шпинделя смены инструмента не задана.

0350

ОШИБКА ПАРАМЕТРА ИНДЕКСА ЗАДАННОЙ ОСИ СИНХРОННОГО УПРАВЛЕНИЯ

Задан неверный номер оси синхронного управления (параметр ном. 8180).

0351

ПОСКОЛЬКУ ОСЬ ПЕРЕМЕЩАЕТСЯ, СИНХРОННОЕ УПРАВЛЕНИЕ ИСПОЛЬЗОВАТЬ НЕЛЬЗЯ.

Пока ось при синхронном управлении перемещалась, была сделана попытка запуска или отмены синхронного управления посредством сигнала выбора синхронного управления осью.

0352

ОШИБКА СОСТАВЛЕНИЯ ОСИ СИНХРОННОГО УПРАВЛЕНИЯ

Данная ошибка произошла, когда:

1) Была произведена попытка выполнить синхронное управление для оси во время синхронного, комплексного или наложенного управления.

2) Была произведена попытка синхронизировать правнука для отношения предок-потомок-внук.

3) Была произведена попытка выполнить синхронное управление, хотя отношение «предок»-«потомок»-«внук» задано не было.

0353

КОМАНДА БЫЛА ДАНА ДЛЯ ОСИ, КОТОРАЯ НЕ МОГЛА ДВИГАТЬСЯ.

T

Данная ошибка произошла, когда:

1) Команда перемещения была выполнена для оси, для которой бит 7 (NUMx) параметра ном. 8163 имел значение 1.

2) Команда перемещения была выполнена для ведомой оси при синхронном управлении.

3) Команда перемещения была выполнена для оси, для которой бит 7 (MUMx) параметра ном. 8162 имел значение 1 при комплексном управлении.

0354

G28 БЫЛО ЗАДАНО С РЕФЕРЕНТНОЙ ПОЗИЦИЕЙ, НЕ ЗАФИКСИРОВАННОЙ В РЕЖИМЕ СИНХРОННОГО УПРАВЛЕНИЯ

Данная ошибка произошла, когда G28 было задано для ведущей оси при ожидании во время синхронного управления, но референтная позиция не была задана для ведомой оси.

0355

ОШИБКА ПАРАМЕТРА ИНДЕКСА ЗАДАННОЙ ОСИ КОМПЛЕКСНОГО УПРАВЛЕНИЯ.

Задан неверный номер оси комплексного управления (параметр ном. 8183).

0356

ПОСКОЛЬКУ ОСЬ ПЕРЕМЕЩАЕТСЯ, КОМПЛЕКСНОЕ УПРАВЛЕНИЕ ИСПОЛЬЗОВАТЬ НЕЛЬЗЯ

Пока ось при комплексном управлении перемещалась, была сделана попытка запуска или отмены с помощью сигнала выбора комплексного управления оси.

0357

ОШИБКА СОСТАВЛЕНИЯ ОСИ КОМПЛЕКСНОГО УПРАВЛЕНИЯ

Данная ошибка произошла, когда была сделана попытка выполнить комплексное управление для оси во время синхронного, комплексного или наложенного управления.

0359

G28 ЗАДАНО ПРИ НЕФИКСИРОВАННОМ РЕФЕРЕНТНОМ ПОЛОЖЕНИИ В КОМПЛ. РЕЖИМЕ

Данная ошибка произошла, когда команда G28 была задана сложной оси в ходе комплексного управления, но референтная позиция не была задана для другой части составления.

0360

ОШИБКА ЗАДАНИЯ ПАРАМЕТРА ИНДЕКСА ОСИ С НАЛОЖЕННЫМ УПРАВЛЕНИЕМ

Задан неверный номер оси наложенного управления (парам. ном. 8186).

0361

ПОСКОЛЬКУ ОСЬ ПЕРЕМЕЩАЕТСЯ, НАЛОЖЕННОЕ УПРАВЛЕНИЕ ИСПОЛЬЗОВАТЬ НЕЛЬЗЯ

Пока ось при наложенном управлении перемещалась, была сделана попытка запуска или отмены наложенного управления посредством сигнала выбора наложенного управления осью.

0362

ОШИБКА СОСТАВЛЕНИЯ ОСИ НАЛОЖЕННОГО УПРАВЛЕНИЯ

Данная ошибка произошла, когда:

1) Была произведена попытка выполнить наложенное управление для оси во время синхронного, комплексного или наложенного управления.

2) Была произведена попытка синхронизировать правнука для отношения предок-потомок-внук.

0363

КОМАНДА G28 ЗАДАНА ДЛЯ ВЕДОМОЙ ОСИ НАЛОЖЕННОГО УПРАВЛЕНИЯ.

Данная ошибка произошла, когда была дана команда G28 для ведомой оси наложенного управления при наложенном управлении.

0364

КОМАНДА G53 ЗАДАНА ДЛЯ ВЕДОМОЙ ОСИ НАЛОЖЕННОГО УПРАВЛЕНИЯ.

Данная ошибка произошла, когда была дана команда G53 для ведомой оси, перемещающейся при наложенном управлении.

0365

СЛИШКОМ МНОГО МАКСИМАЛЬНЫХ НОМЕРОВ ОСИ SV/SP НА КОНТУР

Неверно задано число управляемых осей или шпинделей для использования в одном контуре. Проверьте параметры ном. 981 и ном. 982. Если порождается этот сигнал тревоги, то состояние аварийного останова нельзя сбросить.

0369

ОШИБКА ФОРМАТА G31

1) Не задана ось либо заданы две или более осей в команде переключения по пределу крутящего момента (G31P98/P99).

2) Нельзя задать G31P90.

0370

ОШИБКА G31P/G04Q

1) Заданное значение адреса P для G31 вне диапазона. Адрес P имеет диапазон от 1 до 4 в функции многошагового пропуска.

2) Заданное значение адреса Q для G04 вне диапазона. Адрес Q имеет диапазон от 1 до 4 в функции многошагового пропуска.

3) P1 -4 для G31, или Q1 -4 для G04 было задана без опции функции многошагового пропуска.

4) Для G72 или G74 в постоянных циклах шлифования заданное значение адреса P вне диапазона. Адрес P имеет диапазон от 1 до 4 в функции многошагового пропуска. P1-4 было задано в G72 или G74 несмотря на отсутствие опции функции многошагового пропуска.

0372

НЕ ЗАВЕРШЕН ВОЗВРАТ НА РЕФЕРЕНТНУЮ ПОЗИЦИЮ

Была сделана попытка выполнить автоматический возврат на референтную позицию на ортогональной оси до завершения возврата на референтную позицию на наклонной оси. Однако, эта попытка не удалась, поскольку не был задан ручной возврат на референтную позицию при управлении наклонной осью или при автоматическом возврате на референтную позицию после включения питания. Сначала вернитесь на референтную позицию по наклонной оси, затем вернитесь на референтную позицию на ортогональной оси.

0373

НЕВЕРНЫЙ СИГНАЛ СКОРОСТНОГО ПРОПУСКА

В командах пропуска (G31, с G31P1 по G31P4) и командах выстоя (G04, с G04Q1 по G04Q4) один и тот же скоростной сигнал выбран в разных контурах^

0375

НЕВОЗМОЖНО УПРАВЛЕНИЕ НАКЛОННОЙ ОСЬЮ (СИНХ:СМЕШ:НАЛОЖ)

Управление осью наклона отключено для данной конфигурации оси.

1) Все задействованные оси при управлении наклонной осью не находятся в режиме синхронного управления. Либо необходимо выполнить настройки для обеспечения синхронного управления между наклонными осями, а также между ортогональными осями.

2) Все задействованные оси при управлении наклонной осью не находятся в режиме комплексного управления. Либо необходимо выполнить настройки для обеспечения комплексного управления между наклонными осями, а также между ортогональными осями.

3) Задействованные оси при управлении наклонной осью находятся в режиме наложенного управления.

0376

ПОСЛЕД. DCL: НЕВЕРНЫЙ ПАРАМЕТР

1) Если параметр ном. 1815#1 имеет значение «1», параметр ном. 2002#3 имеет значение «0»

2) Активирована функция регистрации абсолютной позиции. (Параметр ном.1815#5 имеет значение «1».)

0412

НЕВЕРНЫЙ G-КОД

Использован недопустимый G-код.

0445

НЕВЕРНАЯ ОПЕРАЦИЯ ОСИ

Команда позиционирования была выдана в режиме управления скоростью. Проверьте сигнал режима управления скоростью SV (Fn521).

0446

НЕВЕРНАЯ КОМАНДА В G96.1/G96.2/G96.3/G96.4

G96.1, G96.2, G96.3 и G96.4 заданы в блоке, включающем другие команды. Измените программу.

0447

НЕВЕРНЫЕ ДАННЫЕ НАСТРОЙКИ

Шпиндель, управляемый серводвигателем, задан неверно. Проверьте параметры для функции управления шпинделем при помощи серводвигателя.

0455

НЕВЕРНАЯ КОМАНДА ШЛИФОВАНИЯ

В постоянных циклах шлифования:

1) Не совпадают знаки команд I, J и K.

2) Не задана величина перемещения для оси шлифования.

0456

НЕВЕРНЫЙ ПАРАМЕТР ШЛИФОВАНИЯ

Неверно заданы параметры для постоянных циклов шлифования.

Вероятные причины приведены ниже.

1) Неверно задан номер оси шлифования (параметры от ном. 5176 до ном. 5179).

2) Неверно задан номер оси правки (параметры от ном. 5180 до ном. 5183).

3) Совпадают номера осей резания, шлифования и правки (только для серии M).

0601

НЕВЕРНАЯ ОПЕРАЦИЯ ОСИ ДЛЯ ШПИНДЕЛЯ С СЕРВОДВИГАТЕЛЕМ

Команда перемещения выполнена для шпинделя, управляемого серводвигателем. Измените программу.

0602

ОШИБКА КОМАНДЫ ВЫБОРА ШПИНДЕЛЯ (ШПИНДЕЛЬ СЕРВОДВИГАТЕЛЯ)

Не был правильно выбран исполнитель для шпинделя, управляемого серводвигателем.

1001

НЕВЕРНЫЙ РЕЖИМ УПРАВЛЕНИЯ ОСЬЮ

Неверный режим управления осью.

1013

НЕВЕРНАЯ ПОЗ. НОМ. ПРОГРАММЫ

Адрес O или N задан в неправильном месте (после макрооператора т. д.).

1014

НЕВЕРНЫЙ ФОРМАТ НОМЕРА ПРОГРАММЫ

Адрес O или N не сопровождается числом.

1016

НЕ НАЙДЕН КОНЕЦ БЛОКА

Код EOB (Конец блока) отсутствует в конце ввода программы в режиме MDI.

1077

ПРОГРАММА ИСПОЛЬЗУЕТСЯ

Сделана попытка исполнения на переднем плане программы, находящейся в режиме фонового редактирования. Редактируемую в настоящее время программу нельзя выполнить, поэтому прекратите редактирование и перезапустите выполнение программы.

1079

НЕ НАЙДЕН ПРОГРАММНЫЙ ФАЙЛ

Программа заданного номера файла не зарегистрирована во внешнем устройстве. (вызов подпрограммы внешнего устройства)

1080

ДУБЛИРОВАНИЕ ВЫЗОВА ПОДПРОГРАММЫ УСТРОЙСТВА

Еще один вызов подпрограммы внешнего устройства был выполнен из подпрограммы, после того как подпрограмма была вызвана подпрограммой внешнего устройства.

1081

ВЫЗОВ ПОДПРОГРАММЫ ВНЕШНЕГО УСТРОЙСТВА ОШИБКА РЕЖИМА

Вызов подпрограммы внешнего устройства невозможен в данном режиме.

1091

ДУБЛИРОВАНИЕ СЛОВА ВЫЗОВА ПОДПРОГРАММЫ

Больше одной команды вызова подпрограммы было задано в одном блоке.

1092

ДУБЛИРОВАНИЕ СЛОВА ВЫЗОВА МАКРОКОМАНДЫ

Больше одной команды вызова макрокоманды было задано в одном блоке.

1093

ДУБЛИРОВАНИЕ СЛОВА ЧУ И М99

Адрес, отличный от O, N, P или L, был задан в том же блоке, что и M99 в состоянии вызова модальной макрокоманды.

1095

СЛИШКОМ МНОГО АРГУМЕНТОВ ТИПА 2

Более десяти наборов аргументов I, J и K задано в аргументах типа-II (A, B, C, I, J, K, I, J, K,…) для пользовательских макрокоманд.

1096

НЕВЕРНОЕ ИМЯ ПЕРЕМЕННОЙ

Было задано неверное имя переменной. Код, который нельзя задать в качестве имени переменной, был задан. Команда [#_OFSxx] не соответствует типу (A или C) текущей используемой памяти коррекции на инструмент.

1097

СЛИШКОМ ДЛИННОЕ ИМЯ ПЕРЕМЕННОЙ

Заданное имя переменной слишком длинное.

1098

ОТСУТСТВУЕТ ИМЯ ПЕРЕМЕННОЙ

Заданное имя переменной нельзя использовать, поскольку оно не зарегистрировано.

1099

НЕВЕРНЫЙ ИНДЕКС[]

Индекс не задан для имени переменной, требующей индекса, заключенного в [ ].

Индекс задан для имени переменной, не требующей индекса, заключенного в [ ].

Значение, заключенное в заданные [ ], не попало в диапазон.

1100

ОТМЕНА БЕЗ МОДАЛЬНОГО ВЫЗОВА

Отмена режима вызова (G67) была задана, хотя режим постоянного вызова макрокоманд (G66) не был включен.

1101

НЕВЕРНОЕ ПРЕРЫВАНИЕ ОПЕРАТОРА ЧПУ

Было произведено прерывание в состоянии, в котором прерывание пользовательской макрокоманды, содержащей команду перемещения, нельзя было выполнить.

1115

ПЕРЕМЕННАЯ С ЗАЩИТОЙ ОТ ЧТЕНИЯ

Была произведена попытка использовать в пользовательской макрокоманде на правой стороне выражение переменной, которое можно использовать только на левой стороне выражения.

1120

НЕВЕРНЫЙ ФОРМАТ АРГУМЕНТА

Заданный аргумент в функции аргумента (ATAN, POW) ошибочен.

1124

ОТСУТСТВУЕТ ОПЕРАТОР DO

Команда DO, соответствующая команде END, отсутствовала в пользовательской макрокоманде.

1125

НЕВЕРНЫЙ ФОРМАТ ВЫРАЖЕНИЯ

Описание выражения в пользовательском макрооператоре содержит ошибку. Ошибка формата программного параметра. Окно, отображенное для ввода периодических данных по техобслуживанию или меню выбора наименований (станков), не соответствует типу данных.

1128

ПОРЯДКОВЫЙ НОМЕР ВНЕ ДИАПАЗОНА

Последовательность ном. пункта назначения при команде перехода в пользовательском макрооператоре GOTO находилась вне диапазона (диапазон действительных значений: от 1 до 99999).

1131

НЕ ХВАТАЕТ ОТКРЫВАЮЩЕЙ СКОБКИ

Число левых скобок ([) меньше числа правых скобок (]) в пользовательском макрооператоре.

1132

НЕ ХВАТАЕТ ЗАКРЫВАЮЩЕЙ СКОБКИ

Число правых скобок ([) меньше числа левых скобок (]) в пользовательском макрооператоре.

1133

ОТСУТСТВУЕТ ‘=’

Знак равенства (=) отсутствует в команде арифметических вычислений в пользовательском макрооператоре.

1134

ОТСУТСТВУЕТ

Отсутствует ограничитель (,) в пользовательском макрооператоре.

1137

ОШИБКА ФОРМАТА ОПЕРАТОРА IF

Формат, используемый в операторе IF в пользовательской макрокоманде, ошибочный.

1138

ОШИБКА ФОРМАТА ОПЕРАТОРА WHILE

Формат, используемый в операторе WHILE в пользовательской макрокоманде, ошибочный.

1139

ОШИБКА ФОРМАТА ОПЕРАТОРА SETVN

Формат, используемый в операторе SETVN в пользовательской макрокоманде, ошибочный.

1141

НЕВЕРНЫЙ СИМВОЛ В ИМЕНИ ПЕРМЕННОЙ

Оператор SETVN в пользовательской макрокоманде относится к символу, который нельзя использовать в имени переменной.

1142

СЛИШКОМ ДЛИННОЕ ИМЯ ПЕРЕМЕННОЙ (SETVN)

Имя переменной, используемой в SETVN операторе в пользовательской макрокоманде, превышает 8 символов.

1143

ОШИБКА ФОРМАТА ОПЕРАТОРА BPRNT/DPRNT

Формат, используемый в операторе BPRNT или в операторе DPRNT, ошибочный.

1144

ОШИБКА ФОРМАТА G10

Ввод данных для ном. L команды G10 или соответствующей функции не активирован.

Адреса задания данных P или R не заданы.

Был задан адрес, не связанный с установкой данных. Какой адрес задать различается в соответствии с L ном.

Знак, десятичная точка или диапазон заданного адреса ошибочны.

1160

ПЕРЕПОЛНЕНИЕ УПРАВЛЯЮЩИХ ДАННЫХ

Переполнение произошло в данных позиции в ЧПУ.

Данный сигнал тревоги также порождается, если целевое положение команды превышает максимальный ход в результате вычислений, таких как преобразование системы координат, коррекция или введение величины ручного вмешательства.

1180

ВСЕ ПАРАЛЛЕЛЬНЫЕ ОСИ В РЕЖИМЕ ОЖИДАНИЯ

Все оси, заданные для автоматической работы, находятся в режиме ожидания.

1196

НЕВЕРНЫЙ ВЫБОР ОСИ СВЕРЛЕНИЯ

Ось сверления, заданная для сверления в постоянном цикле сверления, неверна.

В блоке команды G-кода в постоянном цикле точка Z не задана для оси сверления.

1200

НЕВЕРНЫЙ ВОЗВРАТ НА НОЛЬ ИМПУЛЬСНОГО ШИФРАТОРА

Положение сетки нельзя было подсчитать при возврате на референтную позицию сетки при использовании системы сетки, поскольку сигнал одного оборота не был получен перед отходом от упора замедления.

Данный сигнал тревоги также возникает в том случае, если инструмент не достигает скорости подачи, которая превышает величину погрешности сервосистемы, предварительно заданную в параметре ном. 1841, прежде чем отработает ограничитель хода замедления (сигнал замедления *DEC опять становится «1»).

1202

ОТСУТСТВУЕТ КОМАНДА F В G93

F коды в режиме спецификации обратного времени (G93) не обрабатываются как модальные и должны быть заданы в отдельных блоках.

1223

НЕВЕРНЫЙ ВЫБОР ШПИНДЕЛЯ

Была сделана попытка выполнить команду, применимую к шпинделю, в то время как шпиндель, подлежащий управлению, задан неправильно.

1298

НЕВЕРНОЕ ПРЕОБРАЗОВАНИЕ ДЮЙМЫ/МЕТРИЧЕСКИЕ ЕДИНИЦЫ

Произошла ошибка при преобразовании дюймовых/метрических единиц.

1300

НЕВЕРНЫЙ АДРЕС

Номер оси был задан, хотя параметр не относится к оси при загрузке данных параметров или коррекции межмодульного смещения с ленты или при вводе параметра G10.

Ось ном. нельзя задать в данных коррекции межмодульного смещения.

1301

ОТСУТСТВУЕТ АДРЕС

Номер оси не был задан, хотя параметр относится к оси при загрузке данных параметров или коррекции межмодульного смещения с ленты или при вводе параметра G10.

Или данные ном. адреса ном или адрес задания адреса P или R не заданы.

1302

НЕВЕРНЫЙ НОМЕР ДАННЫХ

Был обнаружен несуществующий номер данных при загрузке данных параметров или коррекции межмодульного смещения с ленты или введением параметра G10.

Данный сигнал тревоги также порождается, если обнаружены недопустимые значения слов.

1303

НЕВЕРНЫЙ НОМЕР ОСИ

Был обнаружен адрес номера оси, превышающий максимальное число управляемых осекй при загрузке данных параметров или коррекции межмодульного смещения с ленты или введении параметра G10.

1304

СЛИШКОМ МНОГО ЗНАКОВ

Было обнаружено слишком много цифр при загрузке данных параметров или коррекции межмодульного смещения с ленты.

1305

ДАННЫЕ ВНЕ ДИАПАЗОНА

Были обнаружены данные вне диапазона при загрузке данных параметров или коррекции межмодульного смещения с ленты. Значения адресов задания данных, соответствующих L ном., пока ввод данных с помощью G10 был вне диапазона.

Данный сигнал тревоги также порождается, если программируемые слова ЧПУ содержат значения не из диапазона.

1306

ОТСУТСВУЕТ НОМЕР ОСИ

Параметр, требующий указания оси, обнаружен без номера оси (адрес A) при загрузке параметров с перфоленты.

1307

НЕВЕРНОЕ ИСПОЛЬЗОВАНИЕ ЗНАКА МИНУС

Были обнаружены данные с неверным обозначением при загрузке данных параметров или коррекции межмодульного смещения с ленты или введением параметра G10. Знак был задан для адреса, не поддерживающего использование знаков.

1308

ОТСУТСТВУЮТ ДАННЫЕ

Адрес, в конце которого не ставится числовое значение, был обнаружен при загрузке данных параметров или коррекции межмодульного смещения с ленты.

1329

НЕВЕРНЫЙ НОМЕР ГРУППЫ СТАНКОВ

Был обнаружен адрес номера групп станков, превышающий максимальное число управляемых станков при загрузке данных параметров или коррекции межмодульного смещения с ленты или введении параметра G10.

1330

НЕВЕРНЫЙ НОМЕР ШПИНДЕЛЯ

Был обнаружен адрес номера шпинделя, превышающий максимальное число управляемых шпинделей при загрузке данных параметров или коррекции межмодульного смещения с ленты или введении параметра G10.

1331

НЕВЕРНЫЙ НОМЕР КОНТУРА

Был обнаружен адрес номера контуров, превышающий максимальное число управляемых контуров при загрузке данных параметров или коррекции межмодульного смещения с ленты или введении параметра G10.

1332

ОШИБКА БЛОКИРОВКИ ЗАПИСИ ДАННЫХ

Невозможно загрузить данные при загрузке данных параметров, коррекции межмодульного смещения или рабочих координат введении параметра с ленты.

1333

ОШИБКА ЗАПИСИ ДАННЫХ

Не может записать данные при загрузке данных с ленты.

1470

ОТСУТСТВУЮТ ПАРАМЕТРЫ G40.1 -G42.1

Задание параметра, связанное с управлением нормальным направлением, неверное.

Номер оси для оси управления нормальным направлением задан в параметре ном. 5480, но этот номер оси входит в область номеров управляемых осей.

Ось, заданная как ось управления нормальным направлением, не задана как ось вращения (ROTx, бит 0 параметра ном. 1006) = 1 и ном. 1022=0).

Задайте скорость подачи, при которой должно выполняться вращение вокруг оси управления нормальным направлением движения, в параметре ном. 5481, в диапазоне от 1 до 15000 мм/мин.

1508

ДУБЛИРОВАНИЕ М КОДА(ИЗМЕНЕНИЕ НАПРАВЛЕНИЯ ДЕЛИТЕЛЬНОПОВОРОТНОГО СТОЛА)

Имеется функция, которой задан такой же М-код. (индексирование делительно-поворотного стола)

1509

ДУБЛИРОВАНИЕ М-КОДА (ОРИЕНТИРОВАНИЕ ОСИ ПОЗИЦИОНИРОВАНИЯ ШПИНДЕЛЯ)

Имеется функция, которой задан такой же М-код. (позиционирование шпинделя, ориентация)

1510

ДУБЛИРОВАНИЕ М-КОДА (ПОЗИЦИОНИРОВАНИЕ ОСИ ПОЗИЦИОНИРОВАНИЯ ШПИНДЕЛЯ)

Имеется функция, которой задан такой же М-код. (позиционирование шпинделя, позиционирование)

1511

ДУБЛИРОВАНИЕ М-КОДА (РАЗБЛОКИРОВКА ОСИ ПОЗИЦИОНИРОВАНИЯ ШПИНДЕЛЯ)

Имеется функция, которой задан такой же М-код. (позиционирование шпинделя, отмена режима)

1533

ПОТЕРЯ ЗНАЧИМОСТИ АДРЕСА F (G95)

Скорость подачи оси сверления отверстий, рассчитанная по кодам F и S, слишком медленная в режиме подачи за один оборот.

1534

ПЕРЕПОЛНЕНИЕ АДРЕСА F (G95)

Скорость подачи оси сверления отверстий, рассчитанная по кодам F и S, слишком быстрая в режиме подачи за один оборот.

1537

ПОТЕРЯ ЗНАЧИМОСТИ АДРЕСА F (ПЕРЕРЕГУЛИРОВАНИЕ)

Скорость, полученная применением перерегулирования к функции F, слишком медленная.

1538

ПЕРЕПОЛНЕНИЕ АДРЕСА F (ПЕРЕРЕГУЛИРОВАНИЕ)

Скорость, полученная применением перерегулирования к функции F, слишком быстрая.

1541

НУЛЕВОЙ S-КОД

«0» был задан в качестве S-кода.

1543

НЕВЕРНАЯ НАСТРОЙКА ПЕРЕДАЧИ

Передаточное число между шпинделем и шифратором положения или заданный номер шифратора положения импульсов неверен в функции позиционирования шпинделей.

1544

S-КОД ПРЕВЫСИЛ МАКСИМУМ

S команда превышает максимальное число вращений шпинделя.

1548

НЕВЕРНЫЙ РЕЖИМ ОСИ

Ось позиционирования шпинделя (серия T)/ ось контурного управления Cs была задана во время переключения режима управления осью.

1561

НЕВЕРНЫЙ УГОЛ ИНДЕКСИРОВАНИЯ

Заданный угол вращения не является целым множителем минимального угла индексирования.

1564

ОСЬ ДЕЛИТЕЛЬНО-ПОВОРОТНОГО СТОЛА СОВМЕСТНО С ДРУГОЙ ОСЬЮ

Ось делительно-поворотного стола и другая ось были заданы в одном блоке.

1567

ДУБЛИРОВАНИЕ КОМАНДЫ ОСИ ДЕЛИТЕЛЬНО-ПОВОРОТНОГО СТОЛА

Индексирование делительно-поворотного стола было задано при перемещении оси, или ось, для которой последовательность индексирования делительно-поворотного стола не была завершена.

1590

ОШИБКА TH

Во время считывания с устройства ввода обнаружена ошибка TH. Код, вызвавший при считывании ошибку TH, и количество операторов до него от блока можно проверить в окне диагностики.

1591

ОШИБКА TV

Ошибка TV обнаружена в единичном блоке. Проверка TV может быть отменена присвоением TVC в параметре ном. 0000#0 значения «0».

1592

КОНЕЦ ЗАПИСИ

Код EOR (Конец записи) задан в середине блока. Данный сигнал тревоги также порождается, если процентное отношение в конце программы ЧПУ считывается. Для функции перезапуска программы данный сигнал тревоги порождается, если заданный блок не найден.

1593

ОШИБКА ЗАДАНИЯ ПАРАМЕТРА EGB

Ошибка в задании параметра, связанного с EGB

1) Неверная настройка SYN, бит 0 параметра ном. 2011.

2) Ведомая ось, заданная G81, не задана как ось вращения. (ROT, бит 0 параметра ном. 1006)

3) Число импульсов за оборот (не задан параметр (ном. 7772 или ном. 7773)).

1594

ОШИБКА ФОРМАТА EGB

Ошибка в формате блока команды EGB

1) T (число зубьев) не задано в блоке G81.

2) В блоке G81 данные, заданные для T, L, P или Q, находятся вне соответствующего диапазона действительных значений.

3) В блоке G81 задана только одна из команд P и Q.

1595

НЕПРАВИЛЬНАЯ КОМАНДА В РЕЖИМЕ EGB

В ходе синхронизации с EGB была дана команда, которую нельзя было давать.

(1) Команда ведомой оси с использованием G27, G28, G29, G30, G33, G53 и т. д.

2) Команда преобразования дюймовых/метрических единиц с использованием G20, G21, и т.д.

1596

ПЕРЕПОЛНЕНИЕ EGB

Возникло переполнение в расчете коэффициента синхронизации.

1805

НЕВЕРНАЯ КОМАНДА

[Устройство ввода/вывода]

Была произведена попытка задать неверную команду в ходе обработки в устройстве ввода/вывода.

[Возврат на референтную позицию G30]

Номера адреса P для задания возврата на 2-ю, 3-ю и 4-ю референтную позицию — не 2, 3 и 4.

[Выстой единичного оборота]

Заданное вращение шпинделя равно «0», если задан выстой единичного оборота.

1806

НЕСООТВЕТСТВИЕ ТИПА УСТРОЙСТВА

Операция, невозможная на устройстве ввода/вывода, которая в настоящий момент выбрана в настройке, была задана. Данный сигнал тревоги также порождается, если перемотка файла задана несмотря на то, что устройство ввода/вывода не является кассетой FANUC.

1807

ОШИБКА НАСТРОЙКИ ПАРАМЕТРА

Задан неверный интерфейс ввода/вывода.

Настройки внешнего устройства ввода/вывода и скорость двоичной передачи, стоповый бит и настройки выбора протокола ошибочны.

1808

УСТРОЙСТВО ОТКРЫТО ДВАЖДЫ

Была сделана попытка открыть устройство, к которому была попытка доступа.

1820

НЕВЕРНОЕ СОСТОЯНИЕ СИГНАЛА DI

1) Предварительно заданный сигнал оси системы координат заготовки был изменен на «1» в состоянии, когда все оси на контуре, включая ось, по которой выполняется преднастройка для осей системы координат заготовки, не были остановлены, или в момент выполнения команды.

2) Когда был задан М-код для выполнения преднастройки с предварительно заданным сигналом для осей системы координат заготовки, не был введен сигнал для каждой оси системы координат заготовки.

3) Активна блокировка вспомогательной функции.

1823

ОШИБКА КАДРА (1)

Стоповый бит символа, полученный от устройства ввода/вывода, соединенный с интерфейсом считывающего перфоратора 1, не был обнаружен.

1830

DR ОТКЛ. (2)

Сигнал готовности ввода набора данных DR устройства ввода/вывода, подключенного к интерфейсу считывающего перфоратора 2, отключен.

1832

ОШИБКА ПЕРЕПОЛНЕНИЯ (2)

Следующий символ был получен от устройства ввода/вывода, подключенного к интерфейсу считывающего перфоратора 2 до того, как он смог считать полученный предварительно символ.

1833

ОШИБКА КАДРА (2)

Стоповый бит символа, полученный от устройства ввода/вывода, соединенный с интерфейсом считывающего перфоратора 2, не был обнаружен.

1834

ОШИБКА БУФЕРИЗАЦИИ (2)

ЧПУ получило более 10 символов данных от устройства ввода/ вывода, подключенного к интерфейсу считывающего перфоратора 2, хотя ЧПУ послало код останова (DC3) в ходе принятия данных.

1912

ОШИБКА ДРАЙВЕРА V-УСТРОЙСТВА (ОТКРЫТО)

При управлении драйвером устройства возникла ошибка.

1960

ОШИБКА ДОСТУПА (КАРТА ПАМЯТИ)

Неправильный доступ к карте памяти

Данный сигнал тревоги также порождается в ходе считывания, если считывание осуществляется до конца файла без регистрации кода EOR.

1961

НЕ ГОТОВО (КАРТА ПАМЯТИ)

Плата памяти не готова.

1962

КАРТА ЗАПОЛНЕНА (КАРТА ПАМЯТИ)

Карта памяти заполнена полностью.

1963

КАРТА ЗАЩИЩЕНА (КАРТА ПАМЯТИ)

Карта памяти защищена от записи.

1964

НЕ УСТАНОВЛЕНА (КАРТА ПАМЯТИ)

Невозможна установка карты памяти.

1965

КАТАЛОГ ЗАПОЛНЕН (КАРТА ПАМЯТИ)

Файл нельзя создать в корневом каталоге карты памяти.

1966

ФАЙЛ НЕ НАЙДЕН (КАРТА ПАМЯТИ)

Заданный файл не найден в карте памяти.

1967

ФАЙЛ ЗАЩИЩЕН (КАРТА ПАМЯТИ)

Карта памяти защищена от записи.

1968

НЕВЕРНОЕ ИМЯ ФАЙЛА (КАРТА ПАМЯТИ)

Неверное имя файла карты памяти

1969

НЕВЕРНЫЙ ФОРМАТ (КАРТА ПАМЯТИ)

Проверить имя файла.

1970

НЕВЕРНАЯ КАРТА (КАРТА ПАМЯТИ)

Нельзя использовать эту карту памяти.

1971

ОШИБКА УДАЛЕНИЯ (КАРТА ПАМЯТИ)

Во время удаления информации с карты памяти возникла ошибка.

1972

НИЗКИЙ ЗАРЯД БАТАРЕИ (КАРТА ПАМЯТИ)

Садится батарея карты памяти.

1973

ФАЙЛ УЖЕ СУЩЕСТВУЕТ

Файл, имеющий то же имя, уже существует на карте памяти.

2032

ОШИБКА ВСТРОЕННОЙ СЕТИ ETHERNET/СЕРВЕРА данных

От функции встроенной сети Ethernet/сервера данных вернулось сообщение об ошибке.

Подробные сведения см. в окне сообщений об ошибках встроенной сети Ethernet или сервера данных.

2051

#200-#499 НЕВЕРНЫЙ Р-КОД ОБЩЕГО ВВОДА МАКРОКОМАНД (НЕТ ОПЦИИ)

Была произведена попытка ввести общую переменную пользовательской макрокоманды, не существующей в системе.

2052

#500-#549P ОБЩИЙ ВЫБОР КОДА МАКРОКОМАНДЫ (НЕЛЬЗЯ ИСПОЛЬЗОВАТЬ SETVN)

Нельзя ввести имя переменной.

Нельзя использовать команду SETVN с общими переменными макрокоманды кода P #500 — #549.

2053

НОМЕР #30000 НЕ ИМЕЕТ СООТВЕТСТВИЯ

Была произведена попытка ввести переменную только Р-кода, не существующую в системе.

2054

НОМЕР #40000 НЕ ИМЕЕТ СООТВЕТСТВИЯ

Была произведена попытка ввести расширенную переменную только Р-кода, не существующую в системе.

4010

НЕВЕРНОЕ ДЕЙСТВИТЕЛЬНОЕ ЗНАЧЕНИЕ OBUF:

Действительное значение буфера вывода ошибочно.

5006

СЛИШКОМ МНОГО СЛОВ В ОДНОМ БЛОКЕ

Число слов в блоке превышает максимально допустимое. Максимум 26 слов. Однако эта цифра варьируется в зависимости от опций ЧПУ. Разделите команду на два блока.

5007

СЛИШКОМ БОЛЬШОЕ РАССТОЯНИЕ

Из-за коррекции, вычисления точки пересечения, интерполяции или подобных причин было задано расстояние перемещения, превышающее максимально допустимое расстояние.

Проверьте заданные координаты или величины коррекции.

5009

НУЛЕВОЙ ПАРАМЕТР (ХОЛОСТОЙ ХОД)

Параметр скорости подачи холостого хода ном. 1410 или параметр максимальной скорости рабочей подачи ном. 1430 для каждой оси был установлен на 0.

5010

КОНЕЦ ЗАПИСИ

Код EOR (Конец записи) задан в середине блока. Данный сигнал тревоги также порождается, если процентное отношение в конце программы ЧПУ считывается.

5011

НУЛЕВОЙ ПАРАМЕТР (МАКС. РЕЗАНИЕ)

Параметр максимальной скорости рабочей подачи ном. 1430 был установлен на 0.

5014

НЕ НАЙДЕНЫ ДАННЫЕ ТРАССИРОВКИ

Нельзя произвести трассировку из-за отсутствия данных трассировки.

5016

НЕВЕРНАЯ КОМБИНАЦИЯ М-КОДОВ

В блоке заданы М-коды, принадлежащие одной группе. Или же М-код, который необходимо задать в блоке без других М-кодов, задан в блоке вместе с другими М-кодами.

5018

ОШИБКА СКОРОСТИ ШПИНДЕЛЯ ПРИ ПОЛИГОНАЛЬНОЙ ОБРАБОТКЕ

В режиме G51.2 скорость шпинделя или полигональной синхронной оси либо превышает значение фиксации, либо слишком низкая. Таким образом, невозможно поддерживать заданное соотношение скорости вращения.

Для полигональной обточки между шпинделями: Более подробные сведения о причине этого сигнала тревоги см. в DGN ном. 471.

5020

ОШИБКА ПАРАМЕТРА ПЕРЕЗАПУСКА

Недействительное значение задано в параметре ном. 7310, указывающем порядок осей для перемещения по ним инструмента в позицию возобновления обработки на холостом ходу. В этом параметре можно задавать значение в диапазоне от 1 до числа управляемых осей.

5046

НЕВЕРНЫЙ ПАРАМЕТР (КОРРЕКЦИЯ ПРЯМОЛИНЕЙНОСТИ)

Заданное значение параметра, связанное с простой коррекцией

прямолинейности, содержит ошибку.

Возможные причины:

1) Несуществующий номер оси задан в параметре оси перемещения или коррекции.

2) Неправильное соотношение величины номеров точек коррекции прямолинейности.

3) Не обнаружена точка простой коррекции прямолинейности между крайними удаленными точками коррекции в отрицательной и положительной областях.

4) Коррекция на точку коррекции слишком велика или слишком мала.

5064

РАЗЛИЧНЫЕ ЕДИНИЦЫ ОСЕЙ

Круговая интерполяция была задана в плоскости, состоящей из осей, имеющих различные системы приращений.

5065

РАЗЛИЧНЫЕ ЕДИНИЦЫ ОСЕЙ (ОСЬ PMC)

Оси, имеющие различные системы приращений, были заданы в одной и той же группе DI/DO для осевого управления с помощью РМС. Измените настройку параметра ном. 8010.

5073

НЕТ ДЕСЯТИЧНОЙ ТОЧКИ

В адресе, предусматривающем десятичную точку, не задана десятичная точка.

5074

ОШИБКА ДУБЛИРОВАНИЯ АДРЕСА

В одном блоке один и тот же адрес задан два или более раз. Или в одном блоке задано два или более G-кодов, принадлежащих к одной группе.

5110

НЕВЕРНЫЙ G-КОД (РЕЖИМ КОНТ. УПР. AI)

Недопустимый G-код был задан при управлении с расширенным предпросмотром, управлении AI с расширенным предпросмотром или контурном управлении AI.

5131

НЕСОВМЕСТИМАЯ КОМАНДА ЧПУ

Управление осью PMC и интерполяция в полярных координатах были заданы одновременно.

5195

НЕВОЗМОЖНО ОПРЕДЕЛИТЬ НАПРАВЛЕНИЕ

Измерение недействительно при функции прямого ввода измеренного значения коррекции на инструмент B.

[Для 1-контактного ввода]

1) Направление записанных импульсов непостоянно.

Например, состояние останова может быть задано во время режима записи коррекции, может быть введено состояние отключения сервосистемы, или возможно изменение направления.

2) Инструмент перемещается вдоль двух осей (ось X и ось Y). [Для определения направления перемещения при 4-контактном вводе]

1) Направление записанных импульсов непостоянно.

Например, состояние останова может быть задано во время режима записи коррекции, может быть введено состояние отключения сервосистемы, или возможно изменение направления.

2) Инструмент перемещается вдоль двух осей (ось X и ось Z).

3) Направление, указанное сигналом записи коррекции на инструмент, не соответствует направлению перемещения оси.

5220

РЕЖИМ РЕГУЛИРОВКИ РЕФЕРЕНТНОЙ ТОЧКИ

Для линейной шкалы кодировки расстояния I/F параметр автоматического задания референтной точки (ном.1819#2) имеет значение «1». Переместить станок на референтную позицию вручную и выполнить возврат на референтную позицию вручную.

5257

G41/G42 ЗАПРЕЩЕНЫ В РЕЖИМЕ MDI

Коррекция на радиус инструмента/на радиус вершины инструмента была задана в режиме MDI. (В зависимости от настройки параметра MCR (ном. 5008#4))

5303

ОШИБКА СЕНСОРНОЙ ПАНЕЛИ

Сенсорная панель не подключена правильно или не может быть инициализирована при включении питания. Устраните причину, затем снова включите питание.

5305

НЕВЕРНЫЙ НОМЕР ШПИНДЕЛЯ

В функции выбора шпинделя по адресу P для управления несколькими шпинделями,

1) Адрес P не задан.

2) P-код для выбора шпинделя не задан в параметре ном. 3781.

3) Задан неверный G-код, невозможный с командой S_P_;.

4) Многошпиндельное управление не активировано, так как бит 1 (EMS) параметра ном. 3702 имеет значение 1.

5) Номер усилителя шпинделя для каждого шпинделя не задан в параметре ном. 3717.

6) Команда шпинделя выполнена из контура, в котором она запрещена (параметр ном. 11090).

7) Неверная настройка параметра ном. 11090.

5306

ОШИБКА ПЕРЕКЛЮЧЕНИЯ РЕЖИМА

Не удалось выполнить переключение режима при активации. Попытка выполнить быстрый вызов макропрограммы была сделана не в состоянии сброса или во время сброса либо аварийного останова.

5329

М98 И КОМАНДА ЧПУ В ОДНОМ БЛОКЕ

Вызов подпрограммы, не являющейся единичным блоком, был задан в режиме постоянного цикла.

5339

КОМАНДА В НЕВЕРНОМ ФОРМАТЕ ВЫПОЛНЕНА ПРИ

СИНХ./СМЕШ./НАЛОЖ. УПРАВЛЕНИИ.

1. Недействительно значение P, Q или L, заданное посредством G51.4/G50.4/G51.5/G50.5/G51.6/G50.6.

2. Двойное значение задан параметром ном. 12600.

5346

ВОЗВРАТ НА РЕФЕРЕНТНУЮ ТОЧКУ

Не выполнено назначение координат для оси контурного управления

Cs. Выполните ручной возврат на референтную позицию.

1) Если назначение координат Cs выполнено для оси Cs, для которой сигнал состояния референтной позиции оси CsCSPENx имеет значение 0

2) Если данные позиции не отправлены усилителем шпинделя

3) Если состояние отключения сервосистемы введено во время запуска назначения координат оси Cs

4) Если состояние аварийного останова введено во время назначения координат оси Cs

5) Если ось Cs находится в режиме синхронного или наложенного управления

6) Если предпринята попытка отменить комплексное управление для оси Cs во время назначения координат оси Cs

7) Если предпринята попытка запустить синхронное, комплексное или наложенное управление для оси Cs во время назначения координат оси Cs

5362

ПРЕОБРАЗОВАНИЕ ДЮЙМ/ММ В РЕФ. ПОЗ.

Преобразование дюймы/метрические единицы было выполнено в позиции, отличной от референтной позиции. Выполните преобразование дюймы/метрические единицы после возврата на референтную позицию.

5391

НЕВОЗМОЖНО ИСПОЛЬЗОВАТЬ G92

Невозможно задать настройку системы координат заготовки G92.

1) После того, как коррекция на длину инструмента была изменена коррекция по типу смещения на длину инструмента, команда G92 была задана без абсолютной команды.

2) Команда G92 была задана в блоке, содержащем G49.

5395

ПРЕВЫШЕНИЕ КОЛИЧЕСТВА ОСЕЙ CS

Число осей, назначаемых для осевого контурного управления Cs, превышает максимально допустимое в системе число. Проверьте параметр ном. 1023. При возникновении этого сигнала тревоги состояние аварийного останова нельзя сбросить.

5445

НЕВОЗМОЖНО ЗАДАТЬ ПЕРЕМЕЩЕНИЕ В G39

Круговая интерполяция в углу (G39) для коррекции на радиус инструмента/на радиус вершины инструмента задана не отдельно, а с командой перемещения.

5446

ИЗБЕЖАНИЕ В G41/G42 НЕВОЗМОЖНО

Поскольку отсутствует вектор избежания столкновения, функция избежания столкновения для коррекции на радиус инструмента/на радиус вершины инструмента не работает.

5447

ОПАСНОЕ ИЗБЕЖАНИЕ В G41/G42

Операция функции избежания столкновения для коррекции на радиус инструмента/на радиус вершины инструмента ведет к опасности.

5448

ИЗБЕЖАНИЕ СТОЛКНОВЕНИЯ В G41/G42

В функции избежания столкновения для коррекции на радиус инструмента/на радиус вершины инструмента созданный вектор избежания столкновения приводит к последующему столкновению.

Suggest us how to improve StudyLib

(For complaints, use

another form
)

Your e-mail

Input it if you want to receive answer

Rate us

1

2

3

4

5

1001 System error %1 1002 System error %1 1003 Alarm pointer for this self-clearing alarm %1 is zero 1004 Alarm reaction to NCK alarm incorrectly configured 1005 Operating system error %1 parameter %2 %3 %4 1010 Channel %1 system error %2 action %3 1011 Channel %1 %3 %4 system error %2 1012 Channel %1 system error %2 %3 %4 1013 Channel %1 system error %2 1014 Channel %1 system error %2 1015 Channel %1 axis %2 system error %3 1016 Channel %1 axis %2 system error %3 1017 Channel %1 axis %2 system error %3 1018 Floating point arithmetic error in channel %1 task %2 station %3 FPU state %4 %4 1019 Floating point arithmetic error at address %3 in channel %1 task %2 FPU state %4 1030 System error in link module error code %1 error type %2 1031 Link module generated an unspecified error %1 NCU %2 %3 %4 1100 No valid firmware 1160 Assertion failed in %1: %2 2000 PLC sign-of-life monitoring 2001 PLC has not started up 2100 NCK battery warning threshold reached 2101 NCK battery alarm 2102 NCK battery alarm 2110 NCK temperature alarm 2120 NCK fan alarm 2130 5V/24V encoder or 15V D/A converter under voltage 2140 The actual service switch position forces a SRAM to be cleared at the next Power On (general reset active) 2190 Hardware plug-in module for communication with the digitizer missing 2192 No NCU link module exists, MD %1 reset 2193 “Safety Integrated” is not available for link axis %1. 2195 Channel %1 axis %2 high-speed punching/nibbling not possible via link 2196 Link axis active and $MN_MM_SERVO_FIFO_SIZE != %1 2900 Reboot is delayed 3000 Emergency stop 3001 Internal emergency stop 4000 Channel %1 machine data %2[%3] has gap in axis assignment 4001 Channel %1 axis %2 defined for more than one channel via machine data %3 4002 Channel %1 machine data %2[%3] assigns an axis not defined in channel 4003 Axis %1 incorrect assignment of master channel in machine data %2 4004 Channel %1 machine data %2 axis %3 defined repeatedly as geometry axis 4005 Maximum number of axes in channel %1 exceeded. Limit %2 4007 Axis %1 incorrect assignment of master NCU in machine data %2 4010 Invalid identifier used in machine data %1[%2] 4011 Channel %1 invalid identifier used in machine data %2[%3] 4012 Invalid identifier used in machine data %1[%2] 4013 Invalid NCU link configuration by machine data %1 = %2 , on NCU_1 = %3 4014 Axis %1 defined several times in %2 4016 Axis %1 already used by NCU %2 4017 Axis container %1, location %2 already used by NCU %3 4018 Axis container %1, location %2 not used by any channel 4019 Axis container %1 advance not allowed with current status of NCU %2 4020 Identifier %1 used several times in machine data %2 4021 Channel %1 identifier %2 used several times in machine data %3 4022 Axis container %3 switch not allowed: ext. zero offset active channel %1 axis %2 4023 Axis container %1 switch not allowed, axis container %2 switch active 4024 Invalid axis configuration due to missing axis container machine data 4025 Axis container %3 switch not allowed: master/slave active channel %1 axis %2 4026 Machine data %1[%2], link axis NC%3_AX%4 not used by any channel 4027 Notice: MD %1 was also changed for the other axes of axis container %2 4028 Notice! The axial MDs of the axes of the axis containers were matched. 4029 Notice: the axial MDs in axis container %1 will be matched on the next power-up 4030 Channel %1 axis identifier missing in machine data %2[%3] 4031 Channel %1 link axis %2 defined for more than one channel in machine data %3 4032 Channel %1 wrong identifier for facing axis in %2 4033 Notice: NCU link communication still not connected 4034 Local link axis %1 is not allowed for different interpolation cycle time = %2/%3 4035 Interpolation cycle from NCU%1 = %2 does not match NCU%3 = %4 4036 Wrong NCU link configuration by MD %1 4040 Channel %1 axis identifier %2 not consistent with machine data %3 4045 Channel %1 conflict between machine data %2 and machine data %3 4050 NC code identifier %1 cannot be reconfigured to %2 4060 Standard machine data loaded 4062 Backup data loaded 4065 Buffered memory was restored from backup medium (potential loss of data!) 4066 Buffered memory of FFS restored from backup medium (potential loss of data!) 4070 Normalizing machine data has been altered 4073 Compile cycle functions define machine data number %1 several times 4075 Machine data %1 (and maybe others) not altered due to missing permission level %2 4076 %1 Machine data could not be altered with permission level %2 4077 New value %1 of MD %2 not set. Requested %3 bytes too much %4 memory. 4080 Incorrect configuration of indexing axis in MD %1 4090 Too many errors during power-up 4100 System cycle time/scan time divider corrected for digital drive 4102 Default values for drive cycle times differ 4110 IPO factor increased to %1 4111 PLC cycle increased to %1 ms 4112 Servo cycle changed to %1 ms 4113 Sysclock cycle changed to %1 ms 4114 Error in DP cycle of SDB1000 4115 Time ratio communication to Ipo changed to %1 4150 Channel %1 invalid M function sub program call configured 4152 Illegal configuration of the “Block display with absolute values” function 4160 Channel %1 invalid M function number configured for spindle switchover 4170 Invalid M function number for channel synchronisation assigned 4180 Invalid M function number assigned to enable ASUP 4181 Channel %1 invalid assignment of an M auxiliary function number 4182 Channel %1 invalid M auxiliary function number in %2%3, MD reset 4183 Channel %1 M auxiliary function number %2 used several times (%3 and %4) 4184 Channel %1 illegally predefined auxiliary function in %2%3, MD reset 4185 Channel %1 illegal auxiliary function configured %2 %3 %4 4200 Channel %1 geometry axis %2 must not be declared a rotary axis 4210 Channel %1 spindle %2 declaration as rotary axis missing 4215 Channel %1 spindle %2 declaration as modulo axis missing 4220 Channel %1 spindle %2 declared repeatedly 4225 Channel %1 axis %2 declaration as rotary axis missing 4230 Channel %1 data alteration from external not possible in current channel state 4240 Runtime overflow for IPO cycle or position controller cycle, IP %1 4250 FastPlcCom functionality not available 4252 PLCIO read error: %1 4254 PLCIO write error: %1 4260 Machine data %1 illegal 4270 Machine data %1 assigns not activated NCK input/output byte %2 4275 Machine data %1 and %2 both assign the same NCK output byte no. %3 several times 4280 Assignment of NCK input/output byte via MD %1[%2] does not match hardware configuration 4282 Hardware of external NCK outputs assigned repeatedly 4285 Error on terminal block %1, error code %2 4290 Local P-bus sign-of-life monitoring 4291 Module in local P-bus slot %1 error codes %2 %3 %4 %2 %3 %4 4300 Declaration in MD %1 is not allowed for geometry axis/spindle %2. 4310 Declaration in MD %1 index %2 is not allowed. 4320 Axis %1 function %2 %3 and %4 not allowed 4334 Channel %1 The amount of fine correction in parameter %2 of the orientable toolholder %3 is too large 4336 Channel %1 orientable toolholder no. %2 for orientation transformation %3 does not exist 4338 Channel %1 invalid transformation type ‘%2’ in toolholder %3 for orientation transformer %4 4340 Channel %1 block %2 invalid transformation type in transformation no. %3 4341 Channel %1 block %2 no data set available for transformation no. %3 4342 Channel %1 invalid machine data for general 5-axis transformation error no. %2 4343 Channel %1 attempt made to change the machine data of an active transformation. 4345 Channel %1 invalid configuration in chained transformation no.%2 4346 Channel %1 invalid geoaxis assignment in machine data %2[%3] 4347 Channel %1 invalid channel axis assignment in machine data %2[%3] 4350 Channel %1 axis identifier %2 machine data %3 not consistent with machine data %4 4400 MD alteration will cause reorganisation of buffered memory (loss of data!) 4502 Channel %1 anachronism %2(%3) -> %4 5000 Communication job not executable %1 6000 Memory reorganized using standard machine data 6010 Channel %1 data block %2 not or not completely created, error code %3 6020 Machine data have been altered – now memory is reorganized 6030 Limit of user memory has been adapted 6035 Instead of %1 KB the system has only %2 KB of free user memory of type “%3” 6100 Error while creating %1, error number %2 %3 6401 Channel %1 tool change not possible: Empty location for tool %2 Duplo no. %3 on magazine %4 not available. 6402 Channel %1 tool change not possible. Magazine no. %2 not available 6403 Channel %1 tool change not possible. Magazine location number %2 on magazine %3 not available. 6404 Channel %1 tool change not possible. Tool %2 not available or not usable 6405 Channel %1 command %2 has invalid PLC acknowledge parameter %3 – identifier %4 6406 Channel %1 PLC acknowledge for command %2 is missing 6407 Channel %1 tool %2 cannot be placed in magazine %3 on location %4.Invalid definition of magazine! 6410 TO unit %1 tool %2 / Duplo no. %3 has reached its pre warning limit with D = %4 6411 Channel %1 tool %2 / Duplo no. %3 has reached its prewarning limit with D = %4 6412 TO unit %1 tool %2 / Duplo no. %3 has reached its monitoring limit with D = %4 6413 Channel %1 tool %2 / Duplo no. %3 has reached its monitoring limit with D = %4 6421 Channel %1 tool move not possible. Empty location for tool %2 Duplo no. %3 on magazine %4 not available. 6422 Channel %1 tool move not possible. Magazine no. %2 not available. 6423 Channel %1 tool move not possible. Location %2 on magazine %3 not available. 6424 Channel %1 tool move not possible. Tool %2 not available/not usable. 6425 Channel %1 tool %2 cannot be placed in magazine %3 on location %4. Invalid definition of magazine! 6430 Workpiece counter: overflow in table of monitored cutting edges. 6431 Function not allowed. Tool management/monitoring is not active. 6432 Function not executable. No tool assigned to tool holder/spindle 6433 Channel %1 block %2 %3 not available with tool management 6434 Channel %1 block %2 NC command SETMTH not allowed because tool holder function not active 6441 Writing of $P_USEKT not allowed. 6442 Channel %1 function not executable. No tool assigned to desired magazine/magazine location %2. 6450 Channel %1 tool change not possible. Invalid magazine location no. %2 in buffer magazine 6451 Channel %1 tool change not possible. No buffer magazine defined. 6452 Channel %1 tool change not possible. Tool holder/spindle number = %2 not defined. 6453 Channel %1 tool change not possible. No assignment between toolholder/spindle no. = %2 and buffer magazine location %3 6454 Channel %1 tool change not possible. No distance relation available. 6500 NC memory full 6510 Too many part programs in the NC memory 6520 The value of the machine data %1%2 is too low 6530 Too many files in directory 6540 Too many directories in the NC memory 6550 Too many subdirectories 6560 Data format not allowed 6570 NC memory full 6580 NC memory full 6600 NC card memory is full 6610 Too many files open on NC card 6620 NC card has incorrect format 6630 NC card hardware is defective 6640 NC card is not inserted 6650 Write protection of NC card is active 6660 ‘Flash File System’ option is not set 6670 NC card read active 6671 NC card write active 6690 Cycles from NC card cannot be copied to the passive file system. 6691 Cycles from the passive file system cannot be saved on the NC card 6692 Cycle %1 lost 6693 File %1 lost 6698 Unknown NC card (%1/%2). Writing not possible. 6700 Channel %1 value of the machine data %2%3 is too low 7000 Too many compile cycle alarms defined 7010 Range of MMC alarm numbers for compile cycles exceeded 7020 Compile cycle alarm number has not been defined 7100 Compile cycles VDI area: %1 byte for inputs and %2 byte for outputs. Maximum %3 bytes available. 7200 Problem with externally linked compile cycle %1 %2 7201 Assertion error in %1 line %2 7202 Missing option bit for %1: %2 8000 Channel %1 option ‘user interrupt programs’ not set 8010 Option ‘activation of more than %1 axes’ not set 8020 Option ‘activation of more than %1 channels’ not set 8021 Option ‘activation of more than %1 mode groups’ not set 8022 Option ‘activation of more than %1KB SRAM’ not set 8030 Channel %1 block %2 option ‘interpolation of more than 4 axes’ not set 8032 Option ‘activation of more than %1 link axes’ not set 8034 Option ‘activation of axis containers’ not set 8036 Option: it is not allowed to set different IPO cycles or position control cycles with NCU link. 8038 Option ‘activation of more than %1 lead link axes’ not set 8040 Machine data %1 reset, corresponding option is not set 8041 Axis %1: MD %2 reset, corresponding option not sufficient 8044 Option for IPO cycle time %1 ms not set 8045 Option for selected cycle settings not set 8080 %1 options are activated without setting the license key 8081 %1 options are activated that are not licensed by the license key 8082 The license key was entered three times, Power On required before next try. 8098 Invalid combination of options (%1) 8100 Channel %1 block %2: function not possible 10203 Channel %1 NC start without reference point 10207 Channel %1 error when selecting or deselecting the digitize function 10208 Channel %1 continue program with NC start 10209 Channel %1 internal NC stop after block search 10222 Channel %1 inter-channel communication not possible 10223 Channel %1: Command %2 is already occupied 10225 Channel %1: command denied 10299 Channel %1 Auto-Repos function is not enabled 10600 Channel %1 block %2 auxiliary function during thread cutting active 10601 Channel %1 block %2 zero velocity at block end point during thread cutting 10604 Channel %1 block %2 thread lead increase too high 10605 Channel %1 block %2 thread lead decrease too high 10607 Channel %1 block %2 thread with frame not executable 10610 Channel %1 axis %2 not stopped 10620 Channel %1 block %3 axis %2 at software limit switch %4 10621 Channel %1 axis %2 rests on software limit switch %3 10630 Channel %1 block %2 axis %3 at working area limit %4 10631 Channel %1 axis %2 rests at working area limit %3 10650 Channel %1 axis %2 incorrect gantry machine data, error code %3 10651 Channel %1 illegal gantry configuration. Error code %2 10652 Channel %1 axis %2 gantry warning threshold exceeded 10653 Channel %1 axis %2 gantry error threshold exceeded 10654 Channel %1 waiting for synchronization start of gantry group %2 10655 Channel %1 synchronization of gantry group %2 in progress 10656 Channel %1 axis %2 gantry alarm not yet used 10700 Channel %1 block %2 NCK protection zone %3 violated during automatic or MDA mode 10701 Channel %1 block %2 channel-specific protection zone %3 violated during automatic or MDA mode 10702 Channel %1 NCK protection zone %2 violated during manual mode 10703 Channel %1 channel-specific protection zone %2 violated during manual mode 10704 Channel %1 block %2 protection zone monitoring is not guaranteed 10706 Channel %1 NCK protection zone %2 reached with axis %3 during manual mode 10707 Channel %1 channel-specific protection zone %2 reached with axis %3 during manual mode 10710 Channel %1 block %2 conflict with centre less grinding 10720 Channel %1 block %3 axis %2 software limit switch %4 10721 Channel %1 block %3 axis %2 software limit switch %4 10730 Channel %1 block %3 axis %2 working area limitation %4 10731 Channel %1 block %3 axis %2 working area limitation %4 10740 Channel %1 block %2 too many empty blocks in WAB programming 10741 Channel %1 block %2 direction reversal with WAB infeed motion 10742 Channel %1 block %2 WAB distance invalid or not programmed 10743 Channel %1 block %2 WAB programmed several times 10744 Channel %1 block %2 no valid WAB direction defined 10745 Channel %1 block %2 WAB end position not clear 10746 Channel %1 block %2 block search stop for WAB 10747 Channel %1 block %2 retraction direction not defined for WAB 10748 Channel %1 block %2 illegal retract plane with WAB 10750 Channel %1 block %2 tool radius compensation activated without tool number 10751 Channel %1 block %2 danger of collision due to tool radius compensation 10752 Channel %1 block %2 overflow of local block buffer with tool radius compensation 10753 Channel %1 block %2 selection of the tool radius compensation only possible in linear block 10754 Channel %1 block %2 deselection of the tool radius compensation only possible in linear block 10755 Channel %1 block %2 selection of the tool radius compensation via KONT not possible at the current starting point 10756 Channel %1 block %2 deselection of the tool radius compensation via KONT not possible at the programmed end point 10757 Channel %1 block %2 changing the compensation plane while tool radius compensation is active not possible 10758 Channel %1 block %2 curvature radius with variable compensation value too small 10759 Channel %1 block %2 path is parallel to tool orientation 10760 Channel %1 block %2 helical axis is not parallel to tool orientation 10761 Channel %1 block %2 tool radius compensation for ellipse with more than one revolution not possible 10762 Channel %1 block %2 too many empty blocks between two traversing blocks with active tool radius compensation 10763 Channel %1 block %2 path component of the block in the compensation plane becomes zero 10764 Channel %1 block %2 discontinuous path with active tool radius compensation 10765 Channel %1 block %2 3D tool radius compensation not possible 10766 Channel %1 illegal change of surface orientation between block %2 and block %3 10767 Channel %1 block %2 processing with tilt angle unequal 0 not possible 10768 Channel %1 block %2 illegal tool orientation with 3D tool radius compensation 10769 Channel %1 block %2 Illegal surface normal vector with 3D tool radius compensation 10770 Channel %1 block %2 change of corner type due to change of orientation with active tool radius compensation 10771 Channel %1 block %2 overflow of local block buffer due to orientation smoothing 10772 Channel %1 block %2 illegal orientation change when activating or deactivating 3D face cutting 10773 Channel %1 illegal tool orientation in block %2 at inside corner with block %3 10774 Channel %1 illegal tool dimensions with face cutting in block %2 10775 Channel %1 illegal tool change with face cutting in block %2 10776 Channel %1 block%2 axis %3 must be geometry axis if tool radius compensation is active 10777 Channel %1 block %2 tool radius compensation: too many blocks with suppression of compensation 10778 Channel %1 block %2 preprocessing stop with active tool radius compensation 10779 Channel %1 block %2 preprocessing stop with active tool radius compensation 10780 Channel %1 block %2 preprocessing stop with active tool radius compensation 10781 Channel %1 block %2 illegal orientation of involute with tool radius compensation 10782 Channel %1 block %2 illegal curve type with tool radius compensation 10783 Channel %1 block %2 tool radius compensation type requires orientation transformation 10784 Channel %1 block %2 illegal tool for tool radius compensation with constraint surface 10790 Channel %1 block %2 plane change during linear programming with angles 10791 Channel %1 block %2 invalid angle during linear programming 10792 Channel %1 block %2 illegal interpolation type during linear programming with angles 10793 Channel %1 block %2 second block missing during linear programming with angles 10794 Channel %1 block %2 angle specification missing in second block during linear interpolation with angles 10795 Channel %1 block %2 end point specification during angle programming contradictory 10800 Channel %1 block %3 axis %2 is not a geometry axis 10805 Channel %1 block %2 repositioning after switch of geometry axes or transformation 10810 Channel %1 block %2 master spindle not defined 10820 Channel %1 rotary axis/spindle %2 not defined 10860 Channel %1 block %2 feedrate not programmed 10861 Channel %1 block %3 velocity of positioning axis %2 is zero 10862 Channel %1 block %2 master spindle also used as path axis 10870 Channel %1 block %2 facing axis not defined 10880 Channel %1 block %2 too many empty blocks between two traversing blocks when inserting chamfers or radii 10881 Channel %1 block %2 overflow of local block buffer when inserting chamfers or radii 10882 Channel %1 block %2 activation of chamfers or radii (non-modal) without traversing movement in the block 10883 Channel %1 block %2 chamfer or fillet has to be reduced 10890 Channel %1 block %2 overflow of local block buffer when calculating splines 10891 Channel %1 block %2 multiplicity of node is greater than its order 10900 Channel %1 block %2 no S value programmed for constant cutting speed 10910 Channel %1 block %2 excessive velocity of one path axis 10911 Channel %1 block %2 transformation prohibits to traverse the pole 10912 Channel %1 block %2 preprocessing and main run might not be synchronized 10913 Channel %1 block %2 negative feed profile is ignored 10914 Movement not possible while transformation active – in channel %1, block %2 10930 Channel %1 block %2 interpolation type not allowed in stock removal contour 10931 Channel %1 block %2 incorrect stock removal contour 10932 Channel %1 block %2 preparation of contour has been restarted 10933 Channel %1 block %2 contour program does not contain enough contour blocks 10934 Channel %1 block %2 array for contour segmentation is set too small 10940 Channel %1 block %2 curve table %3: delete/overwrite not possible 10941 Channel %1 block %2 curve table %3: NC memory full 10942 Channel %1 block %2 curve table %3: illegal instruction during definition 10943 Channel %1 block %2 curve table %3: direction reversal of lead value in the block not allowed 10944 Channel %1 block %2 curve table %3: illegal transformation 10945 Channel %1 block %2 curve table %3: illegal coupling of axes 10946 Channel %1 block %2 curve table %3: no contour defined 10947 Channel %1 block %2 curve table %3: contour not continuous 10948 Channel %1 block %2 curve table %3: position jump at end of period 10949 Channel %1 block %2 curve table %3: missing master axis motion 10950 Channel %1 calculation of arc length function too inaccurate 10951 Channel %1 block %2 curve table %3: following value period is zero 10955 Channel %1 block %2 curve table %3: missing master axis motion 10956 Channel %1 block %2 curve table %3: NC memory limit DRAM reached 10960 Channel %1 block %2 COMPCURV/COMPCAD and radius compensation cannot be used simultaneously 10961 Channel %1 block %2 maximum cubic polynomials are allowed on active radius compensation. 10962 Channel %1 block %2 function %3 not possible with path correction 12000 Channel %1 block %2 address %3 programmed repeatedly 12010 Channel %1 block %2 address %3 address type programmed too often 12020 Channel %1 block %2 illegal address modification 12030 Channel %1 block %2 invalid parameter or data type in %3 12040 Channel %1 block %2 expression %3 is not of data type ‘AXIS’ 12050 Channel %1 block %2 DIN address %3 not configured 12060 Channel %1 block %2 same G group programmed repeatedly 12070 Channel %1 block %2 too many syntax-defining G functions 12080 Channel %1 block %2 syntax error in text %3 12090 Channel %1 block %2 unexpected parameter %3 12100 Channel %1 block %2 number of passes %3 not permissible 12110 Channel %1 block %2 block syntax cannot be interpreted 12120 Channel %1 block %2 G function not separately programmed 12130 Channel %1 block %2 illegal tool orientation 12140 Channel %1 block %2 functionality %3 not implemented 12150 Channel %1 block %2 operation %3 not compatible with data type 12160 Channel %1 block %2 range of values exceeded 12170 Channel %1 block %2 identifier %3 defined repeatedly 12180 Channel %1 block %2 illegal chaining of operators %3 12190 Channel %1 block %2 variable of type ARRAY has too many dimensions 12200 Channel %1 block %2 symbol %3 cannot be created 12210 Channel %1 block %2 string %3 too long 12220 Channel %1 block %2 binary constant %3 in string too long 12230 Channel %1 block %2 hexadecimal constant %3 in string too long 12240 Channel %1 block %2 tool orientation %3 defined repeatedly 12250 Channel %1 block %2 nested macro %3 not possible 12260 Channel %1 block %2 too many initialization values specified %3 12261 Channel %1 block %2 initialization of %3 not allowed 12270 Channel %1 block %2 macro identifier %3 already defined 12280 Channel %1 block %2 maximum macro length %3 exceeded 12290 Channel %1 block %2 arithmetic variable % 3 not defined 12300 Channel %1 block %2 call-by-reference parameter missing on subroutine call %3 12310 Channel %1 block %2 axis parameter missing on procedure call %3 12320 Channel %1 block %2 parameter %3 is no variable 12330 Channel %1 block %2 type of parameter %3 incorrect 12340 Channel %1 block %2 number of parameters too high %3 12350 Channel %1 block %2 parameter %3 no longer possible 12360 Channel %1 block %2 dimension of parameter %3 incorrect 12370 Channel %1 block %2 range of values %3 not permissible 12380 Channel %1 block %2 maximum memory capacity reached 12390 Channel %1 block %2 initialization value %3 cannot be converted 12400 Channel %1 block %2 field %3 element does not exist 12410 Channel %1 block %2 incorrect index type for %3 12420 Channel %1 block %2 identifier %3 too long 12430 Channel %1 block %2 specified index is invalid 12440 Channel %1 block %2 maximum number of formal arguments exceeded 12450 Channel %1 block %2 label defined twice 12460 Channel %1 block %2 maximum number of symbols exceeded with %3 12470 Channel %1 block %2 G function %3 is unknown 12475 Channel %1 block %2 invalid G function number %3 programmed 12480 Channel %1 block %2 subroutine %3 already defined 12490 Channel %1 block %2 access permission level %3 is not valid 12500 Channel %1 block %2 in this module %3 is not possible 12510 Channel %1 block %2 too many machine data %3 12520 Channel %1 block %2 too many tool parameters %3 12530 Channel %1 block %2 invalid index for %3 12540 Channel %1 block %2 Block is too long or too complex 12550 Channel %1 block %2 name %3 not defined or option not installed 12552 Channel %1 block %2 tool/magazine OEM parameter not defined. Option not set.Option not set. 12560 Channel %1 block %2 programmed value %3 exceeds allowed limits 12570 Channel %1 block %2 too many motion synchronous actions in %3 12571 Channel %1 block %2 %3 not permissible for motion synchronous action 12572 Channel %1 block %2 %3 only permissible for motion synchronous action 12580 Channel %1 block %2 %3 not permissible for assignment in motion synchronous action 12581 Channel %1 block %2 invalid read access to %3 while in motion synchronous action 12582 Channel %1 block %2 field index %3 incorrect 12583 Channel %1 block %2 variable %3 no system variable 12584 Channel %1 block %2 variable %3 cannot be read synchronously with motion 12585 Channel %1 block %2 variable %3 cannot be changed synchronously with motion 12586 Channel %1 block %2 motion synchronous action: type conflict in variable %3 12587 Channel %1 block %2 motion synchronous action: operation/function %3 not allowed 12588 Channel %1 block %2 motion synchronous action: address %3 not allowed 12589 Channel %1 block %2 motion synchronous action: variable %3 not allowed with modal ID 12590 Channel %1 block %2 global user data cannot be created 12600 Channel %1 block %2 invalid line checksum 12610 Channel %1 block %2 accessing single character with call-by-reference parameter not possible %3 12620 Channel %1 block %2 accessing this variable as single character not possible 12630 Channel %1 block %2 skip ID/label in control structure not allowed 12640 Channel %1 block %2 invalid nesting of control structures 12641 Channel %1 block %2 maximum nesting depth of control structures exceeded 12650 Channel %1 block %2 axis identifier %3 different in channel %4 12660 Channel %1 block %2 motion synchronous action: variable %3 reserved for motion synchronous actions and technology cycles 12661 Channel %1 block %2 technology cycle %3: no further subprogram call possible 12700 Channel %1 block %2 contour definition programming not allowed as modal sub program is active 12701 Channel %1 block %2 illegal interpolation type for contour definition active 12710 Channel %1 block %2 illegal language element in external language mode 12720 Channel %1 block %2 program number for macro call (G65/G66) missing 12722 Channel %1 block %2 multiple ISO_2/3 macro or cycle calls in the block 12724 Channel %1 block %2 no radius programmed for cylinder interpolation activation/deactivation 12726 Channel %1 block %2 illegal plane selection with parallel axes 12728 Channel %1 block %2 distance for double turret not set 12730 Channel %1 block %2 no valid transformation machine data parametrized 12740 Channel %1 block %2 modal macro call %3 not possible 14000 Channel %1 block %2 illegal end of file 14001 Channel %1 block %2 illegal end of block 14009 Channel %1 block %2 illegal program path %3 14010 Channel %1 block %2 invalid default parameter in subroutine call 14011 Channel %1 block %2 program %3 not existing or will be edited 14012 Channel %1 block %2 maximum subroutine level exceeded 14013 Channel %1 block %2 number of subroutine passes invalid 14014 Channel %1 selected program %3 not available or will be edited 14015 Channel %1 block %2 program %3 is not enabled 14016 Channel %1 block %2 error when calling the subroutine via M/T function 14017 Channel %1 block %2 syntax error when calling the subroutine via M function 14020 Channel %1 block %2 wrong value or wrong number of parameters on function or procedure call 14021 Channel %1 block %2 wrong value or wrong number of parameters on function or procedure call 14025 Channel %1 block %2 motion synchronous action: illegal modal ID 14026 Channel %1 block %2 motion synchronous action: invalid polynomial number in the FCTDEF command 14030 Channel %1 block %2 combine OSCILL and POSP during oscillation with in feed motion 14033 Channel %1 block %2 involute: no end point programmed 14034 Channel %1 block %2 involute: angle of rotation too large 14035 Channel %1 block %2 involute: start point invalid 14036 Channel %1 block %2 involute: end point invalid 14037 Channel %1 block %2 involute: radius invalid 14038 Channel %1 block %2 involute not definable: end point error 14039 Channel %1 block %2 involute: end point programmed several times 14040 Channel %1 block %2 error in end point of circle 14045 Channel %1 block %2 error in tangential circle programming 14048 Channel %1 block %2 wrong number of revolutions in circle programming 14050 Channel %1 block %2 nesting depth for arithmetic operations exceeded 14051 Channel %1 block %2 arithmetic error in part program 14060 Channel %1 block %2 invalid skip level with differential block skip 14070 Channel %1 block %2 memory for variables not sufficient for subroutine call 14080 Channel %1 block %2 jump destination %3 not found 14082 Channel %1 block %2 label %3 program section not found 14085 Channel %1 block %2 instruction not allowed 14088 Channel %1 block %2 axis %3 doubtful position 14090 Channel %1 block %2 illegal D number 14091 Channel %1 block %2 illegal function, index %3 %3 14092 Channel %1 block %2 axis %3 is wrong axis type 14093 Channel %1 block %2 path interval 14094 Channel %1 block %2 polynominal degree greater than 3 programmed for polynominal interpolation 14095 Channel %1 block %2 radius for circle programming too small 14096 Channel %1 block %2 illegal type conversion 14097 Channel %1 block %2 string cannot be converted to AXIS type 14098 Channel %1 block %2 conversion error: no valid number found 14099 Channel %1 block %2 result in string concatenation too long 14100 Channel %1 block %2 orientation transformation not available 14101 Channel %1 block %2 orientation transformation not active 14102 Channel %1 block %2 polynominal degree greater than 5 programmed for orientation vector angle 14110 Channel %1 block %2 Euler angles and orientation vector components programmed 14111 Channel %1 block %2 Euler angles, orientation vector and transformation axes programmed 14112 Channel %1 block %2 programmed orientation path not possible 14113 Channel %1 block %2 programmed lead angle too large 14114 Channel %1 block %2 programmed tilt angle too large 14115 Channel %1 block %2 illegal definition of workpiece surface 14116 Channel %1 block %2 absolute orientation programmed while ORIPATH is active 14117 Channel %1 block %2 no angle or direction of the cone programmed 14118 Channel %1 block %2 no end orientation programmed 14119 Channel %1 block %2 no intermediate orientation programmed 14120 Channel %1 block %2 plane determination for programmed orientation not possible 14122 Channel %1 block %2 angle and direction of the cone programmed 14123 Channel %1 block %2 nutation angle of the cone too small 14124 Channel %1 block %2 start tangent for orientation is zero 14125 Channel %1 block %2 programmed rotation is not possible 14129 Channel %1 block %2 orientation angles and orientation vector components programmed 14130 Channel %1 block %2 too many initialization values given 14131 Channel %1 block %2 orientation axes and lead/tilt angles programmed 14132 Channel %1 block %2 orientation axes incorrectly configured 14133 Channel %1 block %2 G code for orientation definition not allowed 14134 Channel %1 block %2 G code for orientation interpolation not allowed 14140 Channel %1 block %2 position programming without transformation not allowed 14144 Channel %1 block %2 PTP movement not allowed 14146 Channel %1 block %2 CP or PTP movement without transformation not allowed 14148 Channel %1 illegal reference system for Cartesian manual traverse 14150 Channel %1 block %2 illegal tool carrier number programmed or declared (MD) 14151 Channel %1 block %2 illegal tool carrier rotation 14152 Channel %1 block %2 tool carrier: invalid orientation. Error code: %3 14153 Channel %1 block %2 unknown tool carrier type: %3 14154 Channel %1 block %2 The amount of fine correction in parameter %3 of the orientable tool holder %4 is too large 14155 Channel %1 block %2 invalid base frame definition for tool carrier offset 14156 Channel %1 toolholder selection error at reset 14157 Channel %1 block %2 illegal interpolation type with MOVT 14159 Channel %1 block %2 more than two angles programmed with ROTS or AROTS 14160 Channel %1 block %2 tool length selection without geometry axis specification 14165 Channel %1 block %2 active T number does not match selected tool 14170 Channel %1 block %2 illegal interpolation type with tool length compensation 14180 Channel %1 block %2 H number is not defined 14185 Channel %1 block %2 D number is not defined 14190 Channel %1 block %2 H number with G49 14195 Channel %1 block %2 D number with G49 14197 Channel %1 block %2 D number and H number programmed simultaneously 14198 Channel %1 block %2 illegal change of tool direction with tool offset 14199 Channel %1 block %2 illegal plane change for tool with diameter component 14200 Channel %1 block %2 negative polar radius 14210 Channel %1 block %2 polar angle too large 14250 Channel %1 block %2 negative pole radius 14260 Channel %1 block %2 pole angle too large 14270 Channel %1 block %2 pole programmed incorrectly 14280 Channel %1 block %2 polar coordinates programmed incorrectly 14290 Channel %1 block %2 poly nominal degree greater than 5 programmed for poly nominal interpolation 14300 Channel %1 block %2 overlaid handwheel motion activated incorrectly 14310 Handwheel %1 configuration incorrect or inactive 14400 Channel %1 block %2 tool radius compensation active at transformation switchover 14401 Channel %1 block %2 transformation not available 14402 Channel %1 block %2 spline active at transformation change 14403 Channel %1 block %2 preprocessing and main run might not be synchronized 14404 Channel %1 block %2 illegal parametrization of transformation 14410 Channel %1 block %2 spline active at geometry axis changeover 14411 Channel %1 block %2 tool radius compensation active at geometry axis changeover 14412 Channel %1 block %2 transformation active at geometry axis changeover 14413 Channel %1 block %2 fine tool correction: changeover geometry/channel axis not allowed 14414 Channel %1 block %2 GEOAX function: incorrect call 14415 Channel %1 block %2 tangent control: changeover geometry/channel axis not allowed 14420 Channel %1 block %2 index axis %3 frame not allowed 14500 Channel %1 block %2 illegal DEF or PROC instruction in the part program 14510 Channel %1 block %2 PROC instruction missing on subroutine call 14520 Channel %1 block %2 illegal PROC instruction in data definition section 14530 Channel %1 block %2 EXTERN and PROC instruction do not correspond 14600 Channel %1 block %2 reload buffer %3 cannot be established 14601 Channel %1 block %2 reload buffer could not be deleted 14602 Channel %1 block %2 timeout during EXTCALL 14610 Channel %1 block %2 compensation block not possible 14650 Channel %1 block %2 SETINT instruction with invalid ASUP input 14660 Channel %1 block %2 SETINT instruction with invalid priority 14700 Channel %1 block %2 timeout during command to interpreter 14701 Channel %1 block %2 number of available NC blocks reduced by %3 14710 Channel %1 block %2 error in initialization sequence in function %3 14720 Channel %1 block %2 axes for centerless transformation not available 14730 Channel %1 block %2 conflict at activation of centerless transformation 14740 Channel %1 block %2 no tool data available for centerless grinding 14745 Channel %1 block %2 centerless grinding not active 14750 Channel %1 block %2 too many auxiliary functions programmed 14751 Channel %1 block %2 resources for motion synchronous actions not sufficient (code: %3) 14752 Channel %1 block %2 DELDTG | STOPREOF conflict 14753 Channel %1 block %2 motion synchronous actions with illegal interpolation type 14754 Channel %1 block %2 motion synchronous actions and wrong feed type 14755 Channel %1 block %2 motion synchronous actions without traverse motion 14756 Channel %1 block %2 motion synchronous action and wrong value 14757 Channel %1 block %2 motion synchronous action and wrong type 14758 Channel %1 block %2 programmed value not available 14759 Channel %1 block %2 motion synchronous action and wrong axis type 14760 Channel %1 block %2 auxiliary function of a group programmed repeatedly 14761 Channel %1 block %2 motion synchronous action: DELDTG function not allowed with active tool radius compensation 14762 Channel %1 block %2 too many PLC variables programmed 14763 Channel %1 block %2 too many link variables programmed 14764 NCU link cannot transfer all link variables immediately 14765 NCU link cannot transfer all link variables 14766 NCU link is heavily loaded, impending memory shortage 14767 Machine data matching via NCU link not complete 14770 Channel %1 block %2 auxiliary function programmed incorrectly 14780 Channel %1 block %2 unreleased option used 14790 Channel %1 block %2 axis %3 programmed by PLC 14800 Channel %1 block %2 programmed path speed less or equal to zero 14810 Channel %1 block %2 negative axis speed programmed for positioning axis %3 14811 Channel %1 block %2 incorrect value range for acceleration of axis/spindle %3 14812 Channel %1 block %2 SOFTA not available for axis %3 14815 Channel %1 block %2 negative thread lead change programmed 14820 Channel %1 block %2 negative value for maximum spindle speed programmed with constant cutting speed 14821 Channel %1 block %2 error in selection or deselection of GWPS 14822 Channel %1 block %2 incorrect programming of GWPS 14823 Channel %1 block %2 error on selection or deselection of tool monitoring 14824 Channel %1 block %2 conflict with GWPS 14840 Channel %1 block %2 incorrect value range for constant cutting speed 14900 Channel %1 block %2 center point and end point programmed simultaneously 14910 Channel %1 block %2 invalid angle of aperture for programmed circle 14920 Channel %1 block %2 intermediate point of circle incorrect 15000 Channel %1 block %2 channel-sync instruction using illegal mark 15010 Channel %1 block %2 program coordination instruction with invalid channel number 15020 Channel %1 block %2 CHANDATA instruction cannot be executed. Channel %3 is not active 15021 Channel %1 block %2 CHANDATA instruction with invalid channel number 15025 CHANDATA(%2): channel is not active. Channel data will be ignored. 15030 Channel %1 block %2 different measurement system settings 15100 Channel %1 block %2 REORG abort caused by log file overflow 15110 Channel %1 block %2 REORG not possible 15150 Channel %1 block %2 reload from external aborted 15160 Channel %1 block %2 wrong preprocessing configuration 15165 Channel %1 block %2 error when translating or interpreting PLC Asup %3 15166 Channel %1 user system asup _N_ASUP_SPF not available 15170 Channel %1 block %2 program %3 could not be compiled 15171 Channel %1 block %2 compiled program %3 older than the relevant subroutine 15175 Channel %1 block %2 program %3. Interfaces could not be built 15180 Channel %1 block %2 program %3 cannot be executed as INI file 15185 Channel %1 %2 errors in INI file 15190 Channel %1 block %2 not enough free memory for subroutine call 15300 Channel %1 block %2 invalid number-of-passed-blocks during block search 15310 Channel %1 block %2 file requested during block search is not available 15320 Channel %1 block %2 invalid block search command 15330 Channel %1 block %2 invalid block number as search target 15340 Channel %1 block %2 invalid label as search target 15350 Channel %1 block %2 search target not found 15360 Channel %1 illegal target of block search (syntax error) 15370 Channel %1 target of block search not found 15380 Channel %1 block %2 illegal incremental programming in axis %3 15390 Channel %1 block %2 %3 not executed during block search 15395 Channel %1 master-slave not executable during block search 15400 Channel %1 block %2 selected initial init file does not exist 15410 Channel %1 block %2 initialization file contains invalid M function 15420 Channel %1 block %2 instruction in current mode not allowed 15450 Channel %1 block %2 compiled program cannot be stored 15460 Channel %1 block %2 syntax error with modal function 15500 Channel %1 block %2 illegal angle of shear 15700 Channel %1 block %2 illegal cycle alarm number %3 15800 Channel %1 block %2 wrong starting conditions for CONTPRON/CONTDCON 15810 Channel %1 block %2 wrong array dimension for CONTPRON/CONTDCON 15900 Channel %1 block %2 touch probe not allowed 15910 Channel %1 block %2 touch probe not allowed 15950 Channel %1 block %2 no traverse motion programmed 15960 Channel %1 block %2 no traverse motion programmed 16000 Channel %1 block %2 invalid value for lifting direction 16005 Channel %1 block %2 invalid value for lifting distance 16010 Channel %1 block %2 machining stop after lift fast 16015 Channel %1 block %2 wrong axis identifier %3 16016 Channel %1 block %2 no retraction position programmed for axis %3 16020 Channel %1 repositioning in block %2 is not possible 16100 Channel %1 block %2 spindle %3 not available in the channel 16105 Channel %1 block %2 spindle %3 cannot be assigned 16110 Channel %1 block %2 spindle %3 for dwell time not in control mode 16120 Channel %1 block %2 invalid index for tool fine compensation 16130 Channel %1 block %2 instruction not allowed with FTOCON 16140 Channel %1 block %2 FTOCON not allowed 16150 Channel %1 block %2 invalid spindle number with PUTFTOCF 16200 Channel %1 block %2 spline and polynominal interpolation not available 16300 Channel %1 block %2 denominator polynominal with zero places within parameter range not allowed 16400 Channel %1 block %2 positioning axis %3 cannot participate in spline 16410 Channel %1 block %2 axis %3 is not a geometry axis 16420 Channel %1 block %2 axis %3 programmed repeatedly 16421 Channel %1 block %2 angle %3 programmed repeatedly in the block 16422 Channel %1 block %2 angle %3 programmed repeatedly in the block 16423 Channel %1 block %2 angle %3 programmed repeatedly in the block 16424 Channel %1 block %2 coordinate %3 programmed repeatedly in the block 16430 Channel %1 block %2 geometry axis %3 cannot traverse as positioning axis in rotated coordinate system 16440 Channel %1 block %2 rotation programmed for non-existent geometry axis 16500 Channel %1 block %2 chamfer or rounding negative 16510 Channel %1 block %2 no facing axis available 16700 Channel %1 block %2 axis %3 invalid feed type 16710 Channel %1 block %2 axis %3 master spindle not programmed 16715 Channel %1 block %2 axis %3 spindle not in standstill 16720 Channel %1 block %2 axis %3 thread lead is zero 16730 Channel %1 block %2 axis %3 wrong parameter 16740 Channel %1 block %2 no geometry axis programmed 16750 Channel %1 block %2 axis %3 SPCON not programmed 16751 Channel %1 block %2 spindle/axis %3 SPCOF not executable 16755 Channel %1 block %2 no stop required 16760 Channel %1 block %2 axis %3 S value missing 16761 Channel %1 block %2 axis/spindle %3 not programmable in the channel 16762 Channel %1 block %2 spindle %3 thread function is active 16763 Channel %1 block %2 axis %3 programmed speed is illegal (zero or negative) 16770 Channel %1 block %2 axis %3 no measuring system available 16771 Channel %1 following axis %2 overlaid movement not enabled 16776 Channel %1 block %2 curve table %3 does not exist for axis %4 16777 Channel %1 block %2 coupling: following axis %3 for lead axis %4 not available 16778 Channel %1 block %2 coupling: Ring coupling at following axis %3 and leading axis %4 impermissible 16779 Channel %1 block %2 coupling: too many couplings for axis %3, see active leading axis %4 16780 Channel %1 block %2 following spindle/axis missing 16781 Channel %1 block %2 master spindle/axis missing 16782 Channel %1 block %2 following spindle/axis %3 not available 16783 Channel %1 block %2 master spindle/axis %3 not available 16785 Channel %1 block %2 identical spindles/axes %3 16787 Channel %1 block %2 coupling parameter not changeable 16788 Channel %1 block %2 cyclic coupling 16789 Channel %1 block %2 multiple link 16790 Channel %1 block %2 Parameter is zero or missing 16791 Channel %1 block %2 parameter is not relevant 16792 Channel %1 block %2 too many couplings for axis/spindle %3 16793 Channel %1 block %2 coupling of axis %3 prohibits transformation change 16794 Channel %1 block %2 coupling of axis/spindle %3 prohibits reference point approach 16795 Channel %1 block %2 string cannot be interpreted 16796 Channel %1 block %2 coupling not defined 16797 Channel %1 block %2 coupling is active 16798 Channel %1 block %2 axis %3 is following axis and prohibits axis container rotation 16799 Channel %1 block %2 axis %3 is master axis and prohibits axis container rotation 16800 Channel %1 block %2 traverse instruction DC/CDC for axis %3 not allowed 16810 Channel %1 block %2 traverse instruction ACP for axis %3 not allowed 16820 Channel %1 block %2 traverse instruction ACN for axis %3 not allowed 16830 Channel %1 block %2 incorrect position programmed for axis/spindle %3 16903 Channel %1 program control: action %2 not allowed in the current state 16904 Channel %1 program control: action %2 not allowed in the current state 16905 Channel %1 program control: action %2 not allowed 16906 Channel %1 program control: action %2 is aborted due to an alarm 16907 Channel %1 action %2 only possible in stop state 16908 Channel %1 action %2 only possible in reset state or at the block end 16909 Channel %1 action %2 not allowed in current mode 16911 Channel %1 mode change is not allowed 16912 Channel %1 program control: action %2 only possible in reset state 16913 Mode group %1 channel %2 mode change: action %3 not allowed 16914 Mode group %1 channel %2 mode change: action %3 not allowed 16915 Channel %1 action %2 not allowed in the current block 16916 Channel %1 repositioning: action %2 not allowed in the current state 16918 Channel %1 for action %2 all channels must be in reset state 16919 Channel %1 action %2 is not allowed due to a pending alarm 16920 Channel %1 action %2 is already active 16921 Channel %1 mode group %2 machine data: channel/mode group assignment not allowed or assigned twice 16922 Channel %1 subprograms: action %2 maximum nesting depth exceeded 16923 Channel %1 program control: action %2 not allowed in the current state 16924 Channel %1 caution: program test modifies tool management data 16925 Channel %1 program control: action %2 not allowed in the current state, action %3 active 16926 Channel %1 channel coordination: action %2 not allowed in block %3, marker %4 is already set 16927 Channel %1 action %2 at active interrupt treatment not allowed 16928 Channel %1 interrupt treatment: action %2 not possible 16930 Channel %1: preceding block and current block %2 must be separated through an executable block 16931 Channel %1 subprograms: action %2 maximum nesting depth exceeded 16932 Channel %1 conflict when activating user data type %2 16933 Channel %1 interrupt treatment: action %2 not allowed in the current state 16934 Channel %1 interrupt treatment: action %2 not possible due to stop 16935 Channel %1 action %2 not possible due to search run 16936 Channel %1 action %2 not possible due to active dry run 16937 Channel %1 action %2 not possible due to program test 16938 Channel %1 action %2 aborted due to active gear change 16939 Channel %1 action %2 rejected due to active gear change 16940 Channel %1 action %2 wait for gear change 16941 Channel %1 action %2 rejected because no program event has been executed yet 16942 Channel %1 start program command action %2 not possible 16943 Channel %1 action %2 not possible due to ASUP 16944 Channel %1 action %2 not possible due to active search blocks 16945 Channel %1 action %2 delayed up to the block end 16946 Channel %1 start via START is not allowed 16947 Channel %1 start via PLC is not allowed 16948 Channel %1 dependent channel %2 still active 16949 Correspondence between marker of channel %1 and channel %2 is invalid. 16950 Channel %1 search run with hold block 16951 Channel %1 search run in a program section that cannot be searched 17000 Channel %1 block %2 maximum number of symbols exceeded 17001 Channel %1 block %2 no memory left for tool/magazine data 17010 Channel %1 block %2 no memory left 17020 Channel %1 block %2 illegal array index 1 17030 Channel %1 block %2 illegal array index 2 17040 Channel %1 block %2 illegal axis index 17050 Channel %1 block %2 illegal value 17055 Channel %1 block %2 GUD variable not existing 17060 Channel %1 block %2 requested data area too large 17070 Channel %1 block %2 data is write-protected 17080 Channel %1 block %2 %3 value below lower limit 17090 Channel %1 block %2 %3 value exceeds upper limit 17095 Channel %1 block %2 invalid value 17100 Channel %1 block %2 digital input/comparator no. %3 not activated 17110 Channel %1 block %2 digital output no. %3 not activated 17120 Channel %1 block %2 analog input no. %3 not activated 17130 Channel %1 block %2 analog output no. %3 not activated 17140 Channel %1 block %2 NCK output %3 is assigned to a function via machine data 17150 Channel %1 block %2 maximum of %3 NCK outputs programmable in the block 17160 Channel %1 block %2 no tool selected 17170 Channel %1 block %2 number of symbols too large 17180 Channel %1 block %2 illegal D number 17181 Channel %1 block %2 T no.= %3, D no.= %4 not existing 17182 Channel %1 block %2 illegal sum correction number 17188 Channel %1 D number %2 defined in tool T no. %3 and %4 17189 Channel %1 D number %2 of tools defined on magazine/location %3 and %4 17190 Channel %1 block %2 illegal T number 17191 Channel %1 block %2 T= %3 not existing, program %4 17192 TO unit %1 invalid tool designation of ‘%2’, duplo no. %3. No more replacement tools possible in ‘%4’. 17193 Channel %1 block %2 the active tool is no longer on toolholder no./spindle no. %3, program %4 17194 Channel %1 block %2 no suitable tool found 17200 Channel %1 block %2 deleting tool data not possible 17202 Channel %1 block %2 deleting magazine data not possible 17210 Channel %1 block %2 access to variable not possible 17212 Channel %1 tool management: Load manual tool %3, duplo no. %2 onto spindle/ toolholder %4 17214 Channel %1 tool management: remove manual tool %3 from spindle/toolholder %2 17216 Channel %1 tool management: remove manual tool from spindle/toolholder %4 and load manual tool %3, duplo no. %2 17220 Channel %1 block %2 tool not existing 17230 Channel %1 block %2 Duplo no. already assigned 17240 Channel %1 block %2 illegal tool definition 17250 Channel %1 block %2 illegal magazine definition 17260 Channel %1 block %2 illegal magazine location definition 17262 Channel %1 block %2 illegal tool adapter operation 17270 Channel %1 block %2 call-by-reference: illegal variable 17500 Channel %1 block %2 axis %3 is not an indexing axis 17501 Channel %1 block %2 indexing axis %3 with Hirth tool system is active 17502 Channel %1 block %2 indexing axis %3 with Hirth tooth system stop is delayed 17503 Channel %1 block %2 indexing axis %3 with Hirth tooth system and axis not referenced 17510 Channel %1 block %2 invalid index for indexing axis %3 17600 Channel %1 block %2 preset on transformed axis %3 not possible 17605 Channel %1 block %2 axis %3 transformation active: inhibits rotation of axis container 17610 Channel %1 block %2 axis %3 involved in the transformation, action cannot be carried out 17620 Channel %1 block %2 approaching fixed point for transformed axis %3 not possible 17630 Channel %1 block %2 referencing for transformed axis %3 not possible 17640 Channel %1 block %2 spindle operation for transformed axis %3 not possible 17650 Channel %1 block %2 machine axis %3 not programmable 17800 Channel %1 block %2 illegally coded position programmed 17900 Channel %1 block %2 axis %3 is no machine axis 18000 Channel %1 block %2 NCK-specific protection zone %3 wrong. Error code %4 18001 Channel %1 block %2 channel-specific protection zone %3 incorrect. Error code %4 18002 Channel %1 block %2 NCK protection zone %3 cannot be activated. Error code %4 18003 Channel %1 block %2 NCK protection zone %3 cannot be activated.Error code %4 18004 Channel %1 block %2 orientation of workpiece-related protection zone %3 does not correspond to the orientation of tool-related protection zone %4 18005 Channel %1 block %2 serious error in definition of NCK-specific protection zone %3 18006 Channel %1 block %2 serious error in definition of channel-specific protection zone %3 18100 Channel %1 block %2 invalid value assigned to FXS[] 18101 Channel %1 block %2 invalid value assigned to FXST[] 18102 Channel %1 block %2 invalid value assigned to FXSW[] 18200 Channel %1 block %2 curve table: block search stop not allowed with definition CTABDEF 18201 Channel %1 block %2 curve table: table %3 does not exist 18202 Channel %1 block %2 curve table: instruction CTABEND without CTABDEF not allowed 18300 Channel %1 block %2 frame: fine shift not possible 18310 Channel %1 block %2 frame: illegal rotation 18311 Channel %1 block %2 frame: illegal instruction 18312 Channel %1 block %2 frame: fine shift not configured 18313 Channel %1 block %2 frame: illegal switchover of geometry axes 18314 Channel %1 block %2 frame: type conflict 18400 Channel %1 block %2 language change not possible: 20000 Channel %1 axis %2 reference cam not reached 20001 Channel %1 axis %2 no cam signal present 20002 Channel %1 axis %2 zero mark not found 20003 Channel %1 axis %2 measuring system error 20004 Channel %1 axis %2 reference mark missing 20005 Channel %1 axis %2 reference point approach aborted 20006 Channel %1 axis %2 reference point creep velocity not reached 20007 Channel %1 axis %2 reference point approach requires 2 measuring systems 20008 Channel %1 axis %2 reference point approach requires second referenced measuring system 20050 Channel %1 axis %2 handwheel mode active 20051 Channel %1 axis %2 handwheel mode not possible 20052 Channel %1 axis %2 already active 20053 Channel %1 axis %2 DRF, FTOCON, external zero point offset not possible 20054 Channel %1 axis %2 wrong index for indexing axis in JOG mode 20055 Channel %1 master spindle not present in JOG mode 20056 Channel %1 axis %2 no revolutional feedrate possible. Axis/spindle %3 stationary 20057 Channel %1 block %2 revolutional feedrate for axis/spindle %3 is 20058 Channel %1 axis %2 revolutional feedrate: illegal feed source 20060 Channel %1 axis %2 cannot be traversed as geometry axis 20061 Channel %1 axis %2 cannot be traversed as orientation axis 20062 Channel %1 axis %2 already active 20063 Channel %1 axis %2 orientation axes cannot be traversed without transformation 20065 Channel %1 master spindle not defined for geometry axes in JOG mode 20070 Channel %1 axis %2 programmed end position is behind software limit switch %3 20071 Channel %1 axis %2 programmed end position is behind working area limit %3 20072 Channel %1 axis %2 is not an indexing axis 20073 Channel %1 axis %2 cannot be repositioned 20074 Channel %1 axis %2 wrong index position 20075 Channel %1 axis %2 can currently not oscillate 20076 Channel %1 axis %2 oscillating – mode change not possible 20077 Channel %1 axis %2 programmed position is behind software limit switch %3 20078 Channel %1 axis %2 programmed position is behind working area limit %3 20079 Channel %1 axis %2 oscillation path length %3 20080 Channel %1 axis %2 no handwheel assigned for overlaid motion 20085 Channel %1 contour handwheel: traverse direction or overtravel of beginning of block not allowed 20090 Axis %1 travel to fixed stop not possible. Check programming and axis data. 20091 Axis %1 has not reached fixed stop 20092 Axis %1 travel to fixed stop still active 20093 Axis %1 standstill monitoring at fixed-stop end point has been triggered 20094 Axis %1 function has been aborted 20095 Axis %1 illegal torque, current torque %2 20096 Axis %1 brake test aborted, additional information %2 20100 Channel %1: invalid configuration for digitizing function 20101 Communication with the digitizer not possible 20102 Channel %1: No or invalid trafo at digitizing active 20103 Channel %1: digitizing module does not support 3+2 axis digitizing 20105 Channel %1: axes stopped by digitizer. Error code: %2 20106 Emergency stop set by the digitizer 20108 Invalid data package received from the digitizer. Error codes: %1, %2 20109 Error in communication with the digitizer: status code of com-circuit: %1 20120 Axis %1: too many compensation relations 20121 Axis %1: Configuration error in compensation table %2 20122 Compensation table %1: invalid axis assignment 20123 Axis %1: different output assignment of multiplied tables 20124 Axis %1: sum of compensation values too large 20125 Axis %1: change of compensation value is too rapid 20130 Channel %1 contour tunnel monitoring 20140 Channel %1 motion synchronous action: traversing of command axis %2 see NC alarm %3 20141 Channel %1 motion synchronous action: illegal axis type 20142 Channel %1 command axis %2: rotation of axis container already enabled 20143 Channel %1 axis %2 command axis cannot be started as it is controlled by the PLC 20144 Channel %1 block %2 motion synchronous action: system variable access not possible 20145 Channel %1 block %2 motion synchronous action: arithmetic error 20146 Channel %1 block %2 motion synchronous action: nesting depth exceeded 20147 Channel %1 block %2 motion synchronous action: command not executable 20148 Channel %1 block %2 motion synchronous action: internal error %3 20149 Channel %1 block %2 motion synchronous action: illegal index 20150 Channel %1 tool management: PLC terminates interrupted command 20160 Channel %1 tool management: PLC can terminate only incorrectly aborted commands 20170 Channel %1 machine data $AC_FIFO invalid 20200 Channel %1 invalid spindle number %2 with tool fine compensation 20201 Channel %1 spindle %2 no tool assigned 20203 Channel %1 no active tool 20204 Channel %1 PUTFTOC command not allowed with FTOCOF 20210 Channel %1 block %3 spindle %2 wrong values for centerless grinding 20211 Channel %1 block %3 spindle %2 support point beyond range limits 21600 Monitoring for ESR active 21610 Channel %1 axis %2 encoder %3 frequency limit exceeded 21611 Channel %1 NC-controlled Extended Stop/Retract triggered 21612 Channel %1 axis %2 VDI signal ‘Servo enable’ reset during motion 21613 Axis %1 measuring system changing 21614 Channel %1 axis %2 hardware limit switch %3 21615 Channel %1 axis %2 taken from traverse mode to follow-up mode 21616 Channel %1 block %2 overlaid motion active at transformation switchover 21617 Channel %1 block %2 transformation does not allow to traverse the pole 21618 Channel %1 as from block %2 transformation active: overlaid motion too great 21619 Channel %1 block %2 transformation active: motion not possible 21650 Channel %1 axis %2 overlaid motion not allowed 21660 Channel %1 block %2 axis %3 conflict between SYNACT: $AA_OFF and CORROF 21665 Channel %1 $AA_TOFF cleared 21670 Channel %1 block %2 illegal change of tool direction with $AA_TOFF active 21700 Channel %1 block %3 axis %2 touch probe already deflected, edge polarity not possible 21701 Channel %1 block %3 axis %2 measurement not possible 21702 Channel %1 block %3 axis %2 measurement aborted 21703 Channel %1 block %3 axis %2 touch probe not deflected, illegal edge polarity 21740 Output value at analog output no. %1 has been limited 21750 Error during output of cam signals via timer 21760 Channel %1 block %2 too many auxiliary functions programmed 21800 Channel %1 workpiece setpoint %2 reached 22000 Channel %1 block %3 spindle %2 change of gear stage not possible 22010 Channel %1 block %3 spindle %2 actual gear stage differs from requested gear stage 22011 Channel %1 block %3 spindle %2 change to programmed gear stage not possible 22012 Channel %1 block %2 leading spindle %3 is in simulation. 22013 Channel %1 block %2 dependent spindle %3 is in simulation. 22014 Channel %1 block %2. The dynamics of leading spindle %3 and dependent spindle %4 is too variably 22020 Channel %1 block %3 spindle %2 gear step change position not reached 22040 Channel %1 block %3 spindle %2 is not referenced with zero marker 22045 Block %2 spindle/axis %3 not available in channel %1 because active in channel %4 22050 Channel %1 block %3 spindle %2 no transition from speed control mode to position control mode 22051 Channel %1 block %3 spindle %2 reference mark not found 22052 Channel %1 block %3 spindle %2 no standstill on block change 22053 Channel %1 block %3 spindle %2 reference mode not supported 22054 Channel %1 block %3 spindle %2 improper punching signal 22055 Channel %1 block %3 spindle %2 configured positioning speed is too high 22060 Channel %1 position control expected for axis/spindle %2 22062 Channel %1 axis %2 reference point approach: zero marker search velocity (MD) is not reached 22064 Channel %1 axis %2 reference point approach: zero marker search velocity (MD) is too high 22065 Channel %1 tool management: Tool motion is not possible, as tool %2 with Duplo no. %3 is not in magazine %4 22066 Channel %1 tool management: Tool change is not possible, as tool %2 with Duplo no. %3 is not in magazine %4 22067 Channel %1 tool management: tool change not possible since there is no tool available in tool group %2 22068 Channel %1 block %2 tool management: no tool available in tool group %3 22069 Channel %1 block %2 tool management: No tool available in tool group %3, program %4 22070 TO unit %1 Please change tool T= %2 into magazine. Repeat data backup 22071 TO unit %1 tool %2 duplo no. %3 is active, but not in the magazine area under consideration 22100 Channel %1 block %3 spindle %2 chuck speed exceeded 22200 Channel %1 spindle %2 axis stopped during tapping 22250 Channel %1 spindle %2 axis stopped during thread cutting 22260 Channel %1 spindle %2 thread might be damaged 22270 Channel %1 block %2 maximum velocity of thread axis at position %3 reached 22275 Channel %1 block %2 zero velocity of thread axis at position %3 reached 22280 Channel %1 in block %2: Prog. acceleration path too short %3, %4 required 22320 Channel %1 block %2 PUTFTOCF command could not be transferred 22321 Channel %1 axis %2 PRESET not allowed during traverse motion 22322 Channel %1 axis %2 PRESET: illegal value 25000 Axis %1 hardware fault of active encoder 25001 Axis %1 hardware fault of passive encoder 25010 Axis %1 pollution of measuring system 25011 Axis %1 pollution of passive encoder 25020 Axis %1 zero mark monitoring of active encoder 25021 Axis %1 zero mark monitoring of passive encoder 25022 Axis %1 encoder %2 warning %3 25030 Axis %1 actual velocity alarm limit 25031 Axis %1 actual velocity warning limit 25040 Axis %1 standstill monitoring 25042 Axis %1 standstill monitoring during torque/force limitation 25050 Axis %1 contour monitoring 25060 Axis %1 speed setpoint limitation 25070 Axis %1 drift value too large 25080 Axis %1 positioning monitoring 25100 Axis %1 measuring system switchover not possible 25105 Axis %1 measuring systems differ considerably 25110 Axis %1 selected encoder not available 25200 Axis %1 requested set of parameters invalid 25201 Axis %1 drive fault 25202 Axis %1 waiting for drive 26000 Axis %1 clamping monitoring 26001 Axis %1 parameterization error: friction compensation 26002 Axis %1 encoder %2 parameterization error: number of encoder marks 26003 Axis %1 parameterization error: lead screw pitch 26004 Axis %1 encoder %2 parameterization error: grid point distance with linear encoders 26005 Axis %1 parameterization error: output rating 26006 Axis %1 encoder %2 encoder type/output type %3 not possible 26007 Axis %1 QEC: invalid coarse step size 26008 Axis %1 QEC: invalid fine step size 26009 Axis %1 QEC: memory overflow 26010 Axis %1 QEC: invalid acceleration characteristic 26011 Axis %1 QEC: invalid measuring periods 26012 Axis %1 QEC: feed forward control not active 26014 Axis %1 machine data %2 invalid value 26015 Axis %1 machine data %2[%3] invalid value 26016 Axis %1 machine data %2 invalid value 26017 Axis %1 machine data %2[%3] invalid value 26018 Axis %1 setpoint output drive %2 used more than once 26019 Axis %1 encoder %2 measurement not possible with this controller module 26020 Axis %1 encoder %2 hardware fault %3 during encoder initialization 26022 Axis %1 encoder %2 measurement with simulated encoder not possible 26024 Axis %1 machine data %2 value changed 26025 Axis %1 machine data %2[%3] value changed 26030 Axis %1 encoder %2 absolute position lost 26031 Axis %1 configuration error master-slave 26032 Axis %1 master-slave not configured 26050 Axis %1 parameter set change from %2 to %3 not possible 26051 Channel %1 in block %2 unanticipated stop crossed in continuous path mode 26052 Channel %1 in block %2: path velocity too high for auxiliary function output 26070 Channel %1 axis %2 cannot be controlled by the PLC, max. number exceeded 26072 Channel %1 axis %2 cannot be controlled by the PLC 26074 Channel %1 switching off PLC control of axis %2 not allowed in the current state 26080 Channel %1 retraction position of axis %2 not programmed or invalid 26081 Channel %1 axis trigger of axis %2 was activated, but axis is not PLC- controlled 26100 Axis %1 drive %2 sign of life missing 26101 Axis %1 drive %2 communication failure 26102 Axis %1 drive %2 sign of life missing 26105 Drive of axis %1 not found 26106 Encoder %2 of axis %1 not found 26110 Independent drive stop/retract triggered 27000 Axis %1 is not safely referenced 27001 Axis %1 error in a monitoring channel, code %2, values: NCK %3, drive %4 27002 Axis %1 test stop is running 27003 Checksum error found: %1 %2 27004 Axis %1, difference safe input %2, NCK %3, drive %4 27005 Axis %1 error in data cross check: static actual value difference 27006 Axis %1 Test ext. pulse deletion running 27007 Axis %1 acceptance test mode is active 27008 Axis %1 SW limit switch deactivated 27010 Axis %1 tolerance for safe standstill exceeded 27011 Axis %1 safe velocity exceeded 27012 Axis %1 safe end position exceeded 27013 Axis %1 safe braking ramp exceeded 27020 Axis %1 stop E triggered 27021 Axis %1 stop D triggered 27022 Axis %1 stop C triggered 27023 Axis %1 stop B triggered 27024 Axis %1 stop A triggered 27030 Axis %1 function not supported on this 611D module 27031 Axis %1 limit value for safe velocity %2 at gear ratio %3 too large (max. %4) 27032 Axis %1 checksum error of safe monitoring. Confirmation and re-test required! 27033 Axis %1 parameterization of MD %2[%3] invalid 27034 Parameterization of MD %1 invalid 27090 Error in data cross check NCK-PLC, %1[%2], NCK: %3; %4 ALSI 27091 Error in data cross check NCK PLC, stop of %1 27092 Communication broken off during NCK PLC data cross check, error detected by %1 27093 Checksum error NCK-SPL, %1, %2, %3 27094 Write access to system variable %1 only allowed from NCK-SPL 27095 %1 SPL protection not activated 27096 SPL start not allowed 27100 At least one axis is not safely referenced 27101 Axis %1 difference in function safe operational stop, NCK: %2 drive: %3 27102 Axis %1 difference in function safe velocity %2, NCK: %3 drive: %4 27103 Axis %1 difference in function safe limit position %2, NCK: %3 drive: %4 27104 Axis %1 difference in function safe cam plus %2, NCK: %3 drive: %4 27105 Axis %1 difference in function safe cam minus %2, NCK: %3 drive: %4 27106 Axis %1 difference in function safe velocity nx, NCK: %2 drive: %3 27107 Axis %1 difference in function cam modulo monitoring, NCK: %2 drive: %3 27124 Stop A triggered at least in 1 axis 27200 PROFIsafe: cycle time %1 [ms] too long 27201 PROFIsafe: MD %1[%2]: bus segment %3 error 27202 PROFIsafe: MD %1[%2]: address %3 error 27203 PROFIsafe: MD %1[%2]: SPL assignment error 27204 PROFIsafe: double assignment MD %1[%2] – MD %3[%4] 27220 PROFIsafe: Number of NCK F modules (%1) number of DP modules (%2) 27221 PROFIsafe: NCK F module MD %1[%2] unknown 27222 PROFI safe: S7 F module PROFI safe address %1 unknown 27223 PROFIsafe: NCK F module MD %1[%2] is not a %3 module 27224 PROFIsafe: F module MD %1[%2] – MD %3[%4]: double assignment of PROFIsafe address 27225 PROFIsafe: slave %1, configuration error %2 27240 PROFIsafe: DP M not running up, DP info: %1 27241 PROFIsafe: DP M version different, NCK: %1, PLC: %2 27242 PROFIsafe: F module %1, %2 faulty 27250 PROFIsafe: configuration in DP M changed; error code %1 – %2 27251 PROFIsafe: F module %1, %2 reports error %3 27252 PROFIsafe: Slave %1, sign-of-life error 27253 PROFIsafe: communication fault F master component %1, error %2 27254 PROFIsafe: F module %1, error on channel %2; %3 27255 PROFIsafe: F module %1, general error 27256 PROFIsafe: Current cycle time %1 [ms] > parameterized cycle time 27299 PROFIsafe: Diagnosis %1 %2 %3 %4 28000 NCU link connection to all other NCUs of the link network has been aborted 28001 NCU link connection to the NCU %1 of the link network has been aborted 28002 Error on activation of machine data, NCU network-wide machine data were modified by NCU %1 28004 NCU link: NCU %1 of the link network is not on the bus 28005 NCU link: NCU %1 of the link network not running synchronously 28007 NCU link: conflict in configuration data of NCU %1 28008 NCU link: conflict in timer setting of NCU %1 28009 NCU link: conflict in bus parameters of NCU %1 28010 NCU link: the NCU %1 has not received a message 28011 IPO time insufficient for NCU link. Link cycle time: %1 28012 NCU link: synchronization cycle signal failure %1 times 28020 NCU link: too many link axes configured %1 28030 Serious alarm on NCU %1, axes in follow-up mode 28031 Serious alarm on NCU %1 not yet acknowledged, axes still in follow-up mode 28032 Emergency stop activated on NCU %1, axes in follow-up mode 28033 Emergency stop on NCU % 1, axes still in follow-up mode 29033 Channel %1 axis change of axis %2 not possible, PLC axis movement not yet completed 60000 Channel %1 block %2: 61000 Channel %1 block %2 no tool compensation active 61001 Channel %1 block %2 thread lead incorrect 61002 Channel %1 block %2 machining type wrongly defined 61003 Channel %1 block %2 no feed programmed in the cycle 61004 Channel %1 block %2 configuration geometry axis incorrect 61005 Channel %1 block %2 3rd geometry axis not present 61006 Channel %1 block %2 tool radius too large 61007 Channel %1 block %2 tool radius too small 61009 Channel %1 block %2 active tool number = 0 61010 Channel %1 block %2 finishing allowance too large 61011 Channel %1 block %2 scaling not allowed 61012 Channel %1 block %2 different scaling on the plane 61013 Channel %1 block %2 basic settings were changed, program cannot be executed 61101 Channel %1 block %2 reference plane incorrectly defined 61102 Channel %1 block %2 no spindle direction programmed 61103 Channel %1 block %2 number of drillings is zero 61104 Channel %1 block %2 contour violation of slots/long holes 61105 Channel %1 block %2 cutter radius too large 61106 Channel %1 block %2 number or distance of circular elements 61107 Channel %1 block %2 first drilling depth incorrectly defined 61108 Channel %1 block %2 illegal values for parameters _RAD1 and _DP1 61109 Channel %1 block %2 parameter _CDIR incorrectly defined 61110 Channel %1 block %2 finishing allowance at the base > depth infeed 61111 Channel %1 block %2 infeed width > tool diameter 61112 Channel %1 block %2 tool radius negative 61113 Channel %1 block %2 parameter _CRAD for corner radius too large 61114 Channel %1 block %2 machining direction G41/G42 incorrectly defined 61115 Channel %1 block %2 approach or retract mode (straight line/circle/plane/space) incorrectly defined 61116 Channel %1 block %2 approach or retraction path = 0 61117 Channel %1 block %2 active tool radius 61118 Channel %1 block %2 length or width = 0 61119 Channel %1 block %2 nominal or core diameter incorrectly programmed 61120 Channel %1 block %2 internal/external thread type not defined 61121 Channel %1 block %2 number of teeth per cutting edge missing 61122 Channel %1 block %2 safety clearance on the plane incorrectly defined 61124 Channel %1 block %2 infeed width is not programmed 61125 Channel %1 block %2 technology selection in parameter _TECHNO incorrectly defined 61126 Channel %1 block %2 thread length too short 61127 Channel %1 block %2 transmission ratio of tapping axis incorrectly defined (machine data) 61128 Channel %1 block %2 dipping angle = 0 for dipping with oscillation or helix 61180 Channel %1 block %2 no name assigned to swivel data block, although MD $MN_MM_NUM_TOOL_CARRIER > 1 61181 Channel %1 block %2 NCK software version unsufficient (missing TOOLCARRIER functionality) 61182 Channel %1 block %2 name of swivel data block unknown 61183 Channel %1 block %2 retraction mode GUD7 _TC_FR beyond value range 0… 2 61184 Channel %1 block %2 no solution possible with current input angle values 61185 Channel %1 block %2 no or incorrect (min > max) rotary axis angle ranges assigned 61186 Channel %1 block %2 rotary axis vectors invalid –> Check installation and start-up of the swivel cycle CYCLE800 61188 Channel %1 block %2 no axis name for the 1st axis assigned -> Check installation and start-up of the swivel cycle CYCLE800 61200 Channel %1 block %2 too many elements in the machining block 61201 Channel %1 block %2 wrong sequence in the machining block 61202 Channel %1 block %2 no technology cycle 61203 Channel %1 block %2 no positioning cycle 61204 Channel %1 block %2 unknown technology cycle 61205 Channel %1 block %2 unknown positioning cycle 61210 Channel %1 block %2 block search element not found 61211 Channel %1 block %2 absolute reference missing 61212 Channel %1 block %2 wrong tool type 61213 Channel %1 block %2 circle radius too small 61214 Channel %1 block %2 no lead programmed 61215 Channel %1 block %2 raw dimension incorrectly programmed 61216 Channel %1 block %2 feed/tooth only possible with milling tools 61217 Channel %1 block %2 cutting speed for tool radius 0 programmed 61218 Channel %1 block %2 feed/tooth programmed, but number of teeth is zero 61222 Channel %1 block %2 plane infeed greater than the tool diameter 61223 Channel %1 block %2 approach path too short 61224 Channel %1 block %2 retract path too short 61225 Channel %1 block %2 swivel data block unknown 61226 Channel %1 block %2 swivel head cannot be exchanged 61230 Channel %1 block %2 tool probe diameter too small 61231 Channel %1 block %2 ShopMill program %3 cannot be executed, as it has not been tested by ShopMill 61232 Channel %1 block %2 loading of magazine tool not possible 61233 Channel %1 block %2: Thread inclination incorrectly defined 61234 Channel %1 block %2 ShopMill subroutine %4 cannot be executed, as it has not been tested by ShopMill 61235 Channel %1 block %2: ShopTurn program %4 cannot be executed, as it has not been tested by ShopTurn. 61236 Channel %1 block %2: ShopTurn subroutine %4 cannot be executed, as it has not been tested by ShopTurn. 61237 Channel %1 block %2: Retraction direction unknown. Manually retract tool! 61238 Channel %1 block %2: Machining direction unknown. 61239 Channel %1 block %2: Tool change point lies in the retraction area! 61240 Channel %1 block %2: Wrong feed type 61241 Channel %1 block %2: No retraction plane defined for this machining direction. 61242 Channel %1 block %2: Wrong machining direction 61243 Channel %1 block %2: Correct tool change point, tool tip is in retraction area! 61244 Channel %1 block %2: Thread lead change results in an undefined thread 61246 Channel %1 block %2: Safety clearance too small 61247 Channel %1 block %2: Blank radius too small 61248 Channel %1 block %2: Infeed too small 61249 Channel %1 block %2: Number of edges too small 61250 Channel %1 block %2: Key width/Edge length too small 61251 Channel %1 block %2: Key width/Edge length too large 61252 Channel %1 block %2: Chamfer/Radius too large 61253 Channel %1 block %2: No finishing allowance programmed 61254 Channel %1 block %2: Error when traversing to fixed stop 61255 Channel %1 block %2: Cut-off error: Tool breakage? 61301 Channel %1 block %2 measuring probe does not switch 61302 Channel %1 block %2 measuring probe collision 61303 Channel %1 block %2 safe area exceeded 61308 Channel %1 block %2 check measuring distance 2a 61309 Channel %1 block %2 check measuring probe type 61310 Channel %1 block %2 scale factor is active 61311 Channel %1 block %2 no D number is active 61316 Channel %1 block %2 center point and radius cannot be determined. 61332 Channel %1 block %2 change tool tip position 61338 Channel %1 block %2 positioning velocity is zero 61601 Channel %1 block %2 finished-part diameter too small 61602 Channel %1 block %2 tool width incorrectly defined 61603 Channel %1 block %2 groove form incorrectly defined 61604 Channel %1 block %2 active tool violates programmed contour 61605 Channel %1 block %2 contour incorrectly programmed 61606 Channel %1 block %2 contour processing error 61607 Channel %1 block %2 starting point incorrectly programmed 61608 Channel %1 block %2 wrong cutting edge position programmed 61609 Channel %1 block %2 form incorrectly defined 61610 Channel %1 block %2 no infeed depth programmed 61611 Channel %1 block %2 no intersection point found 61612 Channel %1 block %2 thread axis cutting not possible 61613 Channel %1 block %2 undercut position incorrectly defined 61800 Channel %1 block %2: External CNC system missing 61801 Channel %1 block %2: Wrong G code selected 61802 Channel %1 block %2: Wrong axis type 61803 Channel %1 block %2 programmed axis not present 61804 Channel %1 block %2: Progr. position exceeds reference point 61805 Channel %1 block %2: The value is absolutely and incrementally programmed 61806 Channel %1 block %2: Incorrect axis assignment 61807 Channel %1 block %2 wrong spindle direction programmed (active) 61808 Channel %1 block %2: The final drilling depth or individual drilling depth is missing 61809 Channel %1 block %2: Impermissible drilling position 61810 Channel %1 block %2: ISO-G code not possible 61811 Channel %1 block %2: Impermissible ISO axis name 61812 Channel %1 block %2: Value(s) in the external cycle call incorrectly defined 61813 Channel %1 block %2: GUD value incorrectly defined 61814 Channel %1 block %2: Polar coordinates not possible with cycle 61815 Channel %1 block %2: G40 not active 61816 Channel %1 block %2: axes are not at the reference point 61817 Channel %1 block %2: The axis coordinates are within the protection zone 61818 Channel %1 block %2: The axis area limit values are identical 62000 Channel %1 block %2: 62100 Channel %1 block %2 no drilling cycle active 62101 Channel %1 block %2: Incorrect cutting direction – G3 is generated 62103 Channel %1 block %2: The finishing allowance is not programmed 62105 Channel %1 block %2 number of columns or lines is zero 62180 Channel %1 block %2 no name assigned to swivel data block although machine data $MN_MM_NUM_TOOL_CARRIER > 1 62181 Channel %1 block %2 NCK software version unsufficient (missing TOOLCARRIER functionality) 62182 Channel %1 block %2: Load swivel head 62183 Channel %1 block %2 retraction mode GUD7 _TC_FR beyond value range 0…2 62184 Channel %1 block %2 no solution possible with current input angle values 62185 Channel %1 block %2 no end stop assigned to rotary axes 62186 Channel %1 block %2 illegal rotary axis vectors 62187 Channel %1 block %2 name of swivel data block unknown 62200 Channel %1 block %2: Start spindle 63000 Channel %1 block %2: 65000 Channel %1 block %2: 66000 Channel %1 block %2: 67000 Channel %1 block %2: 68000 Channel %1 block %2: 70000 Compile cycle alarm 75000 OEM alarm 75005 Channel %1 block %2 CLC: General programming error 75010 Channel %1 block %2 CLC_LIM value exceeds MD limit 75015 Channel %1 block %2 CLC(0) with active TOC 75016 Channel %1 block %2 CLC: orientation changed for TRAFOOF 75020 Channel %1 CLC position offset at lower limit %2 75021 Channel %1 CLC position offset at upper limit %2 75025 Channel %1 CLC stopped because sensor head has been touched 75050 Channel %1 wrong MD configuration, error code %2 75051 Channel %1 CC_COPON CC_COPOFF error code %2 75060 Channel %1 tolerance window exceeded axis %2 75061 Channel %1 coupling active axis %2 75062 Channel %1 axes not in standstill axis %2 75070 Channel %1 wrong machine data for collision protection %2 75071 Channel %1 collision monitoring axis %2 75100 Too many analog axes configured 75110 Axis %1 reached drift limit 75200 Channel %1 wrong MD configuration, %2 incorrect 75210 Channel %1 number of axes/axis assignment inconsistent 75250 Channel %1 tool parameters incorrect 75255 Channel %1 working area error 75260 Channel %1 block %2 tool parameters incorrect 75265 Channel %1 block %2 working area error 75270 Channel %1 tool parameters incorrect 75275 Channel %1 block %2 working area error 75451 Error with definition of setpoint switchover 75452 Axis %1 setpoint switchover not possible in the current state 75500 Channel %1 wrong configuration 75600 Channel %1 retrace support: wrong MD configuration. Error code %2 75601 Channel %1 block %2 invalid parameter in CC_PREPRE() 75605 Channel %1 retrace support: internal error, error code %2 75606 Channel %1 retraceable contour was shortened 75607 Channel %1 resynchronisation not possible 100300 xxx not found 100301 The table cannot be completely generated 100302 No data available – or no access authorization 100303 Paging not possible 100350 Display MD saved 100351 Display MD take-over not possible 101000 No connection to the PLC! 101001 The PLC system status list cannot be read! 101002 Invalid password! 101003 Password for %1 is set! 101004 Password for %1 is set! 101005 The passwords do not match! 101006 Password is deleted! 101007 Password is not set! 101008 Current access level: %1 101013 Input error – see help – (i)-key 101016 Error: The operand address is greater than 65535! 101017 No PLC input screen forms found! 101018 Reading-in only possible in an active PLC status! 101100 No access authorization! 101111 No axes configured! 101112 No drives configured! 101113 No channels configured! 101114 No MSD configured! 101115 No FDD configured! 101130 Error return value not defined: 00h 00h 101131 No servo disable at PI start 101132 Impermissible execution argument value 101133 MDx120 CURRCTRL_GAIN could not be calculated 101134 MDx407 SPEEDCTRL_GAIN_1 could not be calculated 101135 MDx409 SPEEDCTRL_INTEGRATOR_TIME_1 could not be calculated 101136 MDx150 FIELDCTRL_GAIN could not be calculated 101137 MDx141 MAGNETIZING_REACTANCE=0 101138 MDx139/MDx140 MD_STATOR-/ROTOR_LEAKAGE_REACTANCE=0 101139 MDx134 MOTOR_NOMINAL_FREQUENCY=0 101140 MDx138 ROTOR_COLD_RESISTANCE = 0 101141 MDx117 MOTOR_INERTIA = 0 101142 MDx146 101143 MDx142 FIELD_WEAKENING_SPEED = 0 101144 MDx118 MOTOR_STANDSTILL_CURRENT = 0 101145 MD1104/1118 MOTOR_MAX_CURRENT/MOTOR_STANDSTILL_CURRENT > 900.0 101146 Boot file(s) saved 101147 Boot file(s) deleted 101148 Controller MD calculated 101150 MD set active 101151 Start-up successful 101153 MMC-NCK communication faulty %1 %2 101154 PI service was rejected 101155 Path %1 not available 101156 Impermissible function 101157 File %1 not available 101158 Function not permitted in the current operating state. 101159 Remote block in wrong state 101160 Date and time of the PLC set 101161 The drive is not in cyclic mode! 101162 MDx134/MDx400 MOTOR_NOMINAL_FREQUENCY/MOTOR_RATED_SPEED impermissible 101163 MDx130 MOTOR_NOMINAL_POWER 101164 MDx132 MOTOR_NOMINAL_VOLTAGE 101165 MDx103 MOTOR_NOMINAL_CURRENT 101166 MDx129 POWER_FACTOR_COS_PHI impermissible 101167 MDx134/MDx400 MOTOR_NOMINAL_FREQUENCY/MOTOR_RATED_SPEED impermissible 101168 Warning MDx142 FIELD_WEAKENING_SPEED 101200 Safety-Integrated data copied 101201 Safety-Integrated data confirmed 101202 SI data is copied from axis %1 to drive %2 Parameters: %1 = Axis name %2 = Drive number 101203 SI data not completely copied 101204 SI data not confirmed 101205 Drive data changed? -> Don’t forget to save the boot files! 101206 Search action running, pleas wait 101207 Position at $MN_ 101208 SI data confirmed: Axis 1 101209 SI data confirmed: Drive 1 101210 The machine data is being prepared for display 101211 NCK address not changed! 101212 NCK address changed! 101213 Invalid NCK address. 101214 Initialization of this window failed! 101300 Please wait – language is being changed 103000 There is no correction block on the NCK 103001 Selection is only possible after being enabled or in the RESET state. 103002 Copying to the clipboard is not possible 103003 MDI clipboard cannot be deleted 103004 Block search not possible 103006 Block search without calculation only possible on the main program level. 103007 Ending overstore is not possible in this channel state. 103008 Block search in channel %1 started – please wait 103009 Conflict between search type and search target! 103010 Invalid file name 103011 No program selected – block search finished 103014 Please reference the axis first 104000 Current tool not found 104001 No other tools available 104002 No other cutting edges available 104003 There aren’t any tools at all 104004 No tool selected 104005 No cutting edge selected 104006 No TO area available in the current channel 104007 Error during tool creation 104008 Error during cutting edge creation 104011 Error during tool deletion 104012 No master spindle available 104014 Incorrect entry 104015 Number of parameters per cutting edge is zero 104016 No spindle available 104018 Tool not available 104019 Tool type not available 104020 No empty location found 104023 Error during tool loading 104024 Error during tool unloading 104025 No magazine configured 104026 Notice: Tool is being loaded! 104027 Notice: Tool is being unloaded! 104029 Loading to this location not possible 104030 No more data available 105000 Error x y 105001 Cycle description sc.com not available 105002 File xxx already exists 105003 Workpiece xxx already exists 105004 Clipboard empty! To PASTE, COPY first 105005 Only workpieces can be inserted here 105006 Only files can be inserted here 105007 No name specified 105008 Memory error while writing a cycle call 105009 No write-authorization for the data 105010 No data selected 105011 Cycle description cov.com not available 105012 The program is not or only partially editable (NC reset) 105013 The copied data can be inserted with the soft key “Paste” 105014 Error while copying! 105015 Error while renaming! 105016 Error while deleting! 105017 Selection is only possible after being enabled or in the RESET state. 105018 Error during program generation! 105019 Error while opening a window! 105020 Error while closing a window! 105021 Error during workpiece generation! 105022 Error during enabling! 105023 File exists already! 105024 Check values! – At least 1 value lies outside the input limits! 105025 Please wait, the directory is being prepared! 105026 Notice! The simulated program and edited program are not the same! 105030 Please wait, renumbering is being carried out! 105031 Renumbering was aborted! 105032 Renumbering finished! 105041 Block number is too large! 105042 Impermissible block number! 105043 Impermissible increment! 105050 Please wait: Graphic is being output! 105051 Output of dynamic long texts for cycle parameterization 105052 Error in the cycle description of the ! 105053 No cycle available in current line! 105054 Error during cycle description call! 105060 Please wait: Initilization of the cycle support 105061 Error when opening the file! 105062 Error when closing the file! 105063 Error when positioning in the file %1! 105064 Error when reading the file! 105070 Please wait: Initialization of the simulation started! 105075 Not enough axes in the current channel? > Contour with default axis names: X, Z ! 109001 No switchover: Switchover disable set in current PLC 109002 No switchover: Target PLC occupied, try again 109003 No switchover: Switchover disable set in target PLC 109004 No switchover: PLC occupied by higher-priority MMC’s 109005 No switchover: No displaceable MMC at the target PLC 109006 No switchover: Selected channel invalid 109007 Channel switchover running 109008 Activation is running 111001 Non-interpretable step in line %1 111002 Insufficient memory, abort in line %1 111003 ManualTurn: %1 111004 File faulty or not available: %1 111005 Error when interpreting the contour %1 Parameters: %1 = Contour name 111006 Maximum number of contour elements exceeded %1 111007 Error in line %1 %2 111008 Spindle not synchronized 111009 Load new tool: T%1 Parameters: %1 = Tool number 111010 Teach-in interruption: Log overflow 111100 Wrong position programmed for the spindle 111105 No measuring system available 111106 No spindle stop for a block change 111107 Reference mark not found 111108 No transition from speed control mode to position control mode 111109 Configured positioning velocity is too high 111110 Velocity/Speed is negative 111111 Setpoint speed is zero 111112 Invalid gear stage 111115 Programmed position was not reached 111126 Absolute value minus not possible 111127 Absolute value plus not possible 111200 Spindle positioning error 111300 NC start key defective 111301 NC stop key defective 111302 Spindle start key defective 111303 Spindle stop key defective 111304 Connection to the PLC broken off 111305 Asynchronous subroutine was not executed 111306 Error when selecting or deselecting constant cutting speed 111307 Error when deleting handwheel offset 111308 Error when setting upper spindle speed limit 111309 Error when selecting tool 111310 Error when selecting zero offset 111311 NC start not possible: Deselect single block 111400 Unknown PLC error 111410 Tool %1 was created 111411 %1 Tool(s) can (could) not be created 111420 Error during the inch/metric conversion! Check all data! 111430 Program not loaded. Error when converting old cycles in G code. No NC memory. 111900 Start only possible in basic display 111901 Contour is contained in the current program, machining not enabled 111902 Start only with valid reference point 111904 4. Axis not configured, i.e., no driven tool possible 112045 Several insertion points required 112046 Main contour cannot be bypassed 112052 No residual material generated 112057 Programmed helix violates contour 112099 System-error contour pocket 112100 Error during renumbering. Original state restored. 112200 The contour is a step in the current program sequence. Machining not enabled 112201 The contour is a step in the current automatic sequence. Machining not enabled 112210 Tool axis cannot be switched over. Insufficient NC memory. 112211 Tool preselection could not be processed. Insufficient NC memory. 112300 Tool management type 2 not possible. Magazine not completely loaded. 112301 Tool management type 2 not possible. The magazine is not sorted as in the tool list. 112323 Replace swivel head. 112324 Load swivel head. 112325 Exchange swivel head. 112326 Set swivel head 112327 Angle not in permissible area 112328 Angle adapted to angle grid. 112329 Set swivel head/table 112330 Set swivel table. 112350 No swivel data set up. 112360 The step was not accepted into the program sequence, as the program is running. 112400 Is not available in the tool management 112401 Tool could not be created 112420 Error during the inch/metric conversion! Check all data! 112502 Insufficient memory, abort in line %1 112504 File faulty or not available: %1 Parameters: %1 = File name 112505 Error when interpreting the contour %1 112506 Maximum number of contour elements exceeded %1 112541 Program cannot be interpreted 112604 Connection to the PLC broken off 112605 Asynchronous subroutine was not executed 112650 Unknown PLC error 112999 Faulty grafic data. Exit graphic and restart 120000 Area %1 cannot be loaded! Acknowledge alarm, press area switchover key! 120001 Area %1 cannot be selected. Please deactivate area %2 120002 Area %1 is still active. Please deactivate area %1 120003 Area %1 cannot be deactivated. Please try again 120005 Please acknowledge the dialog box in area %1 120006 The channel switchover is currently disabled by area %1. 120007 The channel switchover is currently disabled. 120008 Control unit switchover, PLC timeout: 001 control unit switchover, PLC timeout: 002 control unit switchover, PLC timeout: 003 120120 The alarm list is full of alarm texts: Number of alarm texts too high Alarm texts: File %1 not found alarm texts: Input/Output error in file %1 alarm texts: Input/Output error alarm texts: Error when reading from the index file alarm texts: Error when writing in the index file alarm texts: Syntax error in alarm text file %1 120200 Image preparation suppressed 120201 Communication failure 120202 Waiting for a connection to the NC 120301 Faulty entry for hardkey ‘Program’ in Keys.ini. 120302 The selection is not possible. A program has to have been edited first via the area ‘Program’. 120303 The selection is not possible. The edited file %1 no longer exists. 120304 The selection is not possible. The file %1 has insufficient read rights. 120305 Selection is not possible. The file %1 is currently being edited. 120306 The selection is not possible. The file %1 is selected and active in channel %2. 120307 The file %1 cannot be opened for the editor because it is selected in channel %2 for execution from external sources. 120308 In the event of an emergency stop, the program %1 can only be changed in the machine/program correction area. 120309 The selection is not possible. Please close the simulation and repeat the selection. 120310 The selection is not possible. Please wait for the pending action or terminate it, then repeat the selection. 300000 Hardware drive bus: DCM not present 300001 Axis %1 drive number %2 not possible 300002 Axis %1 drive number %2 assigned twice 300003 Axis %1 drive %2 wrong module type %3 300004 Axis %1 drive %2 wrong drive type %3 (FDD/MSD) 300005 At least one module found on drive bus that has not been configured 300006 Module with drive number %1 has not been found on drive bus 300007 Axis %1 drive %2 not present or inactive 300008 Axis %1 drive %2 measuring circuit %3 is not available 300009 Axis %1 drive %2 measuring circuit %3 wrong measuring circuit type (type %4 used) 300010 Axis %1 drive %2 active without NC axis assignment 300011 Axis %1 drive %2 hardware version of spindle not supported 300012 Axis %1 drive %2 hardware version of control module not supported 300020 Drive %1 removed for diagnosis 300100 Drive power failure 300101 Bus communications failure 300200 Drive bus hardware fault 300201 Axis %1 drive %2 timeout during access, error location %3 300202 Axis %1 drive %2 CRC error, error location %3 300300 Axis %1 drive %2 boot error, error code %3 300400 Axis %1 drive %2 system error, error codes %3, %4 300401 Drive software for type %1, block %2 missing or incorrect 300402 System error in drive link. Error codes %1, %2 300403 Axis %1 drive %2 drive software and drive MD with different version numbers 300404 Axis %1 drive %2 drive MD contains different drive number 300405 Axis %1 drive %2 unknown drive alarm, code %3 300410 Axis %1 drive %2 error when storing a file (%3, %4) 300411 Axis %1 drive %2 error when reading a file (%3, %4) 300412 Error when storing a file (%1, %2) 300413 Error when reading a file (%1, %2) 300423 Measuring results could not be read (%1) 300500 Axis %1 drive %2 system error, error codes %3, %4 300501 Axis %1 drive %2 maximum current monitoring 300502 Axis %1 drive %2 maximum current monitoring of phase current R 300503 Axis %1 drive %2 maximum current monitoring of phase current S 300504 Axis %1 drive %2 measuring circuit error of motor measuring system 300505 Axis %1 drive %2 measuring circuit error of absolute track, code %3 300506 Axis %1 drive %2 NC sign-of-life failure 300507 Axis %1 drive %2 synchronization error of rotor position 300508 Axis %1 drive %2 zero mark monitoring of motor measuring system 300509 Axis %1 drive %2 current frequency exceeded 300510 Axis %1 drive %2 error on actual current measurement zero balancing 300511 Axis %1 drive %2 measuring function active 300515 Axis %1 drive %2 power section heat sink temperature exceeded 300604 Axis %1 drive %2 motor encoder is not adjusted 300605 Axis %1 drive %2 motor change not valid 300606 Axis %1 drive %2 flux controller at limit 300607 Axis %1 drive %2 current controller at limit 300608 Axis %1 drive %2 speed controller at limit 300609 Axis %1 drive %2 encoder cut-off frequency exceeded 300610 Axis %1 drive %2 rotor position identification failed 300611 Axis %1 drive %2 generator mode: Motion at rotor position identification 300612 Axis %1 drive %2 illegal current during rotor position identification 300613 Axis %1 drive %2 maximum permissible motor temperature exceeded 300614 Axis %1 drive %2 time monitoring of motor temperature 300701 Axis %1 drive %2 start-up required 300702 Axis %1 drive %2 base cycle time invalid 300703 Axis %1 drive %2 current cycle time invalid 300704 Axis %1 drive %2 speed controller cycle time invalid 300705 Axis %1 drive %2 position controller cycle time invalid 300706 Axis %1 drive %2 monitoring cycle time invalid 300707 Axis %1 drive %2 basic cycle times of axes differ 300708 Axis %1 drive %2 current controller cycle times of axes differ 300709 Axis %1 drive %2 speed controller cycle times of axes differ 300710 Axis %1 drive %2 position controller cycle times of axes differ 300711 Axis %1 drive %2 monitoring cycle times of axes differ 300712 Axis %1 drive %2 configuration of controller structure (higher dynamic response) not possible 300713 Axis %1 drive %2 lead time for position controller invalid 300714 Axis %1 drive %2 power section code invalid 300715 Axis %1 drive %2 maximum power section current less than or equal to zero 300716 Axis %1 drive %2 torque constant less than or equal to zero 300717 Axis %1 drive %2 motor moment of inertia less than or equal to zero 300718 Axis %1 drive %2 calculation dead time of current controller less than or equal to zero 300719 Axis %1 drive %2 motor not parameterized for delta operation 300720 Axis %1 drive %2 maximum motor speed invalid 300721 Axis %1 drive %2 zero-load current greater than rated motor current 300722 Axis %1 drive %2 zero-load motor current greater than rated current of power section 300723 Axis %1 drive %2 STS configuration of axes differ 300724 Axis %1 drive %2 number of pole pairs invalid 300725 Axis %1 drive %2 number of encoder marks of measuring system invalid 300726 Axis %1 drive %2 voltage constant is zero 300727 Axis %1 drive %2 reactance less than or equal to zero 300728 Axis %1 drive %2 adaption factor torque/current too high 300729 Axis %1 drive %2 motor zero-speed current less than or equal to zero 300730 Axis %1 drive %2 rotor resistance invalid 300731 Axis %1 drive %2 rated power less than or equal to zero 300732 Axis %1 drive %2 rated speed less than or equal to zero 300733 Axis %1 drive %2 zero load voltage invalid 300734 Axis %1 drive %2 zero load current less than or equal to zero 300735 Axis %1 drive %2 field weakening speed invalid 300736 Axis %1 drive %2 Lh characteristic invalid 300737 Axis %1 drive %2 configuration of two EnDat encoders not possible 300738 Axis %1 drive %2 module number for measuring system not possible 300739 Axis %1 drive %2 measuring system already used as motor measuring system 300740 Axis %1 drive %2 measuring system used several times 300741 Axis %1 drive %2 asynchronous mode: feedforward control gain out of range 300742 Axis %1 drive %2 voltage/frequency mode: converter frequency invalid 300743 Axis %1 drive %2 function not supported on this 611D controller module 300744 Axis %1 drive %2 safety monitoring checksum invalid, confirmation and acceptance test required! 300745 Axis %1 drive %2 limit values for safe end positions exchanged 300746 Axis %1 drive %2 SBH/SG not enabled 300747 Axis %1 drive %2 monitoring cycle time MD 1300 invalid 300748 Axis %1 drive %2 monitoring cycle times of both axes differ 300749 Axis %1 drive %2 conversion factor between motor and load too large 300750 Axis %1 drive %2 parameterization error in speed control adaption 300751 Axis %1 drive %2 speed control gain too high 300752 Axis %1 drive %2 blocking frequency of setpoint current filter too high 300753 Axis %1 drive %2 rotor position identification current less than minimal value 300754 Axis %1 drive %2 signal number of var. signaling function invalid 300755 Axis %1 drive %2 voltage/frequency mode: motor is turning 300756 Axis %1 drive %2 speed hysteresis of setpoint current smoothing invalid 300757 Axis %1 drive %2 adaption factor of torque limit invalid 300757 Axis %1 drive %2 adaption factor of torque limit invalid 300758 Axis %1 drive %2 generator mode: response voltage > switch-off threshold 300759 Axis %1 drive %2 generator mode: response voltage > monitoring threshold 300760 Axis %1 drive %2 generator mode: emergency retraction speed > max. motor speed 300761 Axis %1 drive %2 generator mode: minimum axis speed > max. motor speed 300762 Axis %1 drive %2 emergency retraction mode/generator mode already active 300763 Axis %1 drive %2 emergency retraction mode/generator mode invalid 300764 Axis %1 drive %2 emergency retraction mode/generator mode not possible 300765 Axis %1 drive %2 measurement of DC link voltage not possible 300766 Axis %1 drive %2 blocking frequency > Shannon frequency 300767 Axis %1 drive %2 natural frequency > Shannon frequency 300768 Axis %1 drive %2 numerator bandwidth > double blocking frequency 300769 Axis %1 drive %2 denominator bandwidth > double natural frequency 300770 Axis %1 drive %2 format error 300771 Axis %1 drive %2 asynchronous mode: converter frequency invalid 300772 Axis %1 drive %2 asynchronous mode: speed control gain too high 300773 Axis %1 drive %2 asynchronous mode: feedforward control structure not possible 300774 Axis %1 drive %2 asynchronous mode: changeover speed invalid 300775 Axis %1 drive %2 fixed link voltage of axes differ 300776 Axis %1 drive %2 measuring circuit monitoring must be active 300777 Axis %1 drive %2 rotor position identification current too high 300778 Axis %1 drive %2 generator mode: converter frequency rotor position identification 300779 Axis %1 drive %2 motor moment of inertia less than or equal to zero 300780 Axis %1 drive %2 zero load current > rated motor current 300781 Axis %1 drive %2 zero load current > rated current of power section 300782 Axis %1 drive %2 reactance less than or equal to zero 300783 Axis %1 drive %2 rotor resistance invalid 300784 Axis %1 drive %2 zero load voltage invalid 300785 Axis %1 drive %2 zero load current less than or equal to zero 300786 Axis %1 drive %2 field weakening speed invalid 300787 Axis %1 drive %2 asynchronous mode: feedforward control gain out of range 300788 Axis %1 drive %2 parameterization error in current control adaption 300789 Axis %1 drive %2 function not supported on this 611D controller module 300799 Axis %1 drive %2 data backup and reboot required 300850 Axis %1 drive %2 parameterization error in speed control adaption 300854 Axis %1 drive %2 signal number of var. signaling function invalid 300855 Axis %1 drive %2 voltage/frequency mode: motor is turning 300858 Axis %1 drive %2 generator mode: response voltage > switch-off threshold 300859 Axis %1 drive %2 generator mode: response voltage > monitoring threshold 300860 Axis %1 drive %2 generator mode: emergency retraction speed > max. motor speed 300861 Axis %1 drive %2 generator mode: minimum axis speed > max. motor speed 300862 Axis %1 drive %2 emergency retraction mode/generator mode already active 300863 Axis %1 drive %2 emergency retraction mode/generator mode invalid 300864 Axis %1 drive %2 emergency retraction mode/generator mode not possible 300865 Axis %1 drive %2 measurement of DC link voltage not possible 300875 Axis %1 drive %2 fixed link voltage of axes differ 300888 Axis %1 drive %2 parameterization error in current control adaption 300900 Axis %1 drive %2 stop A triggered 300901 Axis %1 drive %2 stop B triggered 300906 Axis %1 drive %2 safe braking ramp exceeded 300907 Axis %1 drive %2 tolerance for safe operational stop exceeded 300908 Axis %1 drive %2 stop C triggered 300909 Axis %1 drive %2 stop D triggered 300910 Axis %1 drive %2 stop E triggered 300911 Axis %1 drive %2 error in one monitoring channel 300914 Axis %1 drive %2 safe velocity exceeded 300915 Axis %1 drive %2 safe end positions exceeded 300950 Axis %1 drive %2 is not safely referenced 300951 Axis %1 drive %2 test stop is running 300952 Axis %1 drive %2 acceptance test mode is active 301701 Axis %1 drive %2 limit value for safe velocity too large 301702 Axis %1 drive %2 track inversion incorrect 301703 Axis %1 drive %2 encoder/motor type are not compatible 301704 Axis %1 drive %2 pole pair width/division of linear scale (internal) out of range 301705 Axis %1 drive %2 distance-coded scale incorrectly parameterized 301706 Axis %1 drive %2 parameterization of cam position invalid 301707 Axis %1 drive %2 parameterization of modulo value for safe cam (SN) invalid 301708 Axis %1 drive %2 actual value synchronization not allowed 301709 Axis %1 drive %2 submodule with integrated linearization invalid 301710 Axis %1 drive %2 resolution SSI motor measuring system invalid 301711 Axis %1 drive %2 transmission length SSI motor measuring system invalid 301712 Axis %1 drive %2 multiturn SSI motor measuring system invalid 301713 Axis %1 drive %2 resolution SSI direct measuring system invalid 301714 Axis %1 drive %2 transmission length SSI direct measuring system invalid 301715 Axis %1 drive %2 multiturn SSI direct measuring system invalid 301716 Axis %1 drive %2 SSI direct measuring system without incremental signals not possible 301717 Axis %1 drive %2 SSI transmission timeout 301718 Axis %1 drive %2 combination of motor/power section invalid 301719 Axis %1 drive %2 power section data incomplete 310505 Axis %1 drive %2 measuring circuit error of absolute track, code %3 310606 Axis %1 drive %2 external valve voltage supply failed 310607 Axis %1 drive %2 valve not responding 310608 Axis %1 drive %2 speed controller at limit 310609 Axis %1 drive %2 encoder cut-off frequency exceeded 310610 Axis %1 drive %2 wrong piston position 310611 Axis %1 drive %2 pressure sensor failed 310612 Axis %1 drive %2 force limitation off 310701 Axis %1 drive %2 speed controller cycle time invalid 310702 Axis %1 drive %2 position controller cycle time invalid 310703 Axis %1 drive %2 monitoring cycle time invalid 310704 Axis %1 drive %2 speed controller cycle times of axes differ 310705 Axis %1 drive %2 monitoring cycle times of axes differ 310706 Axis %1 drive %2 maximum working speed invalid 310707 Axis %1 drive %2 STS configuration of axes differ 310708 Axis %1 drive %2 number of encoder marks of measuring system invalid 310709 Axis %1 drive %2 error in piston diameter or piston rod diameter 310710 Axis %1 drive %2 distance-coded scale incorrectly parameterized 310750 Axis %1 drive %2 feedforward gain too high 310751 Axis %1 drive %2 proportional gain for speed controller too high 310752 Axis %1 drive %2 integral gain for speed controller invalid 310753 Axis %1 drive %2 D component for speed controller invalid 310754 Axis %1 drive %2 friction compensation gradient too high 310755 Axis %1 drive %2 area factor too high 310756 Axis %1 drive %2 controlled system gain is less than or equal to zero 310757 Axis %1 drive %2 blocking frequency > Shannon frequency 310758 Axis %1 drive %2 natural frequency > Shannon frequency 310759 Axis %1 drive %2 bandwidth numerator larger than double blocking frequency 310760 Axis %1 drive %2 bandwidth denominator greater than double natural frequency 310761 Axis %1 drive %2 proportional gain of force controller too high 310762 Axis %1 drive %2 integral gain for force controller invalid 310763 Axis %1 drive %2 D component of force controller invalid 310764 Axis %1 drive %2 controlled system gain for force controller is less than or equal to zero 310771 Axis %1 drive %2 gain in fine area of valve characteristic is less than or equal to zero 310772 Axis %1 drive %2 gain in rough area of valve characteristic is less than or equal to zero 310773 Axis %1 drive %2 gain at end of saturation area of valve characteristic is less than or equal to zero 310774 Axis %1 drive %2 zero area and knee area of valve characteristic overlap 310775 Axis %1 drive %2 knee area and saturation area of valve characteristic overlap 311710 Axis %1 drive %2 resolution SSI motor measuring system invalid 311711 Axis %1 drive %2 transmission length SSI motor measuring system invalid 311712 Axis %1 drive %2 multiturn SSI motor measuring system invalid 311716 Axis %1 drive %2 SSI measuring system without incremental signals not possible 311717 Axis %1 drive %2 SSI transmission timeout 380001 Profibus-DP: startup error, reason %1 parameter %2 %3 %4. 380003 Profibus-DP: operating error, reason %1,parameter %2 %3 %4. 380005 Profibus-DP: bus access conflict, type %1, counter %2 380020 Profibus-DP: SDB1000 error %1 for SDB source %2 380021 Profibus-DP: default SDB1000 was loaded 380022 Profibus-DP: configuration of DP master has been changed 380040 Profibus-DP: configuration error %1, parameter %2 380050 Profibus-DP: multiple assignment of inputs on address %1 380051 Profibus-DP: multiple assignment of outputs on address %1 380060 Profibus-DP: alarm %1 on logical address %2 from unassigned station 380070 Profibus DP: no input slot available for base address %1 (length %2) 380071 Profibus DP: no output slot available for base address %1 (size %2) 380072 Profibus DP: output slot for base address %1 (size %2) not allowed 380075 Profibus DP: DP I/O failure slave %1 380500 Profibus-DP: fault on drive %1, code %2, value %3, time %4 400102 Delete DB 2 in the PLC and restart 400103 Delete DB 3 in the PLC and restart 400106 Delete DB 3 in the PLC and restart 400109 Delete DB 9 in the PLC and restart 400171 Delete DB 71 in the PLC and restart 400172 Delete DB 72 in the PLC and restart 400173 Delete DB 73 in the PLC and restart 400174 Delete DB 74 in the PLC and restart 400250 NCK sign-of-life monitoring 400251 NCK has not started up 400252 Sign-of-life monitoring 400260 Failure of machine control panel 1 400261 Failure of machine control panel 2 400262 Failure of manual operating device 400604 Set change with M06 in the machine data 400902 Impermissible channel no. parameter in FC 9 401502 Impermissible axis no. parameter in FC 15 401602 Impermissible axis no. parameter in FC 16 401702 Impermissible spindle IF no. parameter in FC 17 401805 Impermissible axis no. parameter in FC 18 401901 Impermissible BAG no. parameter in FC 19 401902 Impermissible channel no. parameter in FC 19 402501 Impermissible BAG no. parameter in FC 25 402502 Impermissible channel no. parameter in FC 25 410150 Area in M group decoder list is too large 810001 Error OB_event 810002 Synchronous error 810003 Asychronous error 810004 Stop/Interrupt event 810005 Order form execution event 810006 Error communication event 810007 Error H/F system event 810008 Error diagnostics data from modules 810009 User-diagnostics event

Published on June 2016 | Categories: Types, Instruction manuals | Downloads: 633 | Comments: 0 | Views: 4370

FANUC
FANUC
FANUC
FANUC

Series
Series
Series
Series

30+-MODEL B
31+-MODEL B
32+-MODEL B
35+-MODEL B

FANUC Power Motion +-MODEL A

Dual Check Safety

CONNECTION MANUAL

B-64483EN-2/03

Original Instruction
• No part of this manual may be reproduced in any form.
• All specifications and designs are subject to change without notice.
The products in this manual are controlled based on Japan’s “Foreign Exchange and
Foreign Trade Law”. The export from Japan may be subject to an export license by the
government of Japan.
Further, re-export to another country may be subject to the license of the government of
the country from where the product is re-exported. Furthermore, the product may also be
controlled by re-export regulations of the United States government.
Should you wish to export or re-export these products, please contact FANUC for advice.
In this manual we have tried as much as possible to describe all the various matters.
However, we cannot describe all the matters which must not be done, or which cannot be
done, because there are so many possibilities.
Therefore, matters which are not especially described as possible in this manual should be
regarded as ”impossible”.
This manual contains the program names or device names of other companies, some of
which are registered trademarks of respective owners. However, these names are not
followed by ® or ™ in the main body.

SAFETY PRECAUTIONS

B-64483EN-2/03

SAFETY PRECAUTIONS
This “Safety Precautions” section describes the precautions which must be observed to ensure safety
when using FANUC CNC system (the CNC control unit, the I/O modules, the servo/spindle amplifiers,
and the motors) with the Dual Check Safety function.
Users of the Dual Check Safety function are requested to read the “Safety Precautions” carefully before
attempting to use the Dual Check Safety function.
Users should also read the relevant description in this manual to become fully familiar with the any safety
functions of the Dual Check Safety function.
Contents
DEFINITION OF WARNING, CAUTION, AND NOTE ………………………………………………………………. s-1
WARNINGS, CAUTIONS, AND NOTES REGARDING DESIGNING …………………………………………. s-2
GENERAL WARNINGS, CAUTIONS, AND NOTES …………………………………………………………………. s-4
WARNINGS REGARDING EXCHANGING ……………………………………………………………………………… s-5
WARNINGS, CAUTIONS, AND NOTES REGARDING DAILY MAINTENANCE ………………………. s-6

DEFINITION OF WARNING, CAUTION, AND NOTE
This manual includes safety precautions for protecting the user and preventing damage to the machine.
Precautions are classified into Warning and Caution according to their bearing on safety. Also,
supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly
before attempting to use the machine.

WARNING
Applied when there is a danger of the user being injured or when there is a
danger of both the user being injured and the equipment being damaged if the
approved procedure is not observed.
CAUTION
Applied when there is a danger of the equipment being damaged, if the
approved procedure is not observed.
NOTE
The Note is used to indicate supplementary information other than Warning and
Caution.

Read this manual carefully, and store it in a safe place.

s-1

SAFETY PRECAUTIONS

B-64483EN-2/01

WARNINGS, CAUTIONS, AND NOTES REGARDING DESIGNING
1

2
3

4
5
6
7

8

9
10

WARNING
The machine tool builder must conduct risk evaluation to identify all risks that
can arise in connection with the machine or machine components. The machine
tool builder is to make a failure analysis in connection with the control system
and determine the remaining risks of the machine. Based on such risk analysis
and evaluation, a machine and machine components must be designed and
manufactured. Risk evaluation must reveal all remaining risks and must be
documented.
The Dual Check Safety system has some remaining risks. The machine tool
builder should design the machine tools on the fully understanding for the
remaining risk of the Dual Check Safety function.
The machine tool builder must check that all safety parameters and user
programs are correct and that all safety functions are working normally.
A qualified person is to check each Dual Check Safety function and record the
test results in a check report.
The required level of safety can only be assured by thorough and careful
acceptance test for the safety function.
Before shipping the machine tool, the machine tool builder has to do tests for
insulation and protective bonding. Tests must be performed by an appropriately
authorized person and recorded.
A qualified person is to set and modify the safety parameters. A password is
used to disable unauthorized persons from setting and modifying safety
parameters.
After a safety parameter is modified, the acceptance test needs to be conducted
on the related safety function, and the test results need to be recorded in a
report.
The machine tool builder is responsible for the followings:
● To secure the safety by the sequence to make safety function effective
according to the status of the protective door
● To secure the safety while the protective door is closed
● To secure the safety related to the other moving components and so on than
FANUC servo motors and spindle motors controlled by the dual check safety
function, while the protective door is open
If an external force is applied when the power to the servo motor driving circuit is
shut off, an additional measure must be securely implemented to protect against
such a force. (eg. Brake mechanism that would not drop the vertical axis after
the power is shut off)
If the power to the spindle motor driving circuit is shut off, the spindle motor
continues rotating at the speed before the power-down and eventually comes to
a stop. A measure must be taken so that this coasting does not affect safety.
An MCC off Test of the safe stop function monitors the contact state of the
electromagnetic contactor (MCC), compares the state with a command to the
MCC, and checks that the safe stop function works normally. This test should be
periodically performed. If the CNC is turned on or if a defined time has elapsed
after the previous test is completed, a guard open request (protective door open
request) should not be accepted until the test is performed. The machine tool
builder must make the ladder program to realize this sequence.
s-2

SAFETY PRECAUTIONS

B-64483EN-2/03

WARNING
11 To ensure the safety of this control, a brake test should be periodically
performed on the brake of servo axis that require brake control, such as vertical
axis.
If the CNC is turned on or if a defined time has elapsed after the previous test is
completed, a guard open request (protective door open request) should not be
accepted until the test is performed. A machine tool builder must make the
ladder program to realize this sequence.
12 When the Emergency Stop signal or the other safety input signal is connected to
the I/O module, it is necessary to do an enough check about ladder program
which defines a one-to-one relationship between the actual input (X) and the
input to the CNC (G).
13 When designing, be sure to observe all rules stated in this manual and any
related manuals. Otherwise, it is likely that failure and malfunction may occur.
14 Be sure to ground your control units and peripheral units in accordance with your
national grounding standards. Otherwise, electrical shocks, breakdown, and
blowout may occur.
CAUTIION
1 This safety function is enabled while the protective door is open after a request
to open the protective door is made. If the request to open the protective door is
canceled and if the protective door is closed, this safety function is disabled. The
input check of the safety-related I/O signal monitoring function in redundant
mode and the emergency stop function are always active, regardless of whether
the protective door is opened or closed.
2 There are four kinds of the MCC off signals (*DCALM, *MCF, *MCFVx, and
*MCFPs). Machine tool builder must output the signal to shut off MCC when
either one of these signal is “0”.
3 Servo/Spindle amplifiers, CNC are to be installed in IP54 protected cabinets.
4 As the path that gives a command and the path that an axis and a spindle
belongs to should be regarded as the same group, it is necessary to wire MCC
off signal (*MCFVx, *MCFPs) to shut off the MCC of both path at the same time
when “Composite control” or “Path speed control of Multi path control” is
specified.
NOTE
1 Safety machine position monitoring function does not apply to the spindle axis.
2 The servo amplifiers and servo motors connected to the CNC via the I/O Link
interface do not support the dual check safety function.
3 Only one of the I/O Link i, the I/O Link, and PROFIBUS-DP can be used in the
Dual Check Safety PMC side.
4 The PMC ladder must be designed to monitor whether the protective door is
open while the protective door open is not requested. If the protective door open
is detected, the PMC ladder judges that an abnormal event has occurred and
enters the safe stop state.
5 Emergency Stop Button must fulfill the Standard IEC60947-5-1.
6 Test Mode function for Acceptance Test is optional function. And, this function is
not the safety function. By using this function, it is possible to continue the
acceptance test without turning off/on the power of CNC, and then the test time
can be shortened.
s-3

SAFETY PRECAUTIONS

B-64483EN-2/01

GENERAL WARNINGS, CAUTIONS, AND NOTES
WARNING
1 Before the reference point return is performed, and the MCC off test and the
Brake test is performed, it may be dangerous because the correct operation
does not be guaranteed. So, the careful operations are required when the
machine is operated in the status that the protection door opens.
And, the safety function cannot be activated if any one of the components of the
control or drive is not powered on.
2 When checking the operation of the machine with the cover removed
(1) The user’s clothing could become caught in the spindle or other components,
thus presenting a danger of injury. When checking the operation, stand away
from the machine to ensure that your clothing does not become tangled in the
spindle or other components.
(2) When checking the operation, perform idle operation without workpiece.
When a workpiece is mounted in the machine, a malfunction could cause the
workpiece to be dropped or destroy the tool tip, possibly scattering fragments
throughout the area. This presents a serious danger of injury. Therefore,
stand in a safe location when checking the operation.
3 When checking the machine operation with the power magnetics cabinet door
opened
(1) The power magnetics cabinet has a high-voltage section (carrying a
mark). Never touch the high-voltage section. The high-voltage section
presents a severe risk of electric shock. Before starting any check of the
operation, confirm that the cover is mounted on the high-voltage section.
When the high-voltage section itself must be checked, note that touching a
terminal presents a severe danger of electric shock.
(2) Within the power magnetics cabinet, internal units present potentially
injurious corners and projections. Be careful when working inside the power
magnetics cabinet.
4 Never attempt to machine a workpiece without first checking the operation of the
machine. Before starting a production run, ensure that the machine is operating
correctly by performing a trial run using, for example, the single block, feedrate
override, or machine lock function or by operating the machine with neither a tool
nor workpiece mounted. Failure to confirm the correct operation of the machine
may result in the machine behaving unexpectedly, possibly causing damage to
the workpiece and/or machine itself, or injury to the user.
5 Before operating the machine, thoroughly check the entered data or parameter.
Operating the machine with incorrectly specified data or parameter may result in
the machine behaving unexpectedly, possibly causing damage to the workpiece
and/or machine itself, or injury to the user.
6 Ensure that the specified feedrate is appropriate for the intended operation.
Generally, for each machine, there is a maximum allowable feedrate.
The appropriate feedrate varies with the intended operation. Refer to the manual
provided with the machine to determine the maximum allowable feedrate.
If a machine is run at other than the correct speed, it may behave unexpectedly,
possibly causing damage to the workpiece and/or machine itself, or injury to the
user.
s-4

SAFETY PRECAUTIONS

B-64483EN-2/03

WARNING
7 When using a tool compensation function, thoroughly check the direction and
amount of compensation.
Operating the machine with incorrectly specified data may result in the machine
behaving unexpectedly, possibly causing damage to the workpiece and/or
machine itself, or injury to the operator.
8 Do not enter the area under the vertical axis without securing safety. If the
vertical axis drop occurs unexpectedly, you may be injured.
CAUTION
Immediately after switching on the power, do not touch any of the keys on the
MDI unit until the position display or alarm screen appears on the CNC unit.
Some of the keys on the MDI unit are dedicated to maintenance or other special
operations. Pressing any of these keys may place the CNC unit in other than its
normal state. Starting the machine in this state may cause it to behave
unexpectedly.
NOTE
1 Programs, parameters, and macro variables are stored in nonvolatile memory in
the CNC control unit. Usually, they are retained even if the power is turned off.
Such data may be deleted inadvertently, however, or it may prove necessary to
delete all data from nonvolatile memory as part of error recovery.
To guard against the occurrence of the above, and assure quick restoration of
deleted data, backup all vital data, and keep the backup copy in a safe place.
2 The liquid-crystal display (LCD) is manufactured with very precise fabrication
technology. Some pixels may not be turned on or may remain on.
This phenomenon is a common attribute of LCDs and is not a defect.

WARNINGS REGARDING EXCHANGING
WARNING
1 Be sure that the circuit breaker protecting the power magnetics cabinet is open.
Otherwise, electrical shocks, breakdown, and blowout may occur.
2 Amplifiers (drive power modules) and motors must always be replaced by the
same equipment type or else the parameters will no longer match the actual
configuration and cause Dual check Safety to respond incorrectly.
3 The procedures for the changes in the CNC system (the CNC control unit, the
I/O, the motor, the servo amplifier) should be referred to maintenance manual.
When safety related components are exchanged, confirmation test regarding
safety functions can be performed.

s-5

SAFETY PRECAUTIONS

B-64483EN-2/01

WARNINGS, CAUTIONS, AND NOTES REGARDING DAILY
MAINTENANCE
WARNING
1 Battery replacement
Do not replace batteries unless you have been well informed of maintenance
work and safety because this work is performed with the power on and the
cabinet open.
When opening the cabinet and replacing batteries, be careful not to touch any
high-voltage circuit (marked with
and covered with an electric shock
prevention cover). When the electric shock prevention cover has been removed,
you will get an electric shock if you touch any high-voltage circuit.
2 Fuse replacement
Be sure that the circuit breaker protecting the power magnetics cabinet is open.
Do not replace fuses unless you have been well informed of maintenance work
and safety because it is necessary to remove the cause of the blown fuse before
replacing a blown fuse.
When opening the cabinet and replacing fuses, be careful not to touch any
high-voltage circuit (marked with
and covered with an electric shock
prevention cover). When the electric shock prevention cover has been removed,
you will get an electric shock if you touch any high-voltage circuit.
CAUTION
Handle the batteries gently. Do not drop them or give a strong impact to them.
NOTE
CNC control unit uses batteries to retain data, such as programs, offset values,
and parameters even if the power is turned off. So, back up the data (programs,
offset values, and parameters) regularly.
The absolute pulse coder also uses batteries to retain its absolute positioning
data even if the power is turned off.
If the battery voltage becomes low, a low battery voltage alarm is displayed on
the machine operator’s panel or screen. Once the battery voltage alarm has
been displayed, replace the batteries within one week. Otherwise, the memory
contents or the absolute positioning data may be lost. However, the deadline for
the battery replacement of the absolute pulse coder depends on the machine
configuration.
For the battery replacement procedure, see the Maintenance Manual of CNC
control unit and Servo Amplifier.
Recollect or discard old batteries in the way your local autonomous community
specifies.

s-6

PREFACE

B-64483EN-2/03

PREFACE
Description of this manual
The manual consists of the following chapters:
Chapter 1, «OVERVIEW»
Chapter 2, «SYSTEM CONFIGURATION»
Chapter 3, «SAFETY FUNCTIONS»
Chapter 4, «INSTALLATION»
Chapter 5, «I/O SIGNALS»
Chapter 6, «PARAMETERS»
Chapter 7, «START-UP»
Chapter 8, «ALARM MESSAGE»
Chapter 9, «DIAGNOSIS»
Chapter 10, «SAMPLE SYSTEM CONFIGURATION»
Chapter 11, «APPLICATION OF OTHER FUNCTIONS»
Chapter 12, «COMPONENTS LIST»
Appendix A CONNECTION OF TWO MCCS
Appendix B, «DIRECTIVES, STANDARDS AND TECHNICAL CONDITIONS FOR 3RD PARTY
SERVO / SPINDLE MOTORS & ENCODERS WHEN APPLYING DUAL-CHECK SAFETY»

Applicable models
This manual can be used with the following models. The abbreviated names may be used.
Model name
FANUC Series 30i–B
FANUC Series 31i–B
FANUC Series 31i–B5
FANUC Series 32i–B
FANUC Series 35i–B
FANUC Series 30i-LB
FANUC Series 31i-LB
FANUC Series 30i-PB
FANUC Series 31i-PB
FANUC Series 31i-WB
FANUC Power Motion i — A

30i –B
31i –B
31i –B5
32i –B
35i –B
30i –LB
31i –LB
30i –PB
31i –PB
31i –WB
PMi–A

p-1

Abbreviation
Series 30i
Series 31i
Series 32i
Series 35i
Series 30i
Series 31i
Series 30i
Series 31i
Series 31i
Power Motion i

PREFACE

B-64483EN-2/03

Related manuals of
Series 30i- MODEL B
Series 31i- MODEL B
Series 32i- MODEL B
Series 35i- MODEL B
Power Motion i — MODEL A
The following table lists the manuals related to Series 30i-B, Series 31i-B, Series 32i-B, Series 35i-B,
Power Motion i-A. This manual is indicated by an asterisk(*).
Table 1
Related manuals of Series 30i- MODEL B, Series 31i- MODEL B, Series 32i- MODEL B, Series 35i- MODEL B,
Power Motion i-MODEL A
Specification
number

Manual name
DESCRIPTIONS

CONNECTION MANUAL (HARDWARE)

CONNECTION MANUAL (FUNCTION)

CONNECTION MANUAL
OPERATOR’S MANUAL (Common to Lathe System/Machining Center System)
OPERATOR’S MANUAL (For Lathe System)
OPERATOR’S MANUAL (For Machining Center System)
OPERATOR’S MANUAL

MAINTENANCE MANUAL

PARAMETER MANUAL

Programming
Macro Executor PROGRAMMING MANUAL
Macro Compiler PROGRAMMING MANUAL
C Language Executor PROGRAMMING MANUAL
PMC
PMC PROGRAMMING MANUAL

B-64482EN
B-64522EN
B-64492EN
B-64502EN
B-64572EN
B-64483EN
B-64523EN
B-64573EN
B-64483EN-1
B-64523EN-1
B-64503EN
B-64583EN
B-64573EN-1
B-64493EN
B-64484EN
B-64484EN-1
B-64484EN-2
B-64524EN
B-64494EN
B-64504EN
B-64584EN
B-64574EN
B-64485EN
B-64525EN
B-64495EN
B-64575EN
B-64490EN
B-64530EN
B-64500EN
B-64510EN
B-64590EN
B-64580EN
B-63943EN-2
B-66263EN
B-63943EN-3
B-64513EN

p-2

35i
30i/31i-LB
30i/31i-PB
PMi-A
35i
PMi-A
35i
30i/31i-PB
31i-WB
PMi-A
30i/31i-LB

35i
30i/31i-LB
30i/31i-PB
31i-WB
PMi-A
35i
30i/31i-LB
PMi-A
35i
30i/31i-LB
30i/31i-PB
31i-WB
PMi-A

PREFACE

B-64483EN-2/03

Specification
number

Manual name
Network
PROFIBUS-DP Board CONNECTION MANUAL
Fast Ethernet / Fast Data Server OPERATOR’S MANUAL
DeviceNet Board CONNECTION MANUAL
FL-net Board CONNECTION MANUAL
CC-Link Board CONNECTION MANUAL
Operation guidance function
MANUAL GUIDE i
(Common to Lathe System/Machining Center System) OPERATOR’S MANUAL
MANUAL GUIDE i (For Machining Center System) OPERATOR’S MANUAL
MANUAL GUIDE i (Set-up Guidance Functions)
OPERATOR’S MANUAL
Dual Check Safety
Dual Check Safety CONNECTION MANUAL

B-63993EN
B-64014EN
B-64043EN
B-64163EN
B-64463EN
B-63874EN
B-63874EN-2
B-63874EN-1

B-64483EN-2

*

Related manuals of SERVO MOTOR αi/βi series
The following table lists the manuals related to SERVO MOTOR αi/βi series
Table 2 Related manuals
Manual name
FANUC AC SERVO MOTOR αi series DESCRIPTIONS
FANUC AC SERVO MOTOR αi series / FANUC AC SERVO MOTOR βi series /
FANUC LINEAR MOTOR LiS series /
FANUC SYNCHRONOUS BUILT-IN SERVO MOTOR DiS series
PARAMETER MANUAL
FANUC AC SPINDLE MOTOR αi series DESCRIPTIONS
FANUC AC SPINDLE MOTOR αi/βi series, BUILT-IN SPINDLE MOTOR Bi series
PARAMETER MANUAL
FANUC SERVO AMPLIFIER αi series DESCRIPTIONS
FANUC AC SERVO MOTOR αi series / FANUC AC SPINDLE MOTOR αi series /
FANUC SERVO AMPLIFIER αi series MAINTENANCE MANUAL

Specification number
B-65262EN
B-65270EN
B-65272EN
B-65280EN
B-65282EN
B-65285EN

CNCs that are described in this manual can be connected to following servo motors and spindle motors.
Note that motors of the αi SV series, αi SP series, αi PS series, and βi SV series can be connected only
when they are compatible with 30i-B.
This manual mainly assumes that the FANUC SERVO MOTOR αi series of servo motor is used. For
servo motor and spindle information, refer to the manuals for the servo motor and spindle that are actually
connected.

p-3

TABLE OF CONTENTS

B-64483EN-2/03

TABLE OF CONTENTS
SAFETY PRECAUTIONS …………………………………………………………………. s-1
DEFINITION OF WARNING, CAUTION, AND NOTE ……………………………………… s-1
WARNINGS, CAUTIONS, AND NOTES REGARDING DESIGNING …………………. s-2
GENERAL WARNINGS, CAUTIONS, AND NOTES ……………………………………….. s-4
WARNINGS REGARDING EXCHANGING ……………………………………………………. s-5
WARNINGS, CAUTIONS, AND NOTES REGARDING DAILY MAINTENANCE …. s-6

PREFACE ……………………………………………………………………………………….p-1
1

OVERVIEW ………………………………………………………………………………… 1
1.1

DIRECTIVE AND STANDARDS ………………………………………………………….. 1
1.1.1
1.1.2
1.1.3
1.1.4

1.2

DEFINITION OF TERMS ……………………………………………………………………. 4
1.2.1
1.2.2

1.3

Directives…………………………………………………………………………………………………… 1
Related Safety Standards ……………………………………………………………………………… 2
Risk Analysis and Evaluation……………………………………………………………………….. 2
EC Declaration of Conformity ……………………………………………………………………… 3
General Definition of Terms ………………………………………………………………………… 4
Definition of Terms Related to the Safety Function…………………………………………. 4

BASIC PRINCIPLE OF DUAL CHECK SAFETY ……………………………………. 4
1.3.1
1.3.2

Features of Dual Check Safety ……………………………………………………………………… 4
Compliance with the Safety Standard (ISO13849-1, Category 3, PL d) ……………… 5
1.3.2.1
1.3.2.2
1.3.2.3
1.3.2.4

1.4
1.5

Latent error detection and cross-check ………………………………………………………. 6
Safety monitoring cycle and cross-check cycle …………………………………………… 7
Error analysis …………………………………………………………………………………………. 7
Remaining risks ……………………………………………………………………………………… 8

GENERAL INFORMATION ………………………………………………………………… 9
SAFETY FUNCTION BY FL-net ………………………………………………………… 10

2

SYSTEM CONFIGURATION ……………………………………………………….. 11

3

SAFETY FUNCTIONS ………………………………………………………………… 12
3.1
3.2

APPLICATION RANGE ……………………………………………………………………. 12
BEFORE USING THE SAFETY FUNCTION ……………………………………….. 13
3.2.1
3.2.2

3.3

STOP …………………………………………………………………………………………….. 14
3.3.1
3.3.2
3.3.3

3.4
3.5
3.6

Stopping the Spindle Motor ……………………………………………………………………….. 14
Stopping the Servo Motor ………………………………………………………………………….. 14
Stop States ……………………………………………………………………………………………….. 15

SAFETY-RELATED I/O SIGNAL MONITORING ………………………………….. 15
EMERGENCY STOP ……………………………………………………………………….. 23
SAFE REDUCED SPEED CHECK …………………………………………………….. 23
3.6.1

3.7
3.8
3.9
3.10
3.11

Important Items to Check Before Using the Safety Function ………………………….. 13
MCC off Test of the Safe Stop Function ………………………………………………………. 13

Safety Spindle Speed Limit Override Function……………………………………………… 24

SAFE MACHINE POSITION MONITORING ……………………………………….. 25
SAFETY SPEED ZERO MONITORING ……………………………………………… 27
MCC OFF TEST ……………………………………………………………………………… 28
SAFETY POSITION SWITCH FUNCTION ………………………………………….. 30
SAFETY RELATED PARAMETERS CHECK FUNCTION ……………………… 32
c-1

TABLE OF CONTENTS
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

B-64483EN-2/03

PARAMETER LOCK FUNCTION ………………………………………………………. 32
SAFETY POSITION ERROR MONITORING FUNCTION ……………………… 32
AMPLIFIER CIRCUIT MONITORING FUNCTION………………………………… 33
SAFETY BRAKE SIGNAL OUTPUT FUNCTION …………………………………. 33
CPU SELF TEST FUNCTION……………………………………………………………. 34
RAM CHECK FUNCTION …………………………………………………………………. 34
CRC CHECK FUNCTION …………………………………………………………………. 35
SAFE STOP MONITORING ……………………………………………………………… 35
BRAKE TEST …………………………………………………………………………………. 36
SAFE SPINDLE STOP FUNCTION WITH PROTECTION DOOR OPEN … 41
3.21.1

Example of Monitoring Excitation Status Signals of Spindle Amplifier …………… 43
3.21.1.1 Example of user ladder programs ……………………………………………………………. 43
3.21.1.2 Example of assignment of Programmable Safety I/O signals ………………………. 45

3.21.2

4

INSTALLATION ………………………………………………………………………… 48
4.1

OVERALL CONNECTION DIAGRAM ………………………………………………… 49
4.1.1
4.1.2
4.1.3

5

OVERVIEW ……………………………………………………………………………………. 52
SIGNAL ADDRESS …………………………………………………………………………. 53
SIGNALS ……………………………………………………………………………………….. 59
PROGRAMMABLE SAFETY I/O SIGNAL …………………………………………… 76
NOTE ON MULTI PATH CONTROL…………………………………………………… 76
5.5.1

Machine Group And Multi Path Control ………………………………………………………. 76

PARAMETERS ………………………………………………………………………….. 78
6.1
6.2
6.3
6.4
6.5
6.6

7

In case of using the I/O Link ………………………………………………………………………. 49
In case of using the I/O Link i …………………………………………………………………….. 50
In case of using PROFIBUS-DP on the DCS PMC side …………………………………. 51

I/O SIGNALS …………………………………………………………………………….. 52
5.1
5.2
5.3
5.4
5.5

6

Example of Connections ……………………………………………………………………………. 45

OVERVIEW ……………………………………………………………………………………. 78
DATA TYPE ……………………………………………………………………………………. 78
REPRESENTATION OF PARAMETERS ……………………………………………. 79
STANDARD PARAMETER SETTING TABLES ……………………………………. 80
PARAMETERS ……………………………………………………………………………….. 81
PROFIBUS-DP PARAMETER SETTINGS ………………………………………… 110

START-UP………………………………………………………………………………. 112
7.1

START-UP OPERATION ………………………………………………………………… 112
7.1.1

7.2

START-UP OF THE SAFETY FUNCTION ………………………………………… 113
7.2.1
7.2.2
7.2.3

7.3

Acceptance Test and Report for Safety Functions ……………………………………….. 112
Initial Start-up…………………………………………………………………………………………. 113
Series (2nd and Subsequent Machines) Startup …………………………………………… 115
Troubleshooting ……………………………………………………………………………………… 116

TEST MODE FUNCTION FOR ACCEPTANCE TEST ………………………… 116
7.3.1
7.3.2
7.3.3
7.3.4

Outline …………………………………………………………………………………………………… 116
How to select a Test Mode ……………………………………………………………………….. 116
About the Execution Item of Acceptance Test …………………………………………….. 117
About the Parameter, the Alarm, and the Signal that the Specification Changes. 123

c-2

TABLE OF CONTENTS

B-64483EN-2/03

8

ALARM MESSAGE ………………………………………………………………….. 126

9

DIAGNOSIS…………………………………………………………………………….. 135
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

MCC OFF TEST STATUS SCREEN ………………………………………………… 135
CROSS CHECK DATA SCREEN …………………………………………………….. 136
BRAKE TEST SCREEN………………………………………………………………….. 143
FLOW MONITORING SCREEN ………………………………………………………. 143
FEED LIMIT MONITORING SCREEN ………………………………………………. 144
SAFE MACHINE POSITIONING MONITORING SCREEN ………………….. 147
SAFETY POSITION ERROR MONITORING SCREEN ……………………….. 147
DIAGNOSIS SCREEN ……………………………………………………………………. 148

10 SAMPLE SYSTEM CONFIGURATION ……………………………………….. 151
10.1

SAMPLE CONFIGURATION …………………………………………………………… 151
10.1.1
10.1.2

10.2

SAMPLE CONNECTIONS ………………………………………………………………. 153
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5

10.3

Sample Configuration for One Machine Group (1)………………………………………. 151
Sample Configuration for One Machine Group (2: when Multiple MCCs are Used)
……………………………………………………………………………………………………………… 152
Emergency Stop Signal (*ESP) …………………………………………………………………. 153
Guard Open Request Signal (ORQ) …………………………………………………………… 154
Test Mode Signal (OPT) ………………………………………………………………………….. 154
Guard Open Inhibit Signal (*OPIHB), Monitoring Result Signal (RSVx,RSPx),
Safety check Request Signal (*VLDVx,*VLDPs) ……………………………………….. 155
MCC Off Signal (*MCF,*MCFVx,*MCFPs,*DCALM), MCC Contact State Signal
(*SMC) ………………………………………………………………………………………………….. 158

EXAMPLE OF APPLICATION …………………………………………………………. 159
10.3.1

Rotating the Spindle Manually in the Emergency Stop State ………………………… 159

11 APPLICATION OF OTHER FUNCTIONS ……………………………………. 160
11.1
11.2

OVERVIEW ………………………………………………………………………………….. 160
EXTERNAL DECELERATION …………………………………………………………. 160
11.2.1
11.2.2
11.2.3

Overview ……………………………………………………………………………………………….. 160
Specifications …………………………………………………………………………………………. 161
Signals …………………………………………………………………………………………………… 162
11.2.3.1 Details on signals ………………………………………………………………………………… 162
11.2.3.2 Signal address …………………………………………………………………………………….. 163

11.2.4

11.3

Parameters ……………………………………………………………………………………………… 163

SPINDLE OUTPUT CONTROL BY THE PMC …………………………………… 165
11.3.1
11.3.2
11.3.3

Overview ……………………………………………………………………………………………….. 165
Specifications …………………………………………………………………………………………. 166
Signals …………………………………………………………………………………………………… 166
11.3.3.1 Details on signals ………………………………………………………………………………… 166
11.3.3.2 Signal address …………………………………………………………………………………….. 167

11.3.4

11.4

Parameters ……………………………………………………………………………………………… 168

SPINDLE POSITIONING ………………………………………………………………… 168
11.4.1
11.4.2
11.4.3

Overview ……………………………………………………………………………………………….. 168
Specifications …………………………………………………………………………………………. 168
Signals …………………………………………………………………………………………………… 170
11.4.3.1 Details on signals ………………………………………………………………………………… 170
11.4.3.2 Signal address …………………………………………………………………………………….. 171

11.4.4

Parameters ……………………………………………………………………………………………… 171
c-3

TABLE OF CONTENTS
11.5

B-64483EN-2/03

Cs CONTOUR CONTROL ………………………………………………………………. 177
11.5.1
11.5.2
11.5.3

Overview ……………………………………………………………………………………………….. 177
Specifications …………………………………………………………………………………………. 177
Signals …………………………………………………………………………………………………… 178
11.5.3.1 Details on signals ………………………………………………………………………………… 178
11.5.3.2 Signal address …………………………………………………………………………………….. 179

11.5.4

11.6

Parameters ……………………………………………………………………………………………… 179

SPINDLE ORIENTATION ……………………………………………………………….. 182
11.6.1
11.6.2
11.6.3

Overview ……………………………………………………………………………………………….. 182
Specifications …………………………………………………………………………………………. 183
Signals …………………………………………………………………………………………………… 183
11.6.3.1 Details on signals ………………………………………………………………………………… 183
11.6.3.2 Signal address …………………………………………………………………………………….. 185

11.6.4
11.6.5

11.7

Parameters ……………………………………………………………………………………………… 185
Sequence………………………………………………………………………………………………… 188

CONTROLLED AXIS DETACH ……………………………………………………….. 189
11.7.1
11.7.2
11.7.3
11.7.4
11.7.5
11.7.6
11.7.7

Overview ……………………………………………………………………………………………….. 189
Signal Sequence ……………………………………………………………………………………… 189
Specification ……………………………………………………………………………………………191
Replacing a Spindle Head ………………………………………………………………………… 191
Signal Sequence ……………………………………………………………………………………… 192
Specification ……………………………………………………………………………………………193
Signal …………………………………………………………………………………………………….. 193
11.7.7.1 Details of signals…………………………………………………………………………………. 193
11.7.7.2 Signal address …………………………………………………………………………………….. 194

11.7.8
11.7.9

Parameter ……………………………………………………………………………………………….. 194
Alarm message ……………………………………………………………………………………….. 195

12 COMPONENTS LIST ……………………………………………………………….. 196
12.1

HARDWARE COMPONENTS …………………………………………………………. 196
12.1.1
12.1.2

12.2
12.3

Hardware Components for Series 30i/31i/32i/35i-MODEL B, Series 31i-MODEL
B5, Power Motion i-MODEL A ………………………………………………………………… 196
Hardware Components List for Other Units………………………………………………… 197

SOFTWARE COMPONENTS ………………………………………………………….. 199
SERVO AMPLIFIER ………………………………………………………………………. 200

APPENDIX
A

CONNECTION OF TWO MCCS …………………………………………………. 209
A.1
A.2
A.3

B

OVERVIEW ………………………………………………………………………………….. 209
CONFIGURATIONS ………………………………………………………………………. 209
DISABLING MCC OFF TEST ………………………………………………………….. 212

Directives, Standards and Technical Conditions for 3rd Party Servo /
Spindle Motors & Encoders when Applying FANUC Dual-check
Safety …………………………………………………………………………………….. 213
B.1
B.2
B.3

GENERAL ……………………………………………………………………………………. 213
MANDATORY STANDARDS AND DIRECTIVES ……………………………….. 213
SPINDLES ……………………………………………………………………………………. 214
B.3.1
B.3.2

Spindle Motors – Driven by FANUC Spindle Amplifier ………………………………. 214
Spindle Encoder – Speed / Position Feedback Sensor Embedded in Motor …….. 214
c-4

TABLE OF CONTENTS

B-64483EN-2/03

B.4

SERVO ………………………………………………………………………………………… 214
B.4.1
B.4.2

Servo Motors – Driven by FANUC Servo Amplifier……………………………………. 214
Servo Encoder – Speed / Position Feedback Sensor Embedded in Motor ……….. 215
B.4.2.1
B.4.2.2

Encoder with FANUC Serial Interface …………………………………………………… 215
A/B-Phase Sine-wave Interface Connected to FANUC Interpolation Circuit . 215

c-5

1.OVERVIEW

B-64483EN-2/03

1

OVERVIEW

Setup for machining, which includes attaching and detaching a workpiece to be machined, and moving it
to the machining start point while viewing it, is performed with the protection door opened. The dual
check safety function provides a means for ensuring a high level of safety with the protection door
opened.
The simplest method of ensuring safety when the protection door is open is to shut off power to the motor
drive circuit by configuring a safety circuit with a safety relay module. In this case, however, no
movements can be made on a move axis (rotation axis). Moreover, since the power is shut off, some time
is required before machining can be restarted. This drawback can be corrected by adding a motor speed
detector to ensure safety. However, the addition of an external detector may pose a response problem, and
the use of many safety relay modules results in a large and complicated power magnetic cabinet circuit.
With the dual check safety function, two independent CPUs built into the CNC monitor the speed and
position of motors in dual mode. An error in speed and position is detected at high speed, and power to
the motor is shut off via two independent paths. Processing and data related to safety is cross-checked by
two CPUs. To prevent an accumulation of failure, a safety-related hardware and software test must be
conducted at certain intervals time.
The dual check safety system need not have an external detector added. Instead, only a detector built into
a servo motor or spindle motor is used. This configuration can be implemented only when those motors,
detectors built into motors, and amplifiers that are specified by FANUC are used.
The dual check safety function ensures safety with the power turned on, so that an operator can open the
protection door to work without turning off the power. A major feature of the dual check safety function
is that the required time is very short from the detection of an abnormality until the power is shut off. A
cost advantage of the dual check safety function is that external detectors and safety relays can be
eliminated or simplified.
If a position or speed mismatch is detected by a cross-check using two CPUs, the safety function of the
Dual Check Safety works the power to be shut off (MCC off) to the motor drive circuit.

1.1

DIRECTIVE AND STANDARDS

1.1.1

Directives

Machine tools and their components must satisfy the EC directives listed below.
The FANUC CNC systems with the dual check safety function are compatible with all of these directives.

Directive
Directive 2006/42/EC
Directive 2004/108/EC
Directive 2006/95/EC

2006 Safety of machinery
2004 Electromagnetic compatibility
2006 Low Voltage Requirement

-1-

1.OVERVIEW

1.1.2

B-64483EN-2/03

Related Safety Standards

To be compatible with the directives, especially the machine directive, the international standards and
European standards need to be observed.

Important safety standards
ISO 12100 -1/2

EN954-1 1997
IEC 61508
ISO 13849-1
ISO 14121–1
EN60204-1 2006
IEC 62061

1.1.3

Safety of machinery – Basic concepts, general principle for design
Part 1: Basic terminology, methodology
Part 2: Technical principles for design
Safety of machinery – Safety related parts of control systems –
Part 1: General principles for design
Functional safety of electrical / electronic / programmable electronic
safety-related systems
Safety of machinery – Safety-related parts of control systems –
Part 1 : General principles for design
Safety of machinery – Principles for risk assessment
Safety of machinery – Electrical equipment of machine
Part 1 : General requirements
Safety of machinery Functional safety, safety–related electrical, electronic
and programmable electronic control systems

Risk Analysis and Evaluation

According to the machine directive, the manufacturer of a machine or machine components and a
responsible person who supplies a machine or machine components to the market must conduct risk
evaluation to identify all risks that can arise in connection with the machine or machine components.
Based on such risk analysis and evaluation, a machine and machine components must be designed and
manufactured. Risk evaluation must reveal all remaining risks and must be documented.

-2-

1.OVERVIEW

B-64483EN-2/03

1.1.4

EC Declaration of Conformity

EC DECLARATION OF CONFORMITY
The manufacturer,
FANUC CORPORATION
Oshino-mura, Minamitsuru-gun, Yamanashi 401-0597 JAPAN
Telephone number : 81-555-84-5555
declares that the following products

Products: Dual Check Safety system

Incorporated into the following CNC system

FANUC Series 30i/31i/32i/35i -MODEL B, FANUC Series 31i-MODEL B5

Power Motion i-MODEL A
are in conformity with the requirements of European Council Directives listed below:
• 2006/42/EC Machinery Directive
• 2004/108/EC EMC Directive
• 2006/95/EC Low Voltage Directive
This declaration is based upon the compliance of the products to the following standards:

Standards: EN 954-1:1997, IEC 62061:2005, ISO 13849-1:2006, IEC 61508:2000, EN 60204-1:2006,
EN 55011:2007, EN61000-6-4:2001, EN61000-6-2:2005, EN 50178:1997
Conformity has been certified by the following Notified/Competent Body
(identification no. 0123): TÜV SÜD Rail GmbH, Ridlerstrasse 65 – D80339 München.
FANUC CORPORATION has a quality system certified by JQA as per ISO 9001 and have therefore observed the
regulations foreseen during development and production.
Importer/Distributor in EU: FANUC Luxembourg Corporation, S.A.
Zone Industrielle L-6468 Echternach, Grand-Duche de Luxembourg
Telephone number: 352-7277771

Manager, CNC Manufacturing Department

Yamanashi Japan

March 30, 2012

Takashi Yamauchi

(Place and date issued)

(Name and signature as well as position of declarant)

-3-

1.OVERVIEW

B-64483EN-2/03

1.2

DEFINITION OF TERMS

1.2.1

General Definition of Terms

Reliability and safety
Reliability and safety are defined by EN292-1 as follows:
Term
Reliability
Safety

1.2.2

Definition
Capability of a machine, machine component, or equipment to perform its required function
under a specified condition for a specified period
Capability of a machine to perform its function without injuring the health under a condition of
use for an intended purpose specified in the operator’s manual and allow its transportation,
installation, adjustment, maintenance, disassembly, and disposal

Definition of Terms Related to the Safety Function

Safety-related I/O signal
Safety-related I/O signals are input/output signals monitored by two systems. These signals are valid for
each feed axis and spindle with a built-in safety function, and are used with each monitoring system.
Example: Protection door state signal

Safety stop
When a safety stop occurs, power to the drive section is shut off. The drive section can generate neither a
torque nor dangerous operation. The following are measures for incorporating the safety stop feature:
Contactor between the line and drive system (line contactor)
Contactor between the power section and drive motor (motor contactor)
If an external force is applied (such as a force applied onto a vertical axis), an additional measure (such as
a mechanical brake) must be securely implemented to protect against such a force.

Safety limitation speed
When the drive system has reached a specified limitation speed, a transition is made to the safe stop state.
A measure must be implemented to prevent a set limitation speed from being changed by an unauthorized
person.

Safety machine position
When the drive system has reached a specified positional limit, a transition is made to the safety stop state.
When a positional limit is set, a maximum move distance traveled until a stop occurs must be considered.
A measure must be implemented to prevent a set positional limit from being changed by an unauthorized
person.

1.3

BASIC PRINCIPLE OF DUAL CHECK SAFETY

1.3.1

Features of Dual Check Safety

Dual Check Safety function has the following features.
Two-channel configuration with two or more independent CPUs
Cross-check function for detecting latent errors

Detection
A servo motor detector signal is sent via the servo amplifier and is applied to the CNC through the FSSB
interface. Then, it is fed to two CPUs: a CNC CPU and a Servo CPU.
-4-

1.OVERVIEW

B-64483EN-2/03

A spindle motor detector signal is sent via the spindle amplifier and is applied to the CNC connected
through the FSSB interface or serial interface. Then, it is fed to two CPUs: a CNC CPU and a CPU built
into the spindle amplifier.
The safety related signal such as guard signal is sent via the independent I/O unit and is applied to the
CNC through the I/O Link or I/O Link i interface. Then, it is fed to two CPUs: a CNC CPU and a PMC
CPU.

Evaluation
The safety function is monitored independently by a CNC CPU and servo CPU or by a CNC CPU and
spindle CPU. Each CPU cross-checks data and results at certain intervals.

Response
If the monitoring function detects an error, the CNC CPU and the servo/spindle CPU switch off the MCC
via independent paths to shut off the power to the feed axis and spindle.

Proof test interval
T1 = 20 Years

1.3.2

Compliance with the Safety Standard (ISO13849-1, Category 3,
PL d)

The Dual Check Safety function satisfies the requirements of the following safety standard.

Machine Directive 2006/42/EC

EN954-1 :1997 Category 3

IEC62061 :2005 SIL2

IEC61508 :2000 SIL2

ISO13849-1 :2006 Category 3, PL d
These safety standards require the following:

The safety function of a safety-related portion must not degrade when a single failure occurs.

Single errors must be detected at all times when natural execution is possible.
To satisfy these requirements, the Dual Check Safety function is implemented using the two-channel
configuration shown below.

NOTE
The Dual Check Safety function is not meant to guarantee that the PL d
requirements are met across the entire system. The PL value of the system as a
whole is determined by the PL values of all its subsystems; therefore, the PL of
the entire system needs to be evaluated by the machine tool builder. The PL
value of the CNC, which is one of the subsystems, becomes d when the Dual
Check Safety function is used.
Category 3 requires the following:
The safety function of a safety-related portion must not degrade when a single failure occurs.
Single errors must be detected at all times when natural execution is possible.
To satisfy these requirements, the dual check safety function is implemented using the two-channel
configuration shown below.

-5-

1.OVERVIEW

B-64483EN-2/03

CNC
CPU
Motor detector
signal

Shut off power

Magnetic
contactor
電磁接触器

Cross-check
of data and
results

Servo

PMC
CPU

Spindle
CPU

Shut off power

Door switch signal

Monitoring of servo motor and spindle motor movement
Data output from the detector built into each motor is transferred to the CNC through the amplifier. The
safety of this path is ensured by using motors and amplifiers specified by FANUC.

Cross-monitoring using 2 CPUs
Two CPUs built into the CNC are used to cross-monitor the safety function. Each CPU is periodically
checked for errors. If one system fails, the servo and spindle can be stopped safely.

Power shutoff via two paths
If an error is detected, the power is shut off via two power shutoff paths. The paths need to be tested for
built-up failures within a certain time.

Input signal safety
Safety-related input signals such as the protection door lock/unlock signal are monitored in redundant
mode. If a mismatch between the two occurrences of a signal is detected, the power to the motor drive
circuit is shut off. This cross-check is constantly made.

Output signal safety
A signal is output (via two paths) to the relay used to shut off the power to the motor drive circuit. An
error is detected by a MCC off Test. To detect an accumulation of failure, a MCC off Test needs to be
conducted at certain intervals. This MCC off Test is not mandatory when machining is performed with
the protection door closed. (The MCC off Test should be performed, before the protection door is open
after the certain intervals.)

1.3.2.1

Latent error detection and cross-check

Detection of latent errors
This detection function can detect latent software and hardware errors in a system that has a two-channel
configuration. So, the safety-related portions of the two channels need to be tested at least once within an
allowable period of time for latent errors.
An error in one monitoring channel causes a mismatch of results, so that a cross-check detects the error.

-6-

1.OVERVIEW

B-64483EN-2/03

CAUTION
Forced detection of a latent error on the MCC shutoff path must be performed by
the user through a MCC off Test (after power-on and at intervals of a specified
time (within normally 24 hours)).
When the system is operating in the
automatic mode (when the protection door is closed), this detection processing
is not requested as mandatory. But, before the protection door opens after the
specified time, the detection processing is required mandatory. If this has not
been performed, lock for the protection door should not be released.

Cross-check
A latent safety-related error associated with two-channel monitoring can be detected as a result of
cross-checking.

CAUTION
An error detected as the result of forced latent error detection or cross-checking
leads to a safety stop state. (See Subsec. 3.3.3).

1.3.2.2

Safety monitoring cycle and cross-check cycle

The safety function is subject to periodical monitoring in a monitoring cycle.
The following functions are monitored at every 8ms.
Safe reduced speed check (servo motor)
Safe machine position monitoring (servo motor)
Safe position error monitoring (servo motor)
The cross-check cycle represents a cycle at which all I/O data subject to cross-checking is compared.
Cross-check cycle: 8 ms

1.3.2.3

Error analysis

Error analysis
The table below indicates the results of system error analysis controlled by the dual check safety function.
Error analysis when the protection door is open
Error
Excessive speed for
Spindle axis
Excessive speed for
feed axis
Feed axis safety
machine position
error
Input/output signal
error

Cause

Action

Amplifier or CNC control unit failure,
operation error, etc.
Amplifier or CNC control unit failure,
operation error, etc.
Amplifier or CNC control unit failure,
operation error, etc.

Safe reduced speed check function
EN60204-1 Category 1/0 stop
Safe reduced speed check function
EN60204-1 Category 1/0 stop
Safety machine position monitoring function
EN60204-1 Category 1/0 stop

Wiring error, CNC control unit failure, etc.

Safe-related I/O signal monitoring function
EN60204-1 Category 1/0 stop

Error analysis when the protection door is closed
Error
Input/output signal
error

Cause

Action

Wiring error, CNC control unit failure, etc.

-7-

Safe-related I/O signal monitoring function
EN60204-1 Category 1/0 stop

1.OVERVIEW

1.3.2.4

B-64483EN-2/03

Remaining risks

The machine tool builder is to make a failure analysis in connection with the control system and
determine the remaining risks of the machine.
The dual check safety system has the following remaining risks:
a)

The safety function is not active until the CNC control unit and drive system have fully powered up.
The safety function cannot be activated if any one of the components of the CNC control unit or
drive is not powered on.
b) Interchanged phases of motor connections, reversal in the signal of encoder and reversal mounting of
encoder can cause an increase in the spindle speed or acceleration of axis motion. If abnormal speed
detected, system controlled to brake to zero speed, but no effective for above error. MCC off is not
activated until the delay time set by parameter has expired. Electrical faults (component failure etc.)
may also result in the response described above.
c) Faults in the absolute encoder can cause incorrect operation of the safety machine position
monitoring function.
d) With a 1-encoder system, encoder faults are detected in a single channel, but by various HW and
SW monitoring functions. The parameter related to encoder must be set carefully. Depending on the
error type, a category 0 or category 1 stop function according to EN60204-1 is activated.
e) The simultaneous failure of two power transistors in the inverter may cause the axis to briefly
(motion depend on number of pole pairs of motor)
Example:
An 8-pole synchronous motor can cause the axis to move by a maximum of 45 degrees. With a
ball-screw that is directly driven by, e.g.16mm per revolution, this corresponds to a maximum
linear motion of approximately 2.0mm.
f) When a limit value is violated, the speed may exceed the set value briefly or the axis/spindle
overshoot the set point position to a greater or lesser degree during the period between error
detection and system reaction depending on the dynamic response of the drive and the parameter
settings (see Section Safety-Functions)
g) The category 0 stop function according to EN60204-1 means that the spindles/axes are not braked to
zero speed, but coast to a stop (this may take a very long time depending on the level of kinetic
energy involved). This must be noted, for example, when the protective door locking mechanism is
opened.
h) Amplifiers (drive power modules) and motors must always be replaced by the same equipment type
or else the parameters will no longer match the actual configuration and cause Dual check Safety to
respond incorrectly.
i) Dual check Safety is not capable of detecting errors in parameterization and programming made by
the machine tool builder. The required level of safety can only be assured by thorough and careful
acceptance.
j) There is a parameter that MCC off test is not to be made in the self test mode at power-on as in the
case of machine adjustment. This parameter is protected, only changed by authorized person. IF
MCC off test is not conducted, MCC may not be off at stop response is measured.
k) Safety machine position monitoring function does not apply to the spindle axis.
l) During machine adjustment, an exact motion may be executed incorrectly until the safety functions
setup correctly and confirm test is completely.
m) Before the reference point return is performed and the MCC off test is performed, it may be
dangerous because the correct operation does not be guaranteed. So, the careful operations are
required when the machine is operated in the status that the protection door opens.
n) The delay timer is prepared for the cross-checking of the safety related I/O. When the inconsistency
exists between the signal from the 2 paths, system will recognize this failure, after this time is passed.
The system will start the sequence of MCC shut-off, when this time is passed after the inconsistency
is detected.
o) Even if <Signal State via PMC> does not match <Signal State via DCSPMC> for the time specified
by parameter No. 13810 after the CNC starts, no alarm occurs.
-8-

1.OVERVIEW

B-64483EN-2/03

p) When Break test function is used, if the brake fails in a vertical axis without a redundant brake
mechanism between the current brake test and the next, the axis may drop when the servo motor is
deactivated due to an emergency stop or servo alarm.
q) If break test function is used and brake test is interrupted by the reset or mode change, the axis may
drop when the servo motor is deactivated due to an emergency stop or servo alarm.

1.4

GENERAL INFORMATION

The following requirements must be fulfilled for the Dual-Check System:
All conditions of the certification report have to be respected.
Before shipping the machine, the machine tool builder has to do tests for insulation and protective
bonding.
The procedures for the changes in the System (either HW or SW) should be referred to Maintenance
Manual (B-64485EN, B-64525EN, B-64575EN). When safety related components are exchanged,
confirmation test regarding safety functions can be performed according to Chapter 8.
Programming in ladder logic should be referred to PMC Programming Manual (B-64513EN).

Training
FANUC Training Center provides regularly various practice based training courses for mainly Japanese
domestic customers for the best use of FANUC products.
For overseas customers, FANUC Overseas affiliate companies provide locally suitable training courses at
their facilities. So, it is recommended for an overseas customer to attend such a course. You are
kindly requested to send your inquiry to the most convenient overseas company.
When a desired course will not be available at the overseas company, it is required for a customer to
inquire FANUC Training Center through the company about the availability of the course. The training
courses for overseas customers will be opened not regularly but as a required basis at FANUC Training
Center.
FA Department of FANUC Training Center provides various courses such as CNC General, CNC
Programming, CNC Maintenance, CNC Connection, and also Custom MACRO, and C Language
Executer for more advanced CNC utilization.
FANUC Training Center:
Yamanakako-mura, Yamanashi Prefecture : 401-0501, JAPAN
Phone : 81-555-84-6030
Fax : 81-555-84-5540
Internet: www.fanuc.co.jp/en/training

Manufacturer
FANUC CORPORATION
Oshino-mura,Minamitsuru-gun,Yamanashi Prefecture 401-0597, Japan

Representatives
FANUC Luxembourg Corporation, S.A.
Zone Industrielle L-6468 Echternach Grand Duchy of Luxembourg
For more representatives, refer to www.fanucfa.com

-9-

1.OVERVIEW

1.5

B-64483EN-2/03

SAFETY FUNCTION BY FL-net

In a machine system such as a transfer line, each of its multiple stations has an operator’s panel equipped
with an emergency stop button. The safety circuit of the entire system needs to be configured so that the
emergency stop signal is sent to all CNCs when the emergency stop button of any of these stations is
pressed. To allow such a safety circuit to be built among multiple CNCs, a Safety function by FL-net is
provided that uses FL-net communication.
By running this Safety function by FL-net under the Dual Check Safety function, it is possible to provide
all connected CNCs with a safety signal of up to 7 bits. For details, refer to the FL-net Board
CONNECTION MANUAL (B-64163EN).

— 10 —

2.SYSTEM CONFIGURATION

B-64483EN-2/03

2

SYSTEM CONFIGURATION

The dual check safety function has the following components.

Applicable CNC
FANUC Series 30i-B
FANUC Series 31i-B5
FANUC Series 31i-B
FANUC Series 32i-B
FANUC Series 35i-B
FANUC Power Motion i-A

Amplifier, Motor and I/O
For details on applicable amplifiers, motors, and I/O units, see Chapter 12, «COMPONENTS LIST».

NOTE
The servo amplifiers and servo motors connected to the CNC via the I/O Link
interface do not support the dual check safety function.

— 11 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

3

SAFETY FUNCTIONS

3.1

APPLICATION RANGE

The dual check safety function assumes the following configuration:
A) At least, one protective door is provided.
B) If protective door is closed, safety is assured.
When the operator makes a request to open the protective door, the safety functions are enabled, and the
protective door can be unlocked. While the protective door is open, the active safety functions assure
safety. When the request to open the protective door is canceled, the protective door is locked, and the
safety functions are disabled.
The dual check safety function provides these safety functions while the protective door is open, as
described above. Some of the safety functions continue working while the protective door is closed.

WARNING
The machine tool builder is responsible for the followings.
— To secure the safety by the sequence to make safety function effective
according to the status of the protective door
— To secure the safety while the protective door is closed
— To secure the safety related to the other moving components and so on than
FANUC servo motors and spindle motors controlled by the dual check safety
function, while the protective door is open

Safety function
The dual check safety function has the following safety functions:


Safety-related I/O signal dual monitoring
Emergency stop input, protective door open/close state, safety-related signals like MCC contact state
Output signal for shutting off the power (MCC off signal)
To detect the latent cause of an abnormal state of this output, a MCC off Test must be made.
Spindle motor
Safe speed monitoring
Servo motor
Safe speed monitoring
Safe machine position monitoring
Safe position error monitoring

CAUTION
This safety function is enabled while the protective door is open after a request
to open the protective door is made. If the request to open the protective door is
canceled and if the protective door is closed, this safety function is disabled. The
input check of the safety-related I/O signal monitoring function in redundant
mode and the emergency stop function are always active, regardless of whether
the protective door is opened or closed.

— 12 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

The CNC and the spindle check the safe
speed of the spindle motor in redundant mode.

CNC

Dual monitoring of
emergency stop signal

Emergency
stop

Spindle
software

Cross
check

CNC

Spindle
motor

Spindle
amplifier

Safety related
signal is checked
by the CNC(DCS
PMC) and the
PMC in redundant
mode

Safe reduced speed check

DCS
PMC

Servo
motor

Servo
amplifier

Safe speed of
servo motor and
machine position
are checked by
the CNC and the
Servo in
redundant mode

Cross
check
common
power
supply

Servo

Dual monitoring
of MCC

Safe reduced speed
check.
Safe machine position
monitoring.
Safe position error
monitoring.

Power down command

Protective
door

Power
down
(MCC)

PMC
Power down

Protective door
lock open/close
monitoring

Protective door unlock
signal

Dual monitoring of MCC
Dual power down
Detection of latent cause
of error by MCC off test

Dual monitoring of
protective door state

3.2

BEFORE USING THE SAFETY FUNCTION

3.2.1

Important Items to Check Before Using the Safety Function

When using the safety function for the first time upon assembly of the machine, replacing a part, or
changing a safety parameter (such as a safe speed limit or safe range as described in Chapter 6), the user
must check that all safety parameters are correct and that all safety functions are working normally. A
return reference position must be made on each axis. The user must also check the absolute position of the
machine. For details, see Chapter 7, “START UP.”

3.2.2

MCC off Test of the Safe Stop Function

An MCC off Test of the safe stop function monitors the contact state of the electromagnetic contactor
(MCC), compares the state with a command to the electromagnetic contactor, and checks that the safe
stop function works normally. The user of the machine must carry out the test. This test must be carried
out when the CNC is turned on or when the specified time (normally 24 hours) have elapsed after the
previous test is completed. If the CNC is turned on or if the specified time (normally 24 hours) have
elapsed after the previous test is completed, a guard open request (protective door open request) should
not be accepted until the test is performed. A machine tool builder must make the ladder program to
realize this sequence.
— 13 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

3.3

STOP

3.3.1

Stopping the Spindle Motor

Because the spindle motor is an induction type motor, power-down during rotation causes the motor to
continue rotating for a certain amount of time. From a safety standpoint, the motor may have to be
stopped immediately. If an error is detected and the spindle is judged to be controlled, it is possible to
stop spindle motor by the ladder program. In case of emergency stop and abnormal condition of safety
related I/O, it is necessary to design the ladder program to shut off the power after waiting the specified
time elapses.
To speed down and stop the spindle, the machine must input the spindle Emergency Stop signals
(*ESPA<G71.1>, *ESPB<G75.1>, and so on) in PMC. When this signal is input, the spindle slows down
and stops. (A Ladder program must be created for inputting this signal in case of alarm.) The input of
*EMG emergency stop input (connector CX4) of the common power supply also has the same effect. If
the Emergency Stop signal is connected to emergency stop input (connector CX4) of the PSM, the
spindle slows down and stops in the emergency stop state. If the spindle does not stop in spite of the stop
command, the MCC is shut off.
If this processing is not performed, power-down causes the spindle motor to continue rotating at the speed
prior to power-down (and eventually stopping in the end).

CAUTION
1 When the servo alarm or spindle alarm related to the communication error or
position detector is caused, MCC off signal corresponding to the servo or spindle
is output. Shut off the MCC after executing appropriate procedure such as
spindle stop operation. According to the setting value of the parameter, MCC off
signals of all axes, which belong to the same path of the spindle that causes an
alarm, are output. Shut off the MCC after executing appropriate procedure such
as spindle stop operation.
2 A controlled stop can be made based on parameter settings on occurrence of a
safe speed over alarm.
3 Since the synchronous spindle motor is a synchronous motor, not an induction
motor, power interruption causes a dynamic break stop depending on the
system configuration.

3.3.2

Stopping the Servo Motor

Because the servo motor is a synchronous motor, power-down results in a dynamic brake stop. The
dynamic brake stop is electric braking in which the excited rotor is isolated from the power source and the
generated electric energy is used up in the winding. An internal resistor provides additional braking.
Unlike an induction motor, the servo motor does not coast because of this structure.
If the input of the Emergency Stop signal or an error of a safety-related signal or speed monitoring is
detected, the CNC automatically specifies a command to zero the speed and reduces the speed to zero
(controlled stop). After the motor slows down and stops, the power is turned off, and the motor is brought
into the dynamic brake stop state. To slow down and stop the motor, some parameters must be specified
in the CNC. If those parameters are not specified, the motor is immediately brought into the dynamic
brake stop state. If the controlled stop cannot be done, the motor is brought into the dynamic brake stop
state.
When abnormal state is detected in safe reduced speed check or so on, a dynamic brake stop is made.

— 14 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

3.3.3

Stop States

The following stop states are possible.

Safe stop state
The power to the motor is shut off (MCC off state) in this state. If the spindle motor can be controlled, the
ladder program must shut off the power after the spindle motor is slowed down to a stop. If the spindle
motor cannot be controlled, the power is immediately shut off.
If the servo motor can be controlled, the motor is slowed down to a stop and then brought into the
dynamic brake stop state. If the motor cannot be controlled, the motor is immediately brought into the
dynamic brake stop state.
If the power is shut off immediately, the spindle motor continues at the same speed prior to the abnormal
event and eventually comes to a stop. If the spindle motor can be slowed down to a stop, the operation is
performed as instructed by the PMC and then the power is shut off. For the synchronous spindle motor,
immediate power interruption causes a dynamic break stop depending on the system configuration.

Controlled stop state
The power to the motor is not shut off. The servo motor and the spindle motor are controlled to stop.
In the controlled stop state of either motor, the safety function is active if the condition for enabling the
safety function is satisfied (the door is open). If a further abnormal event occurs, the motor is brought into
the safe stop state by the ladder program.

WARNING
1 The machine tool builder must design the machine so that the machine is kept in
the stop state if the power to the servo motor driving circuit is shut off.
Example) Brake mechanism that would not drop the vertical axis after the power
is shut off
2 If the power to the spindle motor driving circuit is shut off, the spindle motor
continues rotating at the speed before the power-down and eventually comes to
a stop. A measure must be taken so that this coasting does not affect safety.

3.4

SAFETY-RELATED I/O SIGNAL MONITORING

The Dual Check Safety function uses two-channel I/O configuration.
A pair of safety-related I/O signals are provided via separate paths to two I/O modules that are
respectively connected to one of the two channels. The two independent CPUs individually check the
input signals. If a mismatch between two corresponding signals is found, the system enters the safe stop
state. The following safety-related I/O signals are monitored or output in redundant mode:







Emergency stop signal
Protective door state input signal (Request to monitor for each axis)
Input signal for selecting safety speed monitoring and safety position monitoring
MCC contact state signal
MCC off signal (power-down)
Brake signal
Safety position switch signal
Programmable safety I/O signal

— 15 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

To build a dual monitoring system, the machine tool builder needs to connect one of each pair of these
signals to the I/O module connected to the DCS PMC side (Note 1) and the other to that connected to the
PMC side (Note 2).
I/O
MODULE

CNC

Machine side
DI

CNC
(DCS PMC)
(Note 1)

I/O Link
DO

Cross-check

I/O
MODULE
DI
I/O Link

PMC
(Note 2)

Shown at left is an example in which the signals
are connected using two-channel I/O Links.
For details about connections, see Chapter 4,
«INSTALLATION».

DO

NOTE
1 Dual Check Safety PMC (DCS PMC)
2 First PMC to fifth PMC
Refer to PMC PROGRAMMING MANUAL (B-64513EN).
IMPORTANT
When the Emergency Stop signal or the other safety input signal is connected to
the I/O module, it is necessary to do an enough check about ladder program
which defines a one-to-one relationship between the actual input (X) and the
input to the CNC (G).
The duplicated signals are always checked for a mismatch, regardless of whether the safety function is
active or not. When a signal state changes, the pair of signals may not match for some period because of a
difference in response. The dual check safety function checks whether a mismatch between the two
signals continues for a certain period of time, so that an error resulting from the difference in response can
be avoided. The check period must be specified as a safety parameter.
Parameter number
1945

Name
Safety-related I/O check timer

The following signals are not defined as safety-related I/O signals and are not duplicated. The signals,
however, are necessary for the system.

Input signal for making a protective door open request
Input signal for starting the test mode
Output signal for requesting a MCC off Test
This section briefly describes the signals. For details, see Chapter 5, “I/O SIGNALS”. For specific
connections, see the sample system configuration in Chapter 4, “INSTALLATION” and Chapter 10,
“SAMPLE SYSTEM CONFIGURATION”.

— 16 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

I/O related with Dual Check Safety Function
PMC(n=path(0-9))
DCS PMC (m=path(0-9) x20)
Symbol

Signal name

1

*ESP

Emergency Stop signal

2

*SGOPN

Guard State signal
Safety Check Request signal
(Servo)
Safety Check Request signal
(Spindle)
Safety Speed / Safety Position
Selection signal (Servo)
Safety Speed Selection signal
(Spindle)
Safety Speed Zero Monitoring
Request signal (Servo)
Safety Speed Zero Monitoring
Request signal (Spindle)

*VLDVx
3
*VLDPs

4

SVAx/
SVBx
SPAs/
SPBs
ZSVx

5
ZSPs
6

*SMC
*DCALM
*MCF

7
*MCFVx
*MCFPs

MCC Contact State signal
MCC Off signal
(for all system)
MCC Off signal
(for each machine group)
MCC Off signal
(for each servo axis)
MCC Off signal
(for each spindle)

8

BRKx

Safety Brake signal

9

SPS

Safety Position Switch signal

*OPIHB

Guard Open Inhibit signal

RSVx

Monitoring result signal (Servo)

RSPs

Monitoring result signal (Spindle)

12

RZVx
13
RZPs

Dual input
monitoring
Dual input
Dual input
monitoring
Dual input
monitoring
Dual input
monitoring
Dual input
monitoring
Dual input
monitoring
Dual input
monitoring
Dual input
monitoring
Dual output
Dual output
Dual output
Dual output
Dual output
Dual output
Dual input
monitoring
Dual output

Programmable Safety I/O
signals

10
11

I/O address
<X0008.4,0,1> (PMC)
<X0008.4,0,1>(DCS PMC)
Machine side signal
<Gn750.0-.7> (PMC)
<G(002+m).0-.7>(DCS PMC)
<Gn751.0-.3>(PMC)
<G(003+m).0-.3>(DCS PMC )
<Gn752/Gn753>(PMC)
<G(004+m)/G(005+m)>(DCS PMC)
<Gn754>(PMC)
<G(006+m)>(DCS PMC)
<Gn755>(PMC)
<G(007+m)>(DCS PMC)
<Gn751.4-7>(PMC)
<G(003+m).4-7>(DCS PMC)
<Gn748.6>(PMC)
<G(000+m).6>(DCS PMC)
<F0748.7>(PMC)
<F000.7>(DCS PMC)
<Fn748.1>(PMC)
<F(000+m).1>(DCS PMC)
<Fn752.0-.7>(PMC)
<F(004+m).0-.7>(DCS PMC)
<Fn753.0-.3>(PMC)
<F(005+m).0-.3>(DCS PMC)
<Fn754.0-.7>(PMC)
<F(006+m).0-.7>(DCS PMC)
<Fn755-Fn758>(PMC)
<F(007+m)-F(010+m)>(DCS PMC)

Safety Speed Zero Monitoring
Result signal (Servo)
Safety Speed Zero Monitoring
Result signal (Spindle)

14

POSEx

Position Information Effect signal

15
16

ORQ
OPT

17

RQT

18

STBT

19

RQBT

Guard Open Request signal
Test Mode signal
MCC Off Test Execution
Request signal
Brake Test Start signal
Brake Test Execution Request
signal

— 17 —

<Fn191.0>(PMC)
<F(019+m).0>(DCS PMC)
<Fn750>(PMC)
<F(002+m) >(DCS PMC)
<Fn751.0-3>(PMC)
<F(003+m).0-3>(DCS PMC)
<Fn759>(PMC)
<F(011+m) >(DCS PMC)
<Fn751.4-7>(PMC)
<F(003+m).4-7>(DCS PMC)
<Fn766>(PMC)
<F(018+m) >(DCS PMC)
<Gn191.3>(PMC)
<Gn191.2>(PMC)

Dual output
Dual output
Dual output
Dual output
Dual output
Dual output
Input
Input

<Fn191.2>(PMC)

Output

<Gn193.2>(PMC)

Input

<Fn191.3>(PMC)

Output

3.SAFETY FUNCTIONS

B-64483EN-2/03

Safety-related I/O
1. *ESP

Emergency Stop signal (input)

This signal is Emergency Stop signal and is monitored in redundant mode.
The signal is connected to the *ESP input of the servo amplifier as well.

2. *SGOPN

Guard State signal (Machine side input signal)

The signal is provided for dual monitoring of the protective door state. The signal is connected so that it is
normally set to 1 while the protective door is closed and locked (door closed) and set to 0 otherwise (door
opened). These states are implemented by the combination of the safety door and safety relays. The PMC
ladder for safety check must check the state of axes by asserting the Safety Request signal, when a
protective door is open.

3. *VLDVx, *VLDPs

Safety Check Request signal (input)

These signals are monitored in redundant mode. These signals request safety check when a protective
door is open. These signals are prepared for each axis and each spindle.
CNC monitors these signals. If safe speed range of a servo motor is exceeded in the protective door open
state, the system enters the controlled stop state. If an axis is still not stopped, the system enters the safe
stop state.
If safe speed range of a spindle motor is exceeded in the protective door open state, the spindle motor
enters free run state. (The spindle motor can also enter the controlled stop state when the safe speed range
is exceeded, depending on the parameter setting.)
If the spindle motor is not decelerated, the system enters the safe stop state.

4. SVAx/SVBx,SPAs/SPBs

Safety Speed / Safety Position Selection signal (input)

These signals are monitored in redundant mode. SVAx/SVBx are the signals to select safety speed /
safety position for each servo axis.
SPAs/SPBs are the signals to select safety speed for each spindle. (The values of safety speed / safety
position are given by the parameters.)

5. ZSVx,ZSPs Safety Speed Zero Monitoring Request signal (input)
These signals are monitored in redundant mode. ZSVx are the signals to starts or stops safety speed zero
monitoring for each servo axis.
ZSPp are the signals to starts or stops safety speed zero monitoring for each spindle.

6. *SMC

MCC Contact State signal (input)

The MCC contact state is monitored in redundant mode. In normal operation, the MCC is closed,
therefore whether the contact of a relay is in an abnormally closed state cannot be detected. In the test
mode, it can be detected whether the contact of relay is abnormally closed.

7. *DCALM, *MCF, *MCFVx, *MCFPs

MCC Off signal (output)

With these signals, the MCC is shut off by 2 channels I/O when either one of these signals state is “0”.
*DCALM is to allow turning off MCC of all system when I/O cross check alarm or some problems of
safety check function are found.
*MCF is to allow turning on MCC of each machine group according to emergency stop or MCC off Test.
*MCFVx is to allow turning on MCC of each axis according to monitor safety speed or machine position
or position error of servo axis. *MCFPs is to allow turning on MCC of each spindle according to the
result of monitoring safety speed of spindle.
These signals are assigned on both PMC and DCS PMC. Machine tool builder must output the signal to
shut off MCC when either one of these signal is “0”.

8. BRKx

Safety Brake signal (output)

These signals are output to control the brake of each servo axis.
— 18 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

9. SPS1 to SPS32 (SPS33 to SPS64 in case of 2 or more path) Safety Position
Switch (output)
These signals show whether the machine position of each axis is stayed within the range specified by the
parameters or not.

10. Programmable Safety I/O signals (input/output)
The 8 bytes (64 bit) programmable safe I/Os can be freely defined as the different address from the above
safety-related I/Os. Each byte of 8 byte programmable safe I/Os can be assigned on either address of X/
Y/R/D or K by parameter. Each byte of the programmable safe I/O between the PMC and DCS PMC is
cross-checked by the CNC and PMC. The combinations of cross-checking these signals are defined by
using Safety parameters as follows.
Signal type

Combination No.

DCS PMC

PMC

input

1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8

No.11950
No.11951
No.11952
No.11953
No.11954
No.11955
No.11956
No.11957
No.11960
No.11961
No.11962
No.11963
No.11964
No.11965
No.11966
No.11967

No.11970
No.11971
No.11972
No.11973
No.11974
No.11975
No.11976
No.11977
No.11980
No.11981
No.11982
No.11983
No.11984
No.11985
No.11986
No.11987

output

Signals other than safety-related I/O
The following signals are not safety-related signals (are not checked in redundant mode) but are important
signals in the dual check safety system. The machine tool builder must create an appropriate Ladder
program with these signals.

IMPORTANT
The error of ladder program cannot be checked by safety function itself. Please
make sure to check safety function (see Chapter 7).
11. *OPIHB

Guard Open Inhibit signal (output)

When the Guard Open Request signal (ORQ) is input to “1”, the CNC sets this signal. The machine tool
builder must design the PMC ladder logic by this signal. The ladder must confirm safety machine position
and safety speed. If the result of confirmation is judged safe, the ladder turns on the signal to release
protective door lock and outputs the signal to open the actual protective door.
If the protective door is unlocked (*SGOPN becomes “0”) while the signal is set to 0, the ladder must
notify alarm occurrence to an operator by lighting a lamp or so on and bring the motor into the safe stop
state.

NOTE
This signal is not output while MCC off Test is executing.

— 19 —

3.SAFETY FUNCTIONS
12. RSVx, RSPs

B-64483EN-2/03

Monitoring Result signal (output)

These signals show the result of monitoring safety machine position and safety speed of each axis and the
result of monitoring safety speed of each spindle. When Guard Open Inhibit signal (*OPIHB) is set to “1”,
a machine tool builder can judge whether the machine is in the safety state or not according to these
signals. If safety is confirmed as a result, turn on the signal to unlock the protective door lock and output
the signal to open the actual protective door.

13. RZVx, RZPs Safety Speed Zero Monitoring Result signal (output)
These signals show the result of safety speed zero monitoring of each axis and the result of safety speed
zero monitoring of each spindle.

14. POSEx

Position Information Effect signal (output)

This signal is output when Dual Check Safety Function is effective and the reference point is established.
When the reference point is not established, the machine system is in danger state because Safety
Machine Position Monitoring and Safety Position Error Monitoring are not active. If this signal is “0”,
Machine Tool Builder has to control not to open the protective door.

15. ORQ

Guard Open Request signal (input)

When this signal is input, the CNC set the Guard Open Inhibit signal (*OPIHB) to “1” (Guard open
accept). The PMC ladder program of a machine tool builder confirms the safety machine position and the
safety speed. If both machine position and speed are judged within safe range according to the result of
confirmation, the guard unlock signal is set to 1 (guard unlock enabled). The machine tool builder must
provide an output signal that opens the actual protective door through the PMC.

16. OPT

Test Mode signal (input)

When the signal is input, a MCC off Test is executed. The MCC off Test checks whether the contact of
the MCC is abnormally closed. When carrying out the MCC off Test manually, input this signal after the
preparation of a MCC off Test is completed.

17. RQT

MCC Off Test Execution Request signal (output)

If the execution of a MCC off Test is required, this signal is output. At power-on, this signal is always
output. If this signal is output, a MCC off Test must be executed.

18. STBT

Brake Test Start signal (input)

This signal is used to start or resume a brake test. When the brake test is completed successfully, the
Brake Test Execution Request signal RQBT is set to «0», causing the state of this signal to change from
«1» to «0» as well.
Changing the state of this signal from «1» to «0» during the brake test causes the test to be interrupted. In
that case, the test ends as soon as the test sequence being executed is completed when the signal is set to
«0».

19. RQBT

Brake Test Execution Request signal (output)

This signal is used to request a brake test. If the signal is set to «1», please execute the brake test. Even if
this request signal is set to «1», the operation is allowed to continue until the current stage of machining is
completed. To ensure safety, however, when the current stage of machining is completed, be sure to start
a brake test by setting the Brake Test Start signal STBT to «1».

— 20 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

Protective door Open Request and Protective door Unlock signal
24V

CNC(PMC)

Protective Door
open request

G

X
Ladder

Protective door

ORQ

ORQ-I
*OPIHB
RSVx
RSPx
POSEx

Y
F
F

Ladder
Protective
door unlock

F

The figure shows a sample connection of the protective door open request switch and the protective door
unlock signal. In the normal state, the protective door lock state is changed as follows before the safety
monitoring state is established.

Protective door lock state transition
ORQ-I ORQ

Protective
*OPIH RSVx
POSEx door unlock
B
RSPs
(*SGOPN)

A

0

0

0

B
C1
C2
D

1
1
1
1

0
1
1
1

0
0
1
1

1

1

E

1

1

1

1

1

D

1

1

1

1

1

F

0

1

1

1

1

G

0

0

1

1

1

A

0

0

0

Locked

A protective door open request is not
made, and the door is locked.
Locked
A protective door open request is made.
Locked
The request is transferred to the CNC.
Locked
The CNC receives the request.
Locked
Reference point is established and a safe
reduced speed check, a machine position
check and a position error check prove
that there is no failure and that the CNC
can enter the safe state.
Unlocked
The actual protective door is unlocked.
(*SGOPN=0) Operations can be performed with the
door open.
Locked
The protective door is closed and locked
again.
Locked
The protective door open request is
canceled.
Locked
The CNC is notified of the release of the
above request.
Locked
The CNC receives the release of the
above request.

Normal
operating state

Safety function
is enabled.

NOTE
The PMC ladder must be designed to monitor whether the protective door is
open (*SGOPN is set to 0) while ORQ is set to 0. If the protective door open is
detected, the PMC ladder judges that an abnormal event has occurred and
enters the safe stop state. This can occur, for instance, when the protective door
happens to open (or to be unlocked) while machining is in progress with the
protective door closed.

— 21 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

Timing diagram from protective door close state to protective door open
state
The following diagram shows the timings at which the protective door is opened and closed again.
ORQ_P

ORQ

*OPIHB
RSVx
RSPs
POSEx

Actual protective door unlock signal

*SGOPN
(Safety related
I/O signal)
Protective door
closed

Protective door
closed

Protective door
opened

Actual protective door open/close
signal
(1)

(2)

(3)

(4)

(5)

(1) When the Guard Open Request signal (ORQ) is input, the CNC returns the answer signal (*OPIHB)
to PMC.
(2) The PMC ladder program checks that the machine position, speed and position error are within safe
ranges by the Monitoring Result signal (RSVx/RSPs) and the reference point is established by the
Position Information Effect signal (POSEx). Then, it turns on the protective door unlock signal.
(Caution)

This example assumes that the protective door has an electromagnetic lock mechanism. While the
protective door is open, the unlock signal is turned off.
(3) The protective door is open.
(4) The protective door is closed and locked. After this, the Guard Open Request signal (ORQ) must be
turned off. (Caution)
(5) When the Guard Open Request signal (ORQ) is turned off, the CNC turned off the answer signal
(*OPIHB).

CAUTION
1 The RSVx and RSPs are redundant and output to both PMCs (PMC and
DCSPMC). Since the RSVx and RSPs signals, the monitoring results of two
independent circuits, are output to two PMCs, the output states of the results
may not match temporarily (when, for example, the spindle speed is close to the
safe speed). Therefore, keep the following in mind when only RSVx and RSPs
are used as conditions for releasing a protective door lock. Confirm that RSVx
and RSPs of the PMCs (PMC and DCSPMC) are both placed in the safe state
before releasing a protective door lock. When RSVx and RSPs of one PMC are
used as conditions for releasing a protective door lock, keep in mind that, before
releasing a protective door lock, wait until the speed becomes low enough after
RSVx and RSPs enter the safe state.
When the protective door is assumed to be open if RSVx and RSPs of only one
PMC enter the safe state, a safe reduced speed check alarm may occur
depending on the result of the other monitoring state.
— 22 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

CAUTION
2 Ensure a time of 100 ms or longer (“t” in the figure) from when the protective
door is closed (locked) until the Guard Open Request signal (ORQ) goes off. If
this time requirement is not satisfied, an alarm may be raised when the door is
closed (locked).
Design an operator panel to inform an operator that Guard Open Request signal
(ORQ) is turned on by lighting a lamp.

3.5

EMERGENCY STOP

The Emergency Stop signal is monitored in redundant mode. When the emergency stop is input, the servo
motor slows down to a stop (Caution) and enters the dynamic brake stop. The spindle slows down to a stop
(Caution)
as instructed by the PMC (Ladder program), and then the power is shut off.

CAUTION
To enable the function to slow down and stop the servo motor, the
corresponding parameter must be specified. If the parameter is not specified,
the motor immediately enters the dynamic brake stop state.
The spindle motor slows down and stops as instructed by the PMC (Ladder
program). If the PMC does not instruct this, the motor maintains the high speed
prior to the power-down and coasts. If an illegal speed is specified because of
a failure on the PMC side while the safety function is active (the protective door
is open), the CNC enters the safe stop state.
WARNING
In the emergency stop state, the processing to open or close the protective door
depends on the Ladder program created by the machine tool builder.
For example, when the protective door is prohibited from being opened in the
emergency stop state (when, for example, the spindle rotates at a speed not
allowed in situations where the protective door is open, that is a speed
exceeding the safe speed limit), the processing needs to be implemented by the
ladder program.
NOTE
Emergency Stop Button must fulfill the Standard IEC60947-5-1.

3.6

SAFE REDUCED SPEED CHECK

If the safe speed range is exceeded while the protective door is open, the dual check safety function
immediately enters the stop state. If each axis or spindle is not stopped, the dual check safety function
enters the safety stop state. For each feed axis and spindle, up to four safe speed ranges can be specified
in safety parameters.
Both the CNC and the SV/SP monitor whether a safe speed is kept on each feed axis and spindle. Limit
speed can be changed by the Safety Speed / Safety Position Selection signals (SVAx/SVBx for feed axis,
SPAs/SPBs for spindle).

— 23 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

Safety Speed/Safety Position Selection signal
SVAx/ SPAs
SVBx/ SPBs

Name
Safety speed 1
Safety speed 2
Safety speed 3
Safety speed4

0
1
0
1

0
0
1
1

Safety speed parameter
Feed axis
Spindle
No.13821
No.13822
No.13823
No.13824

No.4372
No.4438
No.4440
No.4442

When excess limit error is detected, Monitoring Result signal (RSVx/RSPs) is set to “0”. In this situation,
if Safety Check Request signal (*VLDVx/ *VLDPs) is “0” and safety monitor is executed, an alarm is
generated.
Error detected CPU

Alarm

CNC
SV
SP

SV0494/SP0757
SV0476
SP9069(SPINDLE ALARM 69)

CAUTION
1 When an illegal speed is detected for the servo axis, if the axis is not stopped
after the time specified in the parameter, the MCC Off signal (*MCFVx) is turned
to “0”.
2 When an illegal speed is detected for the spindle axis, CNC checks whether the
spindle speed decelerates continuously or not. If acceleration is detected, the
MCC Off signal (*MCFPs) is turned to “0”.
3 For the spindle, bit 1 (CTLSTP) of parameter No. 4399 can be used to select a
stop method (free run stop or controlled stop) on occurrence of a safe speed
excess alarm.
IMPORTANT
1 A gear ratio, ball screw, and the like must be carefully selected so that a safe
speed can be kept on the feed axis.
2 Before inputting the Guard Open Request signal (ORQ), reduce each axial
speed and spindle speed to a safe speed range or below. If a speed exceeds
the limit, do not unlock the protective door. The PMC ladder must be designed
that the power to the driving circuit is shut off (safe stop state) if the protective
door is forced open.
WARNING
The safe reduced speed check function monitors whether the traveling speed
exceeds a specified limit. The function cannot monitor the stop state (zero
speed). If an error causes a movement on the feed axis at a speed lower than
the safe speed range while the protective door is open, for instance, the function
cannot detect this state. The machine must be designed so that this state does
not affect the safety of the machine system.

3.6.1

Safety Spindle Speed Limit Override Function

In the safety speed monitoring function of Dual Check Safety Function, the safety speed for spindle can
be switched in 4 steps by safety speed selection signal (SPAs, SPBs). However, when plural chucks are
used or the safety speed is required to be selected corresponding to the diameter of work, the more
detailed selection is needed.
— 24 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

With this function, the safety speed for spindle can be overridden from 10% to 100% by the safety
spindle speed limit override signal.
Therefore, if these signals are combined with the safety speed selection signal, safety speed can be
switched in 40 steps for one spindle in total.
When bit 1 (SOV) of parameter No.3797 is set to 1, the following override is valid to above safety speed
corresponding to the combination with the safety speed override signal (SPOV1s~SPOV4s).

SPOV1s

Safety spindle speed limit override signal
SPOV2s
SPOV3s

1
0
1
0
1
0
1
0
1
0

0
1
1
0
0
1
1
0
0
1

SPOV4s

0
0
0
1
1
1
1
0
0
0

0
0
0
0
0
0
0
1
1
1

Other combinations

Override value
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
100%

(Example)
Set as follow.

Parameter No.4372 is set to 100(1st spindle)

Signal SPA1=0, SPB1=0 (Safety speed 1)

Signal SPOV11=1, SPOV21=1, SPOV31=1, SPOV41=0
The safety speed for 1st spindle becomes 100×(70/100)=70min-1
The safety spindle speed limit override function is the option function.

3.7

SAFE MACHINE POSITION MONITORING

While the protective door is open, the dual check safety function checks whether the position on each
feed axis is within the safe machine position range defined by safety parameters. If it detects a machine
position beyond the safety range, the dual check safety function immediately enters the stop state. If
each axis is not stopped, the dual check safety function enters the safety stop state.
For each feed axis, up to four safe positions can be specified in safety parameters.
Both the CNC and the Servo monitor whether each axis is within the safety position. The range of the
safety machine position can be changed by the Safety Speed / Safety Position Selection signals
(SVAx/SVBx for feed axis).
Name
Safety machine position 1
Safety machine position 2
Safety machine position 3
Safety machine position 4

Safety Speed/Safety Position Selection
signal
SVAx
SVBx
0
1
0
1

0
0
1
1

Safety machine position parameter
+ direction

— direction

No.13831
No.13833
No.13835
No.13837

No.13832
No.13834
No.13836
No.13838

When “out of position error” is detected, Monitoring Result signal (RSVx) is set to “0”. In this situation,
if Safety Check Request signal (*VLDVx) is “0” and safety monitor is executed, an alarm is generated.
This monitoring function is vaid after the reference position is established.
— 25 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

Error detected CPU

Alarm

CNC
SV

SV0495
SV0477

CAUTION
1 The safe machine position monitoring function does not keep monitoring the
specified range. Only after the function detects that a position on a feed axis
exceeds the range, the system enters the stop state. Accordingly, in the stop
state, an over travel has occurred on the feed axis. The travel distance depends
on the traveling speed and other conditions.
2 When an “out of position error” is detected, if the axis is not stopped after the
time specified in the parameter, the MCC Off signal (*MCFVx) is turned to “0”.
The user of the machine must first carry out a reference position return in order to obtain the initial
position. If the reference position return is not carried out, the check function is disabled. This check
function is enabled after the reference position is established. (The function cannot be disabled by any
means after the reference position is established.)

CAUTION
A machine operator must confirm whether the machine reference position is
established correctly by checking the actual machine position and position
display of the CNC.
While power-on, the safety function does not work. After power-on, the CNC checks whether a reference
position return is completed. If the reference position return is completed and if the protective door is
open, safe machine position monitoring, safe reduced speed check and safety position error monitoring
are performed. Then, the safety functions start working. If the reference position return is not completed,
safe machine position monitoring cannot be performed because the coordinates are not established. In this
state, the machine position monitoring function is disabled. After a reference position return is made, this
function is enabled. Depending on the safety parameter setting, however, an alarm may occur. To avoid
this alarm, set the safe machine position parameters before making a reference position return.

CAUTION
1 The machine coordinate of the safety function is based on position feed back. So
it does not always indicate the same value as the machine coordinate based on
the summation of the command value.
2 This function is activated only in position control mode.

— 26 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

3.8

SAFETY SPEED ZERO MONITORING

The safety speed zero monitoring will monitor whether a servo axis or a spindle stays within the safety
range. The safety zero speed monitoring will start by changing the safety speed zero monitoring signal
(ZSVx/ZSPs) from «0» to «1».
The center of this range is the point, where the safety speed zero monitoring signal (ZSVx/ZSPs) is
changed from «0» to «1». And the width of this range is defined by the safety parameter.
The point where the safety speed zero monitoring
signal (ZSVx/ZSPs) is turned to «1»

Position

+
Width set by the parameter
(Safety speed zero
monitoring width)

Width set by the parameter
(Safety speed zero
monitoring width)

If a servo axis or a spindle stays within this range, an axis or
a spindle is regarded as stopping in a safety state.

When a servo axis or a spindle moves out of the range defined by the parameter, the safety speed zero
monitoring result signal (RZVx/RZPs) is turned to «0». Moreover, if safety monitor is executed (Safety
Check Request signal *VLDVx/*VLDPs is «0»), safety speed zero error alarm is caused.
If a servo axis or a spindle is stays in the safety range, the safety speed zero monitoring result signal
(RZVx/RZPs) is turned to «1».
When the safety speed zero monitoring request signal for each servo axis or each spindle (ZSVx/ZSPs) is
turned to «0», safety speed zero monitoring is finished.
Safety speed zero monitoring for a servo axis becomes effective after the reference position is established.

CAUTION
Do not perform the safety speed zero monitoring while a servo axis or a spindle
is moving. The safety speed zero monitoring should be activated after confirming
the stop of a servo axis or a spindle by axis moving signal MVx or so on.
NOTE
1 If a servo axis does not stop within the time defined by the parameter after the
safety speed zero error is detected, CNC turns MCC off signal of the axis
(*MCFVx) to «0».
2 When the servo detected the alarm of safety speed zero error, the servo motor is
stopped and the servo excitation is turned off.
3 When the spindle detected the alarm of safety speed zero error, spindle motor
starts to stop with free-running stop or controlled stop, and then excitation is off
finally.
4 The safety speed zero monitoring is effective even when the servo excitation is
turned off by the servo off signal or so on.
5 In case of servo axis, the safety speed zero monitoring is not effective during the
speed control mode or torque control mode.
— 27 —

3.SAFETY FUNCTIONS

3.9

B-64483EN-2/03

MCC OFF TEST

A MCC off Test must be carried out in intervals of the specified time (normally 24 hours), so that the
safety functions would not be damaged by an accumulation of failure. A warning message is displayed
that the MCC off Test must be carried out at power-on or when 24 hours have elapsed after the previous
MCC off Test. The machine tool builder can perform the MCC off Test in a longer period than 24 hours
by own application such as PMC ladder program. In this case, the machine tool builder should perform
the followings by own application:
Measuring the elapsed time after the previous MCC off Test
Displaying the warning message that the MCC off Test must be carried out at power-on or when the
specified time has elapsed after the previous MCC off Test
The machine tool builder must set up the machine not to open the protective door before a MCC off Test
is not completed.
A MCC off Test performs the test to turn on and off MCC by controlling *SMC signal in order to confirm
whether the circuit to shut off MCC is normal. The MCC off Test is performed both on PMC and the
DCS PMC. If the MCC off Test is not completed within the time specified by the parameter No.1946
(MCC off Test timer), alarm SV0488 is generated. It is necessary to carry out the MCC off Test before
the protective door is open, when power is on or the specified time (normally 24 hours) has elapsed after
previous MCC off Test.
The PMC ladder program must be designed to carry out the following control.
<1> MCC Off Test Execution Request signal (RQT) or MCC Off Test execution request signal defined
by the machine tool builder is set to “1” at power-on or when the specified time (normally 24 hours)
has elapsed after the previous MCC off Test. Then, the protective door is locked till the MCC off
Test is terminated normally. But the operator can operate the machine while the protective door is
closed.
<2> When the MCC off Test Execution Request signal (RQT) or MCC Off Test execution request signal
defined by the machine tool builder is turned to “0”, the protective door can be unlocked.

CAUTION
The machine tool builder who would like to perform the MCC off Test in longer
period than 24 hours shall carry out the followings:
• The risk analysis for change of the test interval
• The test for ensuring that no error occurs at the MCC.
Calculation procedure of the MCC off Test period
<1> Calculate MTTFd of the MCC off Test path.
<2> Divide MTTFd of the MCC off Test path by 100 or more.*1)
<3> And you get the upper limit of the MCC off Test period.
*1) Using a large value for risk reduction is recommended.

— 28 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

Example)
Test No.

DO state during MCC off Test
1

2

3

4

5

128

*MCF (DCS PMC)
*MCF (PMC)

*SMC (DCS PMC)
*SMC (PMC)
RQT
Timer limit
Timer

Test completion

Test start

Test
number

Description

1

When the *MCF signals on both the PMC and DCSPMC sides are 1, confirm that the MCC is on.
(*SMC = 0)
Confirm that the MCC turns off (*SMC = 1) when the *MCF signal on the DCSPMC side is set to 0.
Confirm that the MCC turns on (*SMC = 0) when the *MCF signal on the DCSPMC side is returned
to 1.
Confirm that the MCC turns off (*SMC = 1) when the *MCF signal on the PMC side is set to 0.
Confirm that the MCC turns on (*SMC = 0) when the *MCF signal on the PMC side is returned to 1.
This state is entered when tests 1 to 5 end successfully.

2
3
4
5
128

IMPORTANT
Carry out the MCC off Test with the protective door closed. As the test shuts off
the MCC, prepare the system for mechanical MCC shut-off before starting the
MCC off Test.
The following describes notes and a timing chart during the MCC off Test.
<1> Before performing the MCC off Test, stop the feed axis and spindle.
<2> When the MCC off Test ends, the MCC Off Test Execution Request signal goes off. After the MCC
Off Test Execution Request signal goes off, set the test mode signal to off.
<3> When the vertical axis is present, take measures such as preparing a brake circuit for drop prevention.
Take 500 ms or more from when the brake is driven until test start signal OPT is activated, in the
ladder.
<4> Do not connect a peripheral device or noise filter between the MCC and the common power supply.
Otherwise, the test may not terminate normally.
<5> Enable the servo off signals (SVF1-8) after applying a brake to the servo axis connected to the
common power supply to be tested. If the servo off signals are not input, an alarm may occur during
the test.
<6> When the power failure backup module is connected, the ready signal (contact output signal RDY)
of the power failure backup module goes off during the MCC off Test. Therefore, make
considerations to eliminate a problem in the ladder. A possible measure is to mask the ready signal
by the test mode signal.
— 29 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

[Timing chart of the MCC off Test]
During a test
MCC off Test start
(Signal from the user)
Brake on
Vertical axis brake
(Signal from the user)
500 ms or more

Test mode signal
OPT <Gn191.2>

Servo off signal
SVF8 to 1<Gn126.7 to 0>

MCC Off Test Execution
Request signal RQT
<Fn191.2>

During the MCC off Test

Power failure backup module ready signal
RDY (contact output)

Contact on
Contact off

3.10

SAFETY POSITION SWITCH FUNCTION

It is checked whether the machine position is within the range of safety position switch. The checked
result is outputted to the Safety Position Switch signal. The correspondence between axes and each signal
is specified by the parameters. In case of 1 path system, up to 32 points can be specified. And in case of 2
or more paths, up to 64 points can be specified.
When a machine position of controlled axis is within a range, which is specified by the safety parameters,
this signal is output.
1
0
Parameter setting
value

Parameter setting
value

The signals are output after establishment of the reference position. The signal is not output before the
completion of reference position return.
The “machine position” is the actual machine position (which is calculated using feedback of position
detector), not the commanded position.
The comparison of position for safe position switch is executed in detection unit.
If the machine position equals parameter setting value, the safe position switch signal is output.
The safe position switch signal is not output for axis which the Dual Check Safety (bit 6 (DCN) of
parameter No. 1904 = 1) is not applied to.

— 30 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

Safety Position switch can be assigned up to 16 points per 1 group to the output signal (F signal) and
totally up to 4 groups 64 points can be used in the CNC system. Two areas per a path are provided to
assign. It is possible to assign the group to an appropriate area.
The assignment of controlled axes is set by the safety parameters (No.13880 to No.13911, No.10501 to
No.10532). Safe position switch signals can be assigned to arbitrary controlled axes. All points can be
also assigned to one axis.
And the signals can be also assigned to the rotary axes.
When inconsistency between the position switch on PMC and that on DCS PMC is lasted for the time that
is specified by the parameter No.1945, the safety function sets MCC Off (signal *DCALM to “0”) and
generates the alarm “safe I/O cross check error” (PW0010/PW0011) .

NOTE
The machine coordinate of the safety function is based on position feed back
which is affected by mechanical factor. So it does not always indicate the same
value as the machine coordinate based on the summation of the command
value.
Two machine coordinates that are calculated by two CPU independently are not
always the same because the position feedback is continuously changed a little.
As there is a possibility that the condition of two signals is different from each
other near the boundary, please avoid usage to stop an axis near the boundary.
CAUTION
This function is activated only in position control mode.
• Hysteresis
Around the position switch boundary, the Safety Position Switch signal may repeatedly turn on and
off due to motor vibration. Since this condition is not convenient for using this signal, the concept of
hysteresis is applied as follows.
Maximum limit of
position switch

Minimum limit of
position switch

Width of hysteresis
Width of hysteresis
Activated area of position switch

Fig. 3.10(a) Activated area of the position switch when the Safety Position Switch signal is set to «0»
Minimum limit of
position switch

Maximum limit of
position switch

Activated area of position switch

Fig. 3.10(b) Activated area of the position switch when the Safety Position Switch signal is set to «1»

Suppose that the minimum limit and maximum limit of the position switch are represented by an area like
those shown above. If the value of the Safety Position Switch signal used for the last measurement is «0»,
then the check is made in an area that takes into account the width of hysteresis (Fig. 3.10(a)). If the value
of the last used Safety Position Switch signal is «1», then the check is made in an area that does not take
into account the width of hysteresis (Fig. 3.10(b)). This reduces the fluctuation in the Safety Position
Switch signal.

— 31 —

3.SAFETY FUNCTIONS

3.11

B-64483EN-2/03

SAFETY RELATED PARAMETERS CHECK FUNCTION

At every power-on, the CNC checks whether the safety related parameters are destroyed and are
transferred to the SV, the SP and the PMC normally or not. The SV, the SP and the PMC also check
whether the safety related parameters are transferred from the CNC normally or not.
If some problem is found in this check, an alarm is generated and the MCC is shut off. (*DCALM=0)

3.12

PARAMETER LOCK FUNCTION

It is possible to lock the rewriting of the safety related parameters.
The parameter No.3225 and No.3226 lock/unlock these parameters. The following parameters are locked.
No.980, No.981, No.982, No.1023, No.1240,No.1838, No.1839, No.1840, No.1841,No.1842, No.1902#6,
No.1904, No.1945, No.1946, No.1948, No.1950, No.2000, No.2023, No.2024, No.2084, No.2085,
No.2185, No.3021,No.3022,No.3225,No.3717, No.3797, No.4372, No.4438, No.4440, No.4442,
No.4448, No.4460, No.4545, No.10500-No.10596, No.11950-No.11957, No.11960- No.11967,
No.11970-No.11977, No.11980-No.11987, No.13806, No.13811, No.13821-No.13829, No.13831No.13838, No.13840-No.13844, No.13880-No.13919, No.13920- No.13951, No.13960-No.13991

3.13

SAFETY POSITION ERROR MONITORING FUNCTION

Both the CNC and the SV check whether the servo position error of each axis exceeds the limit of
deviation specified by the parameters. If the servo following error exceeds, an alarm is generated and
MCC OFF signal (*MCFVx) is output immediately.
The relation between the safety monitoring state and the parameter of limit of deviation is shown in the
following table.
Safety monitoring is
activated
(In case *VLDVx =0)

Safety monitoring is not
activated
(In case *VLDVx =1)

No.1839
No.1838

No.1842
No.1841

No.1840

No.1840

Stopping
Moving
emergency stop, servo alarm (*1)
Servo-off and follow-up, parameter bit 1 (SOF)
pole position detection
of No.13805 is to “0”.
parameter bit 1 (SOF)
of No.13805 is to “1”.
Servo-off and not follow-up (*1)

*1) When emergency stop state or servo alarm are generated in the servo off state, the parameter of servo
-off and follow-up are applied.
Error detected CPU
CNC
SV

Alarm
SV1072/SV1071/SV1069
SV0474/SV0475/SV1070

When position deviation exceeds the limit given by the parameter (Refer to the parameter that safety
monitoring is activated (in case *VLDVx =0) in above table.) during safety monitoring, Monitoring result
signal RSVx is set to “0” regardless of the state of Safety check request signal *VLDVx.
This function is valid after the reference position return is finished or the follow-up of absolute position is
finished in case an absolute position coder.
— 32 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

CAUTION
This function is activated only in position control mode.

3.14

AMPLIFIER CIRCUIT MONITORING FUNCTION

The SV and the SP transmit the data of plural axes to amplifiers through one electronic circuit (LSI). The
CNC, the SV and the SP check whether this transmission is performed normally without placing data on
wrong address.
In case of servo amplifier, the CNC axis numbers kept by the CNC are compared with the CNC axis
numbers kept by the SV. In the case of the spindle amplifier, the spindle numbers kept by the CNC are
compared with those kept by the spindle amplifier. The checking sequence is as follows.
[Checking sequence for servo amplifier]
<1> When a servo amplifier is set up at the first time, an alarm SV0498 is generated. At that time, the
CNC transfers the CNC axis numbers to the SV and the SV keeps the data. Then the power of all
CNC system (amplifiers are included) must be turned off and on.
When an alarm is generated after the configuration of servo amplifiers is changed, it is necessary to
carry out the operation to send the CNC axis numbers to servo amplifiers. Set the parameter
No.2212#4 to “1” then return to “0”. Then turned off the power of all CNC system (amplifiers are
included.)
<2> After the power-on, the CNC and the SV start monitoring the CNC axis numbers. The CNC
monitors by comparing the CNC axis number kept by the CNC itself with that kept by the SV. The
SV monitors by comparing the CNC axis numbers kept by the SV with that sent by the CNC.
When some error is found, an alarm SV0478 or SV0496 is output, and MCC Off signal (*DCALM)
is turned to “0”.
[Checking sequence for spindle amplifier]
<1> When a spindle amplifier is set up for the first time, alarm SP9148 is generated. During this process,
the CNC transfers the spindle numbers to the spindle amplifier, which in turn keeps those numbers.
When this occurs, the power of the entire CNC system (including the amplifier) must be turned off
and then back on.
If an alarm is generated because the configuration of the spindle amplifier is changed, it is necessary
to send the spindle numbers to the spindle amplifier (set bit 7 of parameter No. 4541 to «1», then set
it back to «0», and then turn off the power of the entire CNC system (including the amplifier)).
<2> The CNC compares the spindle numbers kept by the CNC itself with that sent from spindle amplifier.
If inconsistency is found, an alarm SP0756 is output and MCC Off signal (*DCALM) is turned to
“0”.
<3> The SP compares the spindle numbers with that kept by the spindle amplifier. If inconsistency is
found, alarm SP9070 (Spindle alarm 70) is output, and MCC Off signal (*DCALM) is turned to “0”.

3.15

SAFETY BRAKE SIGNAL OUTPUT FUNCTION

The CNC and the SV output the Safety Brake signal (*BRKx) to control the mechanical brake. When this
signal is “0”, mechanical brake must be activated. When this signal is “1”, mechanical brake is allowed to
be released.
When the inconsistency between the break signal on PMC and that on DCS PMC is lasted for the time
that is specified by the parameter No.1945, the safety function sets MCC Off signal (*DCALM) to “0”
and generates the alarm “safe I/O cross check error” (PW0010/PW0011).

— 33 —

3.SAFETY FUNCTIONS

3.16

B-64483EN-2/03

CPU SELF TEST FUNCTION

The CNC, the PMC, the SV and the SP carry out the following self-diagnosis. If the error is detected, the
alarm is generated and sets MCC Off signal (*DCALM) to “0”.
<1> CPU check
It is checked whether each CPU runs normally or not.
It is checked whether the instructions related to safety function is executed normally or not.
Error detected CPU
CNC
PMC
SV
SP

ALARM
PW0014
PW0024(DCS PMC), PW0025(PMC)
SV0484
SP9074 (Spindle alarm 74)

<2> Program flow monitoring
It is confirmed whether all safety related function run normally.
Error detected CPU
CNC
PMC
SV
SP

ALARM
PW0017 / SV0490
PW0030(DCS PMC), PW0031(PMC)
SV0484
SP9076 (Spindle alarm 76), SP0755

<3> Cross check
It is checked whether the result of the judgment about the safety related function of a CPU is
consistent with that of another CPU.
If some error is found, an alarm is output.
ALARM
SV relation
SP relation

PMC relation

3.17

SV0490/SV0484
SP9072 (Spindle alarm 72),
SP9077 (Spindle alarm 77),
SP9078 (Spindle alarm 78),
SP0755
PW0010(DCS PMC), PW0011(PMC)
PW0012(DCS PMC), PW0013(PMC)

RAM CHECK FUNCTION

ECC (Error Check and Correct) function is applied to the battery back-upped file memory. Then a simple
error is corrected. And, when an error that cannot be corrected occurs, an alarm is generated.
Other memory for dual check safety is checked as follows. If the error is detected, the alarm is generated
and sets MCC Off signal (*DCALM) to “0”.
1) Test at power-on
The several test patterns are written to the RAM area. It is checked whether the written test data are
read correctly. If read error occurs, an alarm is generated.
2) Test during normal operation
RAM area is checked sequentially at constant interval during normal operation. The several test
patterns are written to the RAM. It is checked whether the written test data are read correctly. If read
error occurs, an alarm is generated.

— 34 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

Alarm detected CPU
CNC
SV
PMC
SP

3.18

Alarm
PW0016
SV0484
PW0028(DCS PMC), PW0029(PMC)
SP9016 (Spindle alarm 16)

CRC CHECK FUNCTION

At power-on and after power on, the data that are related to Dual Check Safety and stored in the ROM
area are checked. The CNC software, the servo software, the PMC software and the spindle software are
checked. If some error is found, an alarm is generated.
At power on
Error detected Software
CNC software
Servo software
PMC management software
Spindle software

Alarm
CRC CHECK ERROR: NC BASIC.
SERVO ROM TEST: CRC CHECK ERROR
LED “6”
Spindle alarm 75

After power on
Error detected Software
CNC software
PMC management software

3.19

Alarm
PW0018 CRC CHECK ERROR
PW0032(DCS PMC), PW0033(PMC)

SAFE STOP MONITORING

When a protective door is open, safe stop monitoring for servo axis and spindle can be realized by the
combination of several functions.

Safe stop monitoring for servo axis
According to the safe speed monitoring for servo axis and the safe positing error monitoring, CNC and
Servo monitor actual feedrate and deviation of each axis. When a protective door is open, monitoring of
stop condition of each axis can be performed by the combination of the following three functions.
a) By the safety speed monitoring function, check whether the actual feed rate is lower than the safety
level. If the feedrate exceeds the safety limit, an alarm is generated.
Actual speed is calculated with the feedback of a position detector. So, even if command feedrate is
0, actual feedrate may be detected as not 0 when an axis is moved by external power. Set the value
of safety limit that does not cause an alarm when feedrate command is 0.
b) By the safe positioning error monitoring function, check whether position deviation is within a
safety limit. If an axis is moved unexpectedly, an alarm is generated.
c) According to “Axis moving signal MVx <Fn102>”, check whether axis motion command is not
given. (Axis moving signal is prepared for PMC and is not double check signal.)

Safe stop monitoring for spindle
In the safe reduced speed check of the spindle, the actual speed of the spindle motor is monitored at the
CNC and spindle. When a protective door is open, monitoring of stop condition of each spindle can be
performed by the combination of the following two functions.
a) By the safety speed monitoring function, check whether the actual speed is lower than the safety
level. If the feedrate exceeds the safety limit, an alarm is generated.
Actual speed is calculated with the feedback of a position detector. So, even if command speed is 0,
actual speed may be detected as not 0 when a spindle is moved by external power. Add the machine
oriented margin to the value of safety limit that does not cause an alarm when speed command is 0.
— 35 —

3.SAFETY FUNCTIONS
b)

B-64483EN-2/03

There is a possibility that spindle rotate at speed lower than safety speed limit. Then it is necessary
to select the function to make position control loop, such as spindle positioning, Cs contouring
control or spindle orientation.

3.20

BRAKE TEST

To ensure the safety of the brake, the brake signals (*BRKx) that are output in redundant mode are used
to control the brake of the servo axis mechanically. To ensure the safety of this control, a periodical test is
performed on the servo axis brake.

Specifications
A brake test can be performed on servo axes that have a brake. The test needs to be done only on those
axes that require brake control, such as vertical axes. Whether to perform the test can be selected on an
axis-by-axis basis using a parameter. As with the MCC shut-off test, the brake test is performed when the
power is turned on or when time t has elapsed since the last test (t is the value set in parameter No.
13913).

Getting started with the brake test
(1) When the power is turned on or when time t has elapsed since the last brake test (t is the value set in
parameter No. 13913), the Brake Test Execution Request signal RQBT (DO) is set to «1». When this
signal is set to «1», execute a brake test. Even when the request signal is turned on, the operation is
allowed to continue until the current stage of machining is completed. To ensure safety, however,
execute a brake test as soon as possible.
(2) Clear all NC alarms, switch to the JOG mode, and then retract the axis eligible for the brake test to a
safe position.
(3) To start the brake test, turn on the Brake Test Start signal STBT (DI).

NOTE
Since the test involves giving the move command to the servo motor, make sure
it is performed in position control mode in the servo on state. The test will not be
executed if the axis to be tested is in a mode other than the position control
mode (velocity control or torque control) or in the servo off state or if the torque
limit mode. An alarm is generated if the conditions are not satisfied.
Executing the brake test
(1) When the brake test execution request mentioned above is accepted, all the axes eligible for the
brake test are tested simultaneously. Using combinations of states of two brake signals *BRKx
(PMC side and DCSPMC side), three different tests are executed per axis in the order shown below.
*BRKx(PMC)
*BRKx(DCSPMC)
Brake state

Test 1

Test 2

Test 3

0
0
Applied

0
1
Applied

1
0
Applied

Ending the brake test
(1) When all the axes are tested successfully, the Brake Test Execution Request signal RQBT is set to
«0».
If any error occurs during the test, an alarm is generated. While the servo motor remains activated
even in an alarm state, the automatic operation cannot be continued. In that case, retract the axis to a
safe position manually, turn off the power, and take action to solve the problem of the brake in
question.
Before executing the brake test again, reset the system to clear the alarm state.
(2) When the test ends normally, set the Brake Test Start signal STBT to «0».
— 36 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

Test Start signal
(DI:STBT)
Test Execution Request
signal (DO:RQBT)
*BRKx(DCSPMC)

*BRKx(PMC)

1
0
1
0
1
0
1
0

Under test
Test sequence
Not under test

Test 1

Test 2

Test 3

Fig. 3.20 (a) Overall time chart

NOTE
1 Execute the test in the servo on state.
2 The amount of travel, feedrate, and positional deviation value must be set in
advance using parameters.
3 Make sure that the protective door is closed when the test is executed. To
ensure safety, create a ladder program that prohibits the protective door from
being opened, even if a protective door open request is issued, until the break
test is executed when the Brake Test Execution Request signal RQBT is turned
on after time t has elapsed (t is the value set in parameter No. 13913).
4 Do not execute the test with the protective door open. Create a ladder program
that prohibits the Brake Test Start signal STBT from being turned on so that the
test cannot be executed while the protective door is open.
5 The brake test cannot be executed on axes subject to feed axis synchronization
control or synchronous, composite, or superimposed control. Before executing
the test, be sure to turn off the relevant selection signal.
6 If the brake test causes an alarm, the axis can be moved manually, while the
automatic operation cannot be continued unless the alarm is cleared by the
reset. Make sure that the automatic operation is performed in a safe condition. If
the brake test is interrupted due to an alarm or for some other reason, the axis
may not be able to be returned to its original position.
7 The override for the feedrate command is fixed at 100%, and the dry run and
rapid traverse signals are disabled.
8 The interlock and machine lock states are effective during the brake test.
CAUTION
The axis may move during the brake test. Before the test, move the axis to a
safe place where it does not interfere with any other part.

Details of each brake test
Details of the tests
Tests 1, 2, and 3 check whether the brake is applied normally and involve the following operations.

— 37 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

(a) Brake signals *BRKx are output according to the test step to be executed. The torque limit value of
the axis subject to the brake test is used as the torque limit value for the brake test. The torque limit
value can be set using a parameter.
(b) The NC waits for t1 (t1 is the value set in parameter No. 13914) until the brake is applied and the
command can be issued.
(c) Next, the NC outputs the position command according to the amount of travel and feedrate set in
parameters.
(d) After issuing the command, the NC checks the positional deviation amount in order to determine
whether the brake is applied normally. If the brake is applied normally, the axis has not been moved
and there is accumulated positional deviation equivalent to the specified amount of travel. The range
of the positional deviation amount to be checked is equal to the corresponding positional deviation
amount plus and minus the tolerance value (the value set in parameter No. 13918). The time during
which the NC checks whether the brake is applied normally is specified by t2 (t2 is the value set in
parameter No. 13919). If the positional deviation amount is outside the range, the NC regards the
brake as failing to be applied normally and generates an alarm.
(e) After the check, the NC issues a command to reset the accumulated positional deviation amount.
(f) Before executing the next test, the NC waits for t1 (t1 is the value set in parameter No. 13914).
Next test

Current test
Torque limit

Enable

Disable

1

*BRKx(PMC,
DCSPMC)

0
Command +

Command
(POS)

t1

t1
Command
(travel
amount/feedrate)

No command

Cancel
command

Command —

Monitored

Error monitoring
Not monitored

t2

(a)

(b)

(d)

(c)

(e)

(f)

Fig. 3.20 (b) Brake test time chart

Interrupting and resuming the brake test

Changing the state of the Brake Test Start signal STBT from «1» to «0» during the brake test causes
the test to be interrupted. The test sequence being executed when the signal is set to «0» is suspended,
and the amount of travel occurring during the brake test, brake signals, and torque limit are reset. To
execute the brake test again, set this signal to «1». The brake test will resume from the beginning.
If the brake test is interrupted by an emergency stop or servo alarm, the test is forced to end even
during a test sequence. After the servo motor is activated by the reset process, the brake signals and
torque limit are reset. Also, make sure that, during the brake test, the servo ready signal SA
<Fn000.6> is monitored in addition to the brake signals to control the brake. To execute the brake
test again, set this signal to «0» and then to «1». The brake test will resume from the beginning.
If the brake test is interrupted due to the reset or mode change, the test sequence being executed is
suspended, while the brake signals and torque limit are not reset, leaving the test as it is when it is
interrupted. To reset the amount of travel occurring during the brake test, brake signals, and torque
limit, set the Brake Test Start signal STBT to «0» and then to «1». After all these interruption
operations are complete, it becomes possible to execute the brake test again.
— 38 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

CAUTION
When brake test is interrupted by the reset or mode change, the state during
brake test of the brake signal and the torque limit, etc. is maintained. Note that
the brake signal doesn’t change even if the emergency stop signal is operated in
this state. Operate the emergency stop signal after brake test start signal STBT
is turned to «0» and “1” again without fail and after the state of brake signal and
torque limit etc. returns to original state.

— 39 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

Brake configuration
This function assumes the brake configuration shown in either Fig. 3.20 (c) Brake configuration — 1 or Fig.
3.20 (d) Brake configuration — 2.
I/O Module 1
I/O Link
Channel 1
I

CNC (30i)

PMC

I/O Link
signal divider

JD1B

*BRKx

O

24V

RL

JD44A-1
JD51A

0V

JD51B
JD1A

built-in
motor
brake

I/O Module 2

M

I

DCS
PMC

*BRKx

JD1B
I/O Link
Channel 3

RL

O
0V

0V
Fig. 3.20 (c) Brake configuration — 1

I/O Module 1
CNC (30i)

PMC

I/O Link
Channel 1
I/O Link
signal divider

*BRKx

JD1B

RL

O

built-in
motor
brake

0V

JD51B

24V

I

JD44A-1
JD51A

24V

External
brake

I/O Module 2

JD1A

M

I
DCS
PMC

JD1B
I/O Link
Channel 3

*BRKx

0V

0V

RL

O

0V
Fig. 3.20 (d) Brake configuration — 2

Example in which signals are connected using a two-channel I/O Link
(For details about connections, see Chapter 4, «INSTALLATION».)

— 40 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

3.21

SAFE SPINDLE STOP FUNCTION WITH PROTECTION
DOOR OPEN

During setup mode for a machine tool, which includes attaching or detaching a workpiece, the operator
may rotate the spindle manually. Conventionally, in such case, the following methods have been used to
ensure safety:

Cutting off the input power to all spindle and servo axis by placing the machine tool into the
emergency stop state

Installing a magnetic contactor between the spindle amplifier and the spindle motor for cutting off
the power to the spindle motor from the spindle amplifier
In this function, the safe power-off of the spindle by the dual monitoring is realized by the combination of
the Dual Check Safety function and the spindle amplifier which outputs the dual excitation status signals
indicating the power-off status of the spindle motor as two independent signals.
This function enhances the usability of machine tools for adding no magnetic contactors between the
spindle amplifier and the spindle motor. Also, this function can be used with the Spindle Enabling Switch,
which enables to drive the spindle by the safe speed.
(EXOF1)

Status of
Protection door

PMC CPU

Safe
I/O

Excitation Status Signal 1
(EXOFA)
Spindle Amplifier

Protection Door

Spindle
Motor

Servo Amplifier

PMC ladder
Monitor and
Control

Cross
Check

Servo
Motor

Power Supply
Safe
I/O

Spindle
Enabling Switch

Spindle Enabling
Switch signal
(SPEN1, 2)

CNC CPU
Contact
Driver
DCS PMC ladder
Monitor and
Control

Cut Off and Check status

AC reactor

Magnetic
Contactor

Excitation Status Signal 2 (EXOF2)

Specifications
The following safety function can be realized with the Spindle Amplifier supporting the Safe Spindle
Stop function.
1.

2.

When the protection door is open, it can be checked safely that the power to the motor is cut off
without turning off the magnetic contactor installed to the main power input for the Power Supply.
And if abnormalities are detected during monitoring, the magnetic contactor installed to the main
power input for the Power Supply is turned off.
By using two ladders of the PMC and the DCS PMC, monitor independently if excitation status of
Spindle Amplifier is normal. And if abnormalities are detected, turn off the magnetic contactor
installed to the main power input for the Power Supply by the independent two paths.
Two excitation status signals outputted from Spindle Amplifier can be crosschecked by the
Programmable Safety I/O signal.
— 41 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

In order to check the mismatch between two excitation status signals (EXOF1, and EXOF2 by
contact driver) outputted from Spindle Amplifier, assign both signals as the Programmable Safety
I/O signal.

CAUTION
In order to make sure of the application of this safety function, above “1” and “2”
should be done by the machine tool builder.
Moreover, in case of driving the spindle with protection door open, in addition to above “1” and “2”,
following “3” should be done by the machine tool builder.
3.

In order to check the mismatch between two signals (SPEN1, SPEN2) from the Spindle Enabling
Switch, assign both signals as the Programmable Safety I/O signal.

The Safe Speed Monitoring function of the spindle axis is still effective during monitoring the excitation
status of the spindle (*SGOPN=0, and EXOF=1). Therefore, during monitoring the excitation status of
the spindle, it is necessary to set the Safety Speed to higher and proper value.
Concretely, please change the Safety Speed Selection signal SPAs/SPBs according to the spindle enable
status by a user ladder and set a suitable Safety Speed as a parameter. Please refer to the section 3.6.

— 42 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

3.21.1

Example of Monitoring Excitation Status Signals of Spindle
Amplifier

An example of the total connection of the signals in the first spindle axis is shown as follows.

Total connection diagram of signals (example)
I/O Link
X, Y

PMC

Protective door open request signal
ORQ_I
Guard State signal

*SGOPN

Spindle Enabling
Switch signal

SPEN1
SPEN2
User
ladder
(Timing
chart is
described
in the next
section)

Guard Lock Release signal

I/O Link
X, Y

Contact output signal from
Spindle Amplifier
EXOF2

Gn191.3

ORQ

Gn751.0

*VLDP1

Gn754.0

SPA1

Fn751.0

RSP1

Gn071.1

*ESPA

Fn047.4

EXOFA

Rxxx.a

EXOF1

Rxxx.b

SPEN1

Rxyz

Magnetic contactor
enable signal

Safety I/O

DCS PMC

User
ladder
(Timing
chart is
described
in the next
section)

G(003+m).0

*VLDP1

G(006+m).0

SPA1

Programmable Safety I/O

Ryyy.a

EXOF2

Ryyy.b

SPEN2

Rabc

Magnetic contactor
enable signal

3.21.1.1 Example of user ladder programs

Release the guard lock under the condition that Guard Open Request signal (ORQ) is “1” and the
spindle is stopped and the excitation status signal of spindle (EXOF1) is “1”.
At the condition that Guard State signal (*SGOPN) is “0” (guard open) and the Spindle Enabling
Switch signal (SPEN) is “0” (drive disable), if the spindle excitation status signal EXOF1 is “0” or
the spindle excitation status signal EXOF2 is open contact (spindle excitation on) for a certain time*1,
turn off the magnetic contactor inserted to the main power input for the Power Supply.
(Timing charts 1 and 2)
At the power-on, EXOFA is invalid until the start-up of the transmission between CNC and Spindle
Amplifier is finished. Therefore, forcibly mask EXOF1 to “1” by timer in the user ladder.
(Timing chart 3)
— 43 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

[Timing chart 1: Example of ladder sequence of PMC]
Spindle excitation on
ORQ

*ESPA
(*2)
EXOF1
Abnormal
status
*OPIHB, RSVx, RSPs, POSEx
Guard lock release command
*SGOPN
Actual guard status

closed

opened

closed

SPEN1
(*1) Mask the alarm with timer
Magnetic contactor enable signal
Rxyz
Monitor the status of ○ points,
and turn off the magnetic contactor if abnormal status is detected.

(*1) When the Spindle Enabling Switch signal (SPEN1) is set to “0”, an alarm condition is detected until
the excitation of the spindle becomes off (EXOF1 is set to “1”). Mask the alarm by timer in the user
ladder during this period.
(*2) The spindle motor is excited (EXOF1 = 0, EXOF2 = 0: contact open) when any of Spindle Forward
Rotation / Reverse Rotation Command signals SFRA<Gn070.5>, SRVA<Gn070.4>, and Spindle
Orientation Command signal ORCMA<Gn070.6> is set to “1”. (G signal is for the first spindle)

[Timing chart 2: Example of ladder sequence of DCS PMC]
Spindle excitation on
Contact : close
EXOF2
Contact : open

Abnormal
status

*SGOPN

SPEN2
(*1) Mask the alarm with timer
Magnetic contactor enable signal
Rabc
Monitor the status of ○ points,
and turn off the magnetic contactor if abnormal status is detected.

(*1) When the Spindle Enabling switch signal (SPEN2) is set to “0”, an alarm condition is detected until
the excitation of the spindle becomes off (EXOF2 is set to “1”: contact close). Mask the alarm by
timer in the user ladder during this period.
— 44 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

[Timing chart 3: Example of Power-on sequence]
EXOFA

EXOF1
Set EXOF1 to “1” forcedly with timer by the user ladder until the start-up of the
transmission between CNC and Spindle Amplifier is finished.

3.21.1.2 Example of assignment of Programmable Safety I/O signals
Assign Rxxx of the PMC and Ryyy of the DCS PMC as the input signals of Programmable Safety I/O
signals which are crosschecked. Then, the mismatch of each bit between Rxxx and Ryyy is checked by
the PMC and the CNC independently. If the mismatch is detected, the alarm PW0012 and PW0013
(USER I/O CROSS CHECK ERROR) are generated and MCC off signal (*DCALM) is turned to “0”.
Then, turn off the magnetic contactor installed to the main power input for the Power Supply.
Refer to the section 5.4 for details about Programmable Safety I/O signal.
Rxxx
a
EXOF1

b
SPEN1

a
EXOF2

b
SPEN2

Ryyy

Above “a” and “b” indicate a bit number in 1 Byte (8 bits), and you can assign signals to any bit number.
However, assign the pair of signals that should be cross-checked (eg. EXOF1 and EXOF2) to the same bit
number in Rxxx and Ryyy.

3.21.2

Example of Connections

In addition to the connections of the Dual Check Safety, the wiring from a connector JX4 on Spindle
Amplifier to the I/O unit (DCS PMC side) is required.
Moreover, when the Spindle Enabling Switch is used, two further wiring is required. Concretely, one
output signal from the switch should be connected to I/O Unit for the PMC side and the other signal from
the switch should be connected to I/O Unit for the DCSPMC side respectively.

— 45 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

CNC
3ch I/O Link
adapter

I/O Link
(JD51A)

JD51B

I/O Link #1,#2

JD44A-1
JD44A-2
JD1A

I/O Unit
DC24V

Guard State signal
*SGOPN

CPD1
JD1B
JD1A
I/O Unit

DC24V

CPD1
JD1B

I/O Link #3

JD1A

COP10B

FSSB(COP10A-1)

Spindle Enabling
Switch signal
SPEN

COP10A

TB2
SV

JX4

COP10B
COP10A

Spindle Excitation
Status signal 2
EXOF2

JF1

SP

JYA2
TB2

To Servo Amp or
Spindle Amp
Connection in case of I/O Link
(For details, see Chapter 4, “INSTALLATION”.)

Connection between connector JX4 on Spindle Amplifier and I/O unit
(DCS PMC side)
Spindle Amplifier

I/O Unit

JX4
(11)

COMEXOF

(13)

EXOF2

Isolated
Opt-coupler
Output

24V
DI

0V

Half-pitch connector
Hirose Electric
Connector and case
FI40B-20S-CVS5

Contact open: Excitation on
Contact closed: Excitation off

— 46 —

3.SAFETY FUNCTIONS

B-64483EN-2/03

— Specification of contact output signal from Spindle Amplifier
Circuit method: Opto-coupler having an electrical direction
Rated voltage: 30 VDC or less
Rated current: DC 40 mA or less
Saturated voltage: 1.5 V or less (at an output current of 40 mA)

CAUTION
There is a possibility that the internal circuit of Spindle Amplifier is damaged by
24V supplied from the outside, when inserted other connector except JX4.

— 47 —

4.INSTALLATION

4

B-64483EN-2/03

INSTALLATION

The hardware installation such as field wiring, power supply, etc. should be referred to connection
manual for CNC units and for servo amplifier. EMC problem should be referred to EMC guideline
manual.
As for the environmental conditions for each unit, such as CNC controller, servo amplifier and etc, please
refer to each connection manual.
Degree of IP protection:
Servo Motors: IP55
Spindle Motors: IP54 with oil-seal, IP40 without oil-seal
Servo and Spindle amplifiers: IP1x
CNC and other accessories: IPxx
The peripheral units and the control unit have been designed on the assumption that they are housed in
closed cabinets.

CAUTION
Servo/Spindle amplifiers, CNC are to be installed in IP54 protected cabinets.

I/O connection configuration
The Dual Check Safety function uses two-channel I/O configuration.
The safety-related I/O signals are connected via separate paths (Note 1) to two I/O modules that are
respectively connected to one of the two channels. To build a dual monitoring system, the machine tool
builder needs to connect one of the duplicated safety-related I/O signals to the I/O module connected to
the DCS PMC side and the other to that connected to the PMC side.
CNC

CNC
(DCS PMC)
(Note 2)

I/O Link or
PROFIBUS -DP
(Note 4)

I/O
MODULE

Machine side

DCSPMC side
I/O MODULE

CNC
CNC
(DCS PMC)
(Note 2)

DI
DO

DI
DO

(Note 1)
I/O
MODULE

Cross check

PMC side I/O
MODULE

Cross check
DI

PMC
(Note 3)

Machine side

I/O Link

PMC
(Note 3)

DO

I/O Link i
(Note 1)

DI
DO

NOTE
1 I/O Link i allows the safety-related I/O signals of both the PMC and DCS PMC
sides to be connected over a single path.
2 Dual Check Safety PMC (DCS PMC)
3 First PMC to fifth PMC
Refer to PMC PROGRAMMING MANUAL (B-64513EN).
4 Enable broken wire detection for the slave device connected to PROFIBUS-DP
for the safety-related I/O. For details, see Section 6.6, «PROFIBUS-DP
PARAMETER SETTINGS».

— 48 —

4.INSTALLATION

B-64483EN-2/03

Note on the I/O configuration
Of the I/O Link, I/O Link i, and PROFIBUS-DP, only one of them can be assigned to the X/Y area of the
DCS PMC side.

4.1

OVERALL CONNECTION DIAGRAM

4.1.1

In case of using the I/O Link
CNC
Main board

I/O Link(JD51A)

3ch I/O Link
signal divider
JD51B

JD44A-1

I/O Link #1/#2
(General I/O, PMC side safety-related I/O)

JD44A-2
JD1A

Manual pulse generator

24VDC

Distribution-type
I/O board
JA3
CPD1
JD1B

I/O Link #3
(DCS PMC side
safety-related
I/O)

Operator’s
panel

JD1A
I/O UNIT, etc.
24VDC

CPD1
JD1B
JD1A

Power
magnetics
cabinet

I/O UNIT, etc.
24VDC

CPD1
JD1B
JD1A

Power
magnetics
cabinet

The above figure shows only the two-channel I/O Link used to input and output the safety-related I/O
signals for the Dual Check Safety function. For information about other types of connection, refer to the
general connection manual.

— 49 —

4.INSTALLATION

4.1.2

B-64483EN-2/03

In case of using the I/O Link i
CNC
Main board

I/O Link i
(JD51A)

I/O Link i
(General I/O, PMC side
safety-related I/O
DCS PMC side safety-related I/O)

Manual pulse generator

24VDC

Distribution-type
I/O board
JA3
CPD1
JD1B

Operator’s
panel

JD1A
I/O UNIT, etc.
24VDC

CPD1
JD1B
JD1A

(PMC side)
Power
magnetics
cabinet

I/O UNIT, etc.
24VDC

CPD1
JD1B
JD1A

(DCS PMC side)
Power
magnetics
cabinet

NOTE
To establish connections using the I/O Link i, the I/O modules and all the other
components to be connected need to support the I/O Link i.
The above figure shows only the l I/O Link i used to input and output the safety-related I/O signals for the
Dual Check Safety function. For information about other types of connection, refer to the general
connection manual.

— 50 —

4.INSTALLATION

B-64483EN-2/03

4.1.3

In case of using PROFIBUS-DP on the DCS PMC side
CNC
Main board

I/O Link(JD51A)
I/O Link or I/O Link i
(General I/O, PMC side
safety-related I/O)

PROFIBUS-DP
master board

CN1

Manual pulse generator

24VDC

Distribution-type
I/O board
JA3
CPD1
JD1B

Operator’s
panel

JD1A
PROFIBUS-DP
(DCS PMC side
safety-related
I/O)

I/O UNIT, etc.
24VDC

CPD1
JD1B
JD1A

Power
magnetics
cabinet

Slave device
Power supply
Power
magnetics
cabinet

The above figure shows only the I/O Link and PROFIBUS-DP used to input and output the safety-related
I/O signals for the Dual Check Safety function. For information about other types of connection, refer to
the general connection manual.

— 51 —

5.I/O SIGNALS

5

I/O SIGNALS

5.1

OVERVIEW

B-64483EN-2/03

The Dual Check Safety Function provides two input paths and two output paths for safe-related signals
(safety signals).
Input signals (safety input signals) are input via two paths; one is connected to the CNC (DCS PMC) via
I/O Link channel 3, I/O Link i, or PROFIBUS-DP (Note 1) and the other is connected to the PMC via I/O
Link channel 1/2 or I/O Link i (Note 1). The CNC (DCS PMC) (Note 2) and the PMC (Note 2) constantly
exchange safety input signals with each other and monitor each other. If a mismatch is found between a
safety input signal via one path and the same signal via another path and such a state lasts for the period
set in a parameter or more, the CNC (DCS PMC) and the PMC independently detect an alarm.
(Dual-check for safety input signals)
Output signals (safety output signals) are output via two paths; one originates from the CNC (DCS PMC)
via I/O Link channel 3, I/O Link i, or PROFIBUS-DP (Note 1) and the other originates from the PMC via
I/O Link channel 1/2 or I/O Link i (Note 1). The MCC Off signal (*MCF) is output via these two paths.
The value of this signal is regarded as «1» only when the signals output via the two paths are both set to
«1». If either of them is set to «0», the value of the signal should be regarded as «0». In other words,
turning on the MCC is allowed only when the *MCF signal of the PMC side and the *MCF signal of the
DCS PMC side are both set to «1», and if either of them is set to «0», the MCC needs to be turned off.
Section 5.3 shows the name of the signal, the code representing the signal, and the signal address (<PMC
side> and <DCS PMC side>), as well as the classification, function, and operation (for an input signal) or
the classification, function, and output condition (for an output signal).

NOTE
1 Of the I/O Link, I/O Link i, and PROFIBUS-DP, only one of them can be
assigned to the X/Y area of the DCS PMC side.
2 DCS PMC : Dual Check Safety PMC
PMC: Normal PMC (First PMC to fifth PMC)
Refer to PMC PROGRAMMING MANUAL (B-64513EN) for details.

— 52 —

5.I/O SIGNALS

B-64483EN-2/03

5.2

SIGNAL ADDRESS

PMC side signals
PMC (n=0 to 9 (Path number-1))
#7

#6

#5

#4

#3

#2

#1

#0

*ESP

*ESP

#2

#1

#0

#3

#2

#1

#0

ORQ

OPT
#1

#0

*ESP

X0008
#7

#6

#5

#4

#3

*ESP

Gn008
#7

#6

#5

#4

Gn191
#7

#6

#5

#4

#3

Gn193

#2
STBT

#7

#6

#5

#4

#3

#2

#1

#0

#5

#4

#3

#2

#1

#0

*SMC

Gn748
#7

#6

Gn749
#7

#6

#5

#4

#3

#2

#1

#0

Gn750

*VLDV8

*VLDV7

*VLDV6

*VLDV5

*VLDV4

*VLDV3

*VLDV2

*VLDV1

#7

#6

#5

#4

#3

#2

#1

#0

Gn751

ZSP4

ZSP3

ZSP2

ZSP1

*VLDP4

*VLDP3

*VLDP2

*VLDP1

#7

#6

#5

#4

#3

#2

#1

#0

Gn752

SVA8

SVA7

SVA6

SVA5

SVA4

SVA3

SVA2

SVA1

#7

#6

#5

#4

#3

#2

#1

#0

Gn753

SVB8

SVB7

SVB6

SVB5

SVB4

SVB3

SVB2

SVB1

#7

#6

#5

#4

#3

#2

#1

#0

Gn754

SPB4

SPB3

SPB2

SPB1

SPA4

SPA3

SPA2

SPA1

#7

#6

#5

#4

#3

#2

#1

#0

Gn755

ZSV8

ZSV7

ZSV6

ZSV5

ZSV4

ZSV3

ZSV2

ZSV1

#7

#6

#5

#4

#3

#2

#1

#0

Gn756

SPOV42

SPOV32

SPOV22

SPOV12

SPOV41

SPOV31

SPOV21

SPOV11

#7

#6

#5

#4

#3

#2

#1

#0

Gn757

SPOV44

SPOV34

SPOV24

SPOV14

SPOV43

SPOV33

SPOV23

SPOV13

#7

#6

#5

#4

#1

Fn191
#7
Fn748

#6

#5

#4

#3

#2

RQBT

RQT

#3

#2

*DCALM
#7

#0
*OPIHB

#1

#0

*MCF
#6

#5

#4

Fn749

— 53 —

#3

#2

#1

#0

5.I/O SIGNALS

B-64483EN-2/03
#7

#6

#5

#4

#3

#2

#1

#0

Fn750

RSV8

RSV7

RSV6

RSV5

RSV4

RSV3

RSV2

RSV1

#7

#6

#5

#4

#3

#2

#1

#0

Fn751

RZP4

RZP3

RZP2

RZP1

RSP4

RSP3

RSP2

RSP1

#7

#6

#5

#4

#3

#2

#1

#0

Fn752

*MCFV8

*MCFV7

*MCFV6

*MCFV5

*MCFV4

*MCFV3

*MCFV2

*MCFV1

#7

#6

#5

#4

Fn753

#3

#2

#1

#0

*MCFP4

*MCFP3

*MCFP2

*MCFP1

#7

#6

#5

#4

#3

#2

#1

#0

Fn754

*BRK8

*BRK7

*BRK6

*BRK5

*BRK4

*BRK3

*BRK2

*BRK1

#7

#6

#5

#4

#3

#2

#1

#0

Fn755

SPS08

SPS07

SPS06

SPS05

SPS04

SPS03

SPS02

SPS01

#7

#6

#5

#4

#3

#2

#1

#0

Fn756

SPS16

SPS15

SPS14

SPS13

SPS12

SPS11

SPS10

SPS09

#7

#6

#5

#4

#3

#2

#1

#0

Fn757

SPS24

SPS23

SPS22

SPS21

SPS20

SPS19

SPS18

SPS17

#7

#6

#5

#4

#3

#2

#1

#0

Fn758

SPS32

SPS31

SPS30

SPS29

SPS28

SPS27

SPS26

SPS25

#7

#6

#5

#4

#3

#2

#1

#0

Fn759

RZV8

RZV7

RZV6

RZV5

RZV4

RZV3

RZV2

RZV1

#7

#6

#5

#4

#3

#2

#1

#0

Fn766

POSE8

POSE7

POSE6

POSE5

POSE4

POSE3

POSE2

POSE1

— 54 —

5.I/O SIGNALS

B-64483EN-2/03

DCS PMC side signals
DCS PMC (m=path(0 to 9)×20)
#7

0 to 9: Path number-1
#6

#5

#4

#3

#2

*ESP

X0008
#7

#6

#1

#0

*ESP

*ESP

#5

#4

#3

#2

#1

#0

#5

#4

#3

#2

#1

#0

*SMC

G000+m
#7

#6

G001+m
#7

#6

#5

#4

#3

#2

#1

#0

G002+m

*VLDV8

*VLDV7

*VLDV6

*VLDV5

*VLDV4

*VLDV3

*VLDV2

*VLDV1

#7

#6

#5

#4

#3

#2

#1

#0

G003+m

ZSP4

ZSP3

ZSP2

ZSP1

*VLDP4

*VLDP3

*VLDP2

*VLDP1

#7

#6

#5

#4

#3

#2

#1

#0

G004+m

SVA8

SVA7

SVA6

SVA5

SVA4

SVA3

SVA2

SVA1

#7

#6

#5

#4

#3

#2

#1

#0

G005+m

SVB8

SVB7

SVB6

SVB5

SVB4

SVB3

SVB2

SVB1

#7

#6

#5

#4

#3

#2

#1

#0

G006+m

SPB4

SPB3

SPB2

SPB1

SPA4

SPA3

SPA2

SPA1

#7

#6

#5

#4

#3

#2

#1

#0

G007+m

ZSV8

ZSV7

ZSV6

ZSV5

ZSV4

ZSV3

ZSV2

ZSV1

#7

#6

#5

#4

#3

#2

#1

#0

G008+m

SPOV42

SPOV32

SPOV22

SPOV12

SPOV41

SPOV31

SPOV21

SPOV11

#7

#6

#5

#4

#3

#2

#1

#0

G009+m

SPOV44

SPOV34

SPOV24

SPOV14

SPOV43

SPOV33

SPOV23

SPOV13

#7

#6

#5

#4

#3

#2

#1

#0

#3

#2

#1

#0

*ESP

G019+m
#7
F000+m

#6

#5

#4

*DCALM
#7

*MCF
#6

#5

#4

#3

#2

#1

#0

F001+m
#7

#6

#5

#4

#3

#2

#1

#0

F002+m

RSV8

RSV7

RSV6

RSV5

RSV4

RSV3

RSV2

RSV1

#7

#6

#5

#4

#3

#2

#1

#0

F003+m

RZP4

RZP3

RZP2

RZP1

RSP4

RSP3

RSP2

RSP1

#7

#6

#5

#4

#3

#2

#1

#0

F004+m

*MCFV8

*MCFV7

*MCFV6

*MCFV5

*MCFV4

*MCFV3

*MCFV2

*MCFV1

#7

#6

#5

#4

#3

#2

#1

#0

*MCFP4

*MCFP3

*MCFP2

*MCFP1

F005+m

— 55 —

5.I/O SIGNALS

B-64483EN-2/03
#7

#6

#5

#4

#3

#2

#1

#0

F006+m

*BRK8

*BRK7

*BRK6

*BRK5

*BRK4

*BRK3

*BRK2

*BRK1

#7

#6

#5

#4

#3

#2

#1

#0

F007+m

SPS08

SPS07

SPS06

SPS05

SPS04

SPS03

SPS02

SPS01

#7

#6

#5

#4

#3

#2

#1

#0

F008+m

SPS16

SPS15

SPS14

SPS13

SPS12

SPS11

SPS10

SPS09

#7

#6

#5

#4

#3

#2

#1

#0

F009+m

SPS24

SPS23

SPS22

SPS21

SPS20

SPS19

SPS18

SPS17

#7

#6

#5

#4

#3

#2

#1

#0

F010+m

SPS32

SPS31

SPS30

SPS29

SPS28

SPS27

SPS26

SPS25

#7

#6

#5

#4

#3

#2

#1

#0

F011+m

RZV8

RZV7

RZV6

RZV5

RZV4

RZV3

RZV2

RZV1

#7

#6

#5

#4

#3

#2

#1

#0

F018+m

POSE8

POSE7

POSE6

POSE5

POSE4

POSE3

POSE2

POSE1

#7

#6

#5

#4

#3

#2

#1

F019+m

#0
*OPIHB

CAUTION
1 The hatched signals are double-checking signals.
2 The Emergency Stop signals in X address are double checking signals.
3 For the Safety Position Switch signal, the following points are provided
depending on the number of paths.
(1) When the number of paths is 1 …………………. Up to 32 points
(2) When the number of paths is 2 or more……… Up to 64 points
4 The following signals are provided for each machine group. Emergency Stop
(*ESP: X0008), Test Mode signal(OPT), Guard Open Request signal(ORQ),
Guard Open Inhibit signal(*OPIHB), MCC Off signal (*MCF), MCC Contact State
signal (*SMC)
5 The signal (Fxxxx/Gxxxx), which is provided for each machine group, is assigned
in the path area for the smallest path number of the paths in the machine group.
Example)
When the 3rd and 5th path belong to the 2nd machine group, test Mode signal
(OPT) for the 2nd machine group is assigned at G2191.2 in 3rd path area.

— 56 —

5.I/O SIGNALS

B-64483EN-2/03

Interface Signals between the CNC and the PMC
The addresses for the interface signals (F and G signal addresses viewed from the CNC) between the
CNC and the PMC are shown below.

[For 1-path CNC] (when the number of control axes is 8 per path or less and
the number of spindles per path is 4 or less)
PMC
F0000~

G0000~

DCSPMC
F0000~

G0000~

[For 2-path CNC] (when the number of control axes is 8 per path or less and
the number of spindles is 4 per path or less)
CNC path 1

CNC path 2

PMC
F0000~

PMC
G0000~

F1000~

DCSPMC
F000~

G1000~

DCSPMC

G000~

F020~

G020~

For control axis signals, the signal layout changes depending on whether the number of control axes per
path is greater than 8 or not.
(1) When the number of control axes per path is 8 or less
The signal for the x-th axis of the k-th path is placed in the (x — 1)-th bit in the address (F or G) for
the k-th path in the above figure.
PMC ( n = k-1 )
#7
Fn???

8th axis

#6
7th-axis

#5
6th-axis

#4
5th-axis

— 57 —

#3
4th-axis

#2
3rd-axis

#1
2nd-axis

#0
1st-axis

5.I/O SIGNALS

B-64483EN-2/03
#7

Gn???

#6

8th-axis

#5

7th-axis

#4

6th-axis

5th-axis

#3

#2

4th-axis

#1

3rd-axis

#0

2nd-axis

1st-axis

DCSPMC ( m = (k-1)×20 )
#7

#6

F???+m

8th-axis

G???+m

8th-axis

#5

7th-axis

#7

#4

6th-axis

#6

5th-axis

#5

7th-axis

#3

#4

6th-axis

5th-axis

#2

4th-axis

#1

3rd-axis

#3

#2

4th-axis

#0

2nd-axis

1st-axis

#1

3rd-axis

#0

2nd-axis

1st-axis

(2) When the number of control axes per path is greater than 8, the 9th and subsequent axes cannot be
placed. In this case, the interface address of the PMC is assigned by parameter No. 3021.
For example, for a 1-path 11-axis system, control axis signals can be assigned to addresses from
F0000/G0000 (PMC) and addresses from F1000/G1000 (PMC) as shown below.

PMC
Path 1

#0

Signal of 9th axis

#1

Signal of 10th axis

#2

Signal of 11th axis

#3

Signal of 1st axis

#4

Signal of 2nd axis

#5

Signal of 3rd axis

Signal of 4th axis

#6

Signal of 5th axis

Signal of 6th axis

Signal of 7th axis

Signal of 8th axis

#7

#7

#6

#5

#4

#3

#2

#1

#0

#7

#6

#5

#4

#3

#2

#1

#0

F1???

F0???
#7

#6

#5

#4

#3

#2

#1

#0

G1???

G0???

DCSPMC
When signals are assigned to PMC as shown above, the control axis signals of the DCSPMC are
placed according to the assignment.
Path 1

#0

Signal of 9th axis

#1

Signal of 10th axis

#2

Signal of 11th axis

Signal of 1st axis

#3

Signal of 2nd axis

#4

Signal of 3rd axis

#5

Signal of 4th axis

#6

Signal of 5th axis

Signal of 6th axis

Signal of 7th axis

Signal of 8th axis

#7

F000 to
F019

#7

#6

#5

#4

#3

#2

#1

#0

#7

#6

#5

#4

#3

#2

#1

#0

F020 to
F039
#7

#6

#5

#4

#3

#2

#1

#0

G000 to
G019

G020 to
G039

— 58 —

5.I/O SIGNALS

B-64483EN-2/03

NOTE
For details on setting of parameter No. 3021, see Chapter 6, «PARAMETERS».
As with spindle signals, when the number of spindles per path is greater than 4, the 5th and
subsequent axes cannot be placed. In such a case, the interface address of the PMC needs to be
assigned by parameter No. 3022.

NOTE
For details on setting of parameter No. 3022, see Chapter 6, «PARAMETERS».

5.3

SIGNALS

Emergency Stop signal (input)
*ESP <PMC: X0008.4, 0, 1><DCS PMC: X0008.4, 0, 1> (for each machine group)
*ESP <PMC: Gn008.4><DCS PMC: G019+m.4> (for each path)
This is Emergency Stop signal. The Emergency Stop signal must be connected to the Emergency Stop
input of the amplifier.
[Classification] Input signal (Dual signal)
[Function] Stops machine movement immediately in an emergency.
0: Emergency stop state
1: Normal state
[Operation] When Emergency Stop signal (*ESP) is set to 0, the CNC is reset, and the system enters
emergency stop state. A machine tool builder must output a signal to shut off directly the
MCC when “MCC Off signal” (*MCF) is set to “0”.
In emergency stop state, a machine tool builder must check “MCC Contact State signal”
(*SMC). If *SMC signal is “0” (MCC is on), a machine tool builder must not release the
guard lock signal of protective door.
In general, Emergency Stop signal (*ESP) is specified by the pushbutton switch B contact.
When an emergency stop occurs, the servo ready signal SA is set to 0.
If the input of the Emergency Stop signal is detected, the CNC automatically specifies a
command to zero the speed of a servo motor and reduces the speed to zero (controlled
stop). (See below note) After the servo motor slows down and stops, the power is turned
off, and the servo motor is brought into the dynamic brake stop state.
The spindle motor is slowed down by the PMC command (see below note) and the power
is shut off.

CAUTION
1 The Emergency Stop signal for DCS PMC is assigned to each
machine group, like the signal for PMC.
<X0008.4> for 1st machine group
<X0008.0> for 2nd machine group
<X0008.1> for 3rd machine group
2 The related parameter must be set in order to perform the
controlled stop of a servo motor. If the parameter is not set, a servo
motor is stopped by dynamic brake control just after an emergency
stop is detected.
— 59 —

5.I/O SIGNALS

B-64483EN-2/03

CAUTION
3 A spindle motor is slowed down by the command (PMC ladder
program). If the PMC does not command to slow down, the spindle
motor continues rotating at the speed prior to power-down and runs
by inertia (and eventually stopping in the end). When safety
function is active (protective door is open) and abnormal speed is
given due to the trouble of PMC, the spindle is brought into safe
stop state.
WARNING
A machine tool builder must make the ladder to control to open and
shut protective door in emergency stop state. For instance, a
machine tool builder must make the ladder program for procedure
to inhibit to open the protective door in emergency stop state.
IMPORTANT
1 Emergency stop button must fulfill the Standard IEC60947-5-1.This
is mandatory.
2 As MCC Off signal (*MCF) is effective for each machine group,
MCC is controlled per a machine group. Then, although the
Emergency Stop signal by G signal is effective for each path,
design to turn on Emergency Stop by G signal of all paths in a
machine group at the same time.
Example of protective door open/shut sequence
The following figure shows the sequence in case of emergency stop.
EMG_P

*ESP

*SMC
RSVx
RSPs
Actual door lock releasing signal

*SGOPN
(Safety related I/O)

Actual door open/close
signal

Door closed

Door closed

Door opened

(1)

(2)

(3)

(4)

(5)

A machine tool builder must design the ladder program as follows:
(1) In case Emergency Stop signal (*ESP) is input, the guard lock signal is turned off after confirming
safety machine position, safety speed and safety position error by the Monitoring Result signals
RSVx/RSPs.
— 60 —

5.I/O SIGNALS

B-64483EN-2/03

(2) In this example, it is assumed that a protective door with an electronic door lock is applied. When a
door is opened, door lock releasing signal must be turned off. At the same time, Guard State signal
(*SGOPN: machine side signal) is changed to show guard-releasing state.
(3) This is door open state
(4) Protective door is shut and locked. Then Emergency Stop signal (*ESP) is released (“1”). Pay
attention the time “t”.
(5) After Emergency Stop signal is released, CNC turns MCC Off signal (*MCF) to “1”.

Test Mode signal (input)
OPT <PMC:Gn191.2> (for each machine group)
When this signal is input, MCC off Test is carried out. MCC off Test checks whether the contact of the
MCC is abnormally closed or not. MCC Off Test Execution Request signal (RQT) notifies that MCC off
Test should be executed. Input this signal while servo ready signal (SA) is set to “1”.
When MCC off Test is carried out by manual operation, input this signal after preparing to carry out
MCC off Test by PMC.
[Classification] Input signal (Single signal)
[Function] This signal notifies CNC to enter MCC off Test mode.
0: not enter MCC off Test mode
1: enter MCC off Test mode
The Test Mode signal OPT is not input on the DCS PMC side.
[Operation] When this signal (OPT) is set to “1”, CNC turns on/off MCC in various combinations
with MCC Off signals *MCF(PMC)/*MCF(DCS PMC). And CNC checks whether MCC
Contact State signals *SMC(PMC)/ *SMC(DCS PMC) are input in proper combination
corresponding to the combination with MCC Off signals.
However MCC off Test should not be carried out in case of emergency stop state, servo
alarm state or spindle alarm state.
If MCC off Test is not completed within the time specified by the parameter No.1946, a
servo alarm SV0488 occurs.

1
2
3

4
5

CAUTION
While MCC off Test is being carried out, do not turn Test Mode
signal (OPT) to “0”.
It is not permitted to carry out MCC off Test for plural machine
groups simultaneously. Carry out MCC off Test for only one
machine group independently.
If MCC is shared between two or more machine groups and MCC
off Test is carried out in a machine group, VRDY off alarm in
another machine group, which shared MCC, must be ignored by
using all axes of each path VRDY off alarm ignore signal IGNVRY
<Gn066.0> or each axis VRDY off alarm ignore signal IGNVRY1 to
IGNVRY8 <Gn192>.
The MCC shall have the mechanism such as a mirror contact that
can monitor the state of the main contact by mechanically linked
auxiliary contacts.
Before performing the MCC off Test, stop the spindle and feed
axis. For axes (such as the vertical axis) that move when the MCC
is turned off, apply a brake in advance regardless of the state of the
brake signal (*BRKx) to place the axes in the servo off state.

— 61 —

5.I/O SIGNALS

B-64483EN-2/03

WARNING
While the MCC off Test processing is in progress, the MCC Off
signal (*MCF) goes high and low to turn on and off the MCC. Carry
out the MCC off Test in such a state that the turning on or off of the
MCC will not cause a problem.
NOTE
If MCC off Test is executed when MCC is forced to shut off in
emergency stop state, servo alarm state or spindle alarm state, the
test cannot be executed normally. MCC off Test should be
executed only when the test can be executed normally.
Test No.
*MCF (DCS PMC)

1

2

3

4

5

128

*MCF (PMC)
*SMC (DCS PMC)
*SMC (PMC)
Timer limit
Timer

Test start

Test completion

Example 1) Timing chart 1 of MCC off test (normal state)

Test No.

1

2

3

4

*MCF (DCS PMC)
*MCF (PMC)
*SMC (DCS PMC)
*SMC (PMC)
Timer limit
Alarm

Timer

Test start
Example 2) Timing chart 2 of MCC off test (abnormal state)

— 62 —

5.I/O SIGNALS

B-64483EN-2/03

Guard Open Request signal (input)
ORQ <PMC: Gn191.3>(for each machine group)
This signal is input when an operator intends to release the guard lock and open the protective door.
[Classification] Input signal (Single signal)
[Function] In order to open the protective door, this signal requests CNC to unlock the guard lock
with the Dual Check Safety Function. Guard Open Request signal (ORQ) is not input via
the DCS PMC.
0: not request to open guard lock.
1: request to open guard lock
[Operation] When CNC detects that the Guard Open Request signal (ORQ) is 1, CNC returns Guard
Open Inhibit signal (*OPIHB). A machine tool builder must design the PMC ladder
program so that the guard lock is released after judging the result of safety machine
position check, safety speed check, safety position error check to be safe or other safety
condition such as Dual Check alarm status signal to be safe.
This signal is not a safety signal that is checked in redundant mode. But this is an
important signal to make up the safety system. Then a machine tool builder must design
the proper ladder program to deal with this signal.

IMPORTANT
The mistake of the ladder program cannot be checked. So be sure
to perform the confirmation of the safety function. (refer to the
chapter 7)
Guard State signal (Machine side input signal)
*SGOPN <PMC:X machine side signal><DCS PMC:X machine side signal> (for
each safety door)
Input the guard state of the protective door to this signal. When the protective door is open (Guard State
signal (*SGOPN) =0), set Safety Check Request signal (*VLDVx, *VLDPs) to “0” in order to activate
the alarm monitoring of safety functions.
[Classification] Input signal (Dual signal)
[Function] Guard State signal informs CNC of the guard open/closed state for the Dual Check Safety
Function.
0: Guard open state
1: Guard closed state
[Operation] When Guard State signal (*SGOPN) is “0”, the ladder program turn Safety Check
Request signal (*VLDVx, *VLDPs) to “0” in order to activate the alarm monitoring of
safety speed, safety machine position and safety position error. If the ladder program
detects abnormal condition in each CPU, it generates a safety related alarm and stops
motors.

NOTE
As for the contacts for Guard State signal, it is recommended to
fulfill the Standard IEC60947-5-1.
MCC Contact State (input)
*SMC <PMC: Gn748.6><DCS PMC: G(000+m).6> (for each machine group)
The state of MCC contact is checked in redundant mode. It is not possible to check whether the contact of
MCC is melted and adhered abnormally because MCC contact is closed during normal operation. The
state of MCC contact can be checked by performing MCC off Test.
— 63 —

5.I/O SIGNALS

B-64483EN-2/03

[Classification] Input signal (Dual signal)
[Function] MCC Contact State signals (*SMC) inform CNC of the MCC state for the Dual Check
Safety Function.
0: MCC-on state
1: MCC-off state
[Operation] MCC Contact State signals (*SMC) is used to check if the MCC Off signals (*MCF)
operates normally in MCC off Test mode.
When the MCC Contact State signals (both *SMC(PMC) and *SMC(DCS PMC)) are 1
in the emergency stop state (*ESP=0), it is possible to design the ladder program to
release the guard lock.

CAUTION
Input this signal according to the MCC state.
Safety Check Request signal (input)
*VLDVx <PMC:Gn750.0 to 7><DCS PMC:G(002+m).0 to 7> (for each axis)
*VLDPs <PMC:Gn751.0 to 3><DCS PMC:G(003+m).0 to 3> (for each spindle)
If these signals are set to “0” when Guard State signal (*SGOPN: machine side signal) is “0”, the alarm
monitoring of safety speed limit, safety machine position and safety position error is activated.
[Classification] Input signal (Dual signal)
[Function] Safety Check Request signals request each CPU to carry out the safety check for the Dual
Check Safety Function.
These signals select a servo axis and a spindle that must be checked when a protective
door is open.
0: Alarm by safety check is monitored, as a protective door is open.
1: Alarm by safety check is not monitored, as a protective door is closed
[Operation] Each CPU carries out the safety check of the servo axis and the spindle that are selected
by these signals. (Safety speed limit for a spindle, safety speed, safety machine position
and safety position error for a servo axis.) If each CPU finds out any problem, it generates
a safety related alarm and stops motors.

Guard Open Inhibit signal (output)
*OPIHB <PMC: Fn191.0><DCS PMC: F(019+m).0> (for each machine group)
CNC returns these signals as answer when CNC detects that Guard Open Request signal (ORQ) is set to
“1”.
[Classification] Output signal (Not checked in redundant mode)
[Function] When CNC receives Guard Open Request signal (ORQ) =1, CNC returns these signal as
answer. CNC outputs Guard Open Inhibit signal (*OPIHB) through both PMC and DCS
PMC.
0: Inhibit guard open
1: Permit guard open
[Operation] A machine tool builder can release a guard lock by his ladder program when Guard Open
Inhibit signal (*OPIHB) =1, Monitoring Result signal (RSVx/RSPs) =1 and the condition
of machine side is confirmed to be safe.

NOTE
During the MCC off Test, this signal is set to «0» regardless of the
state of the guard open request signal (ORQ).

— 64 —

5.I/O SIGNALS

B-64483EN-2/03

IMPORTANT
The mistake of the ladder program cannot be checked. So be sure
to perform the confirmation of the safety function. (refer to the
chapter 7)
Monitoring Result signal (output)
RSVx <PMC:Fn750.0 to 7><DCS PMC:F(002+m).0 to 7> (for each axis)
RSPs <PMC:Fn751.0 to 3><DCS PMC:F(003+m).0 to 3> (for each spindle)
These signals show the result of monitoring safety speed, safety machine position and safety position
error.
By checking these signals, a machine tool builder can judge whether a machine is in safe state or not.
When a machine is judged to be in safe state, it is necessary to turn on the signal for releasing a guard
lock and outputs a signal actually to open a protective door.
[Classification] Output signal (Output to both PMC but not checked in redundant mode)
[Function] These signals show the result of monitoring of the Dual Check Safety Function.
These signals notify that an abnormal condition is detected in safety monitoring function
of the Dual Check Safety Function, such as safe reduced speed check, safety machine
position check and safety position error check.
In the following case, these signals are turned to “0”.
0: In dangerous condition (Abnormal condition is detected by safety function.)
In the following case, these signals are turned to “1”.
1: In safe condition (Abnormal condition is not detected.)
[Operation] Each CPU notifies PMC of the result of safety monitoring through these signal.
A machine tool builder can release a guard lock by his ladder program when Guard Open
Inhibit signal (*OPIHB) =1, these Monitoring Result signal (RSVx/RSPs) =1 and the
condition of machine side is confirmed to be safe.

MCC Off signal (output)
*DCALM <PMC: F0748.7><DCS PMC: F000.7> (for all system)
When this signal is set to «0», the MCC is shut off in redundant mode on the two-channel I/O Link side.
This signal is set to “0”, when a crosscheck alarm of safety related signals or a CPU self-diagnosis alarm
occurs.
A machine tool builder makes a ladder program to output a signal to shut off MCC when this signal is
turned to “0”. If necessary, control DO signal for peripheral devices.
[Classification] Output signal (This signal output to both PMC but is not monitored in redundant mode)
[Function] This is a signal to turn on MCC when both a crosscheck alarm and a CPU self-diagnosis
alarm are not caused.
0: MCC off
1: MCC on
[Operation] When each CPU finds out any abnormal condition, it generates an alarm and turns off this
signal at the same time.

— 65 —

5.I/O SIGNALS

B-64483EN-2/03

NOTE
When the spindle motor (induction motor) is powered off while
rotating, the motor coasts at the speed before power-off, eventually
stopping after a period of time. In some cases, however, it is better
to stop the motor as quickly as possible for safety.
When the spindle is decided to be controlled even if the MCC Off
signal is set to «0», the rotation of the spindle can be stopped under
control of the ladder program (controlled stop). To do this, make a
ladder program that interrupts power upon lapse of the timer set
time after the MCC Off signal is set to «0».
MCC Off signal (output)
*MCF <PMC: Fn748.1, DCS PMC: F(000+m).1> (for each machine group)
When this signal is set to «0», the MCC is shut off in redundant mode on the two-channel I/O Link side.
This signal is set to “0”, when Emergency Stop signal (*ESP ) is “0” or MCC off Test is carried out.
A machine tool builder makes a ladder program to output a signal to shut off MCC when this signal is
turned to “0”.
[Classification] Output signal (This signal output to both PMC but is not monitored in redundant mode)
[Function] When the Dual Check Safety Function is applied, this signal allows turning on MCC.
When either MCC Off signal through PMC or that through DCS PMC is “0”, MCC is
turned off. When both MCC Off signal through PMC and that through DCS PMC is “1”,
MCC is turned on.
0: MCC off
1: MCC on
[Operation] When Emergency Stop signal is input, CNC turns off this signal.
When MCC off Test is carried out, CNC turns off this signal, too.
[Output condition] In the following case, this signal turns to “0” (not permit MCC on)
MCC off Test is carried out.
In emergency stop state
In other than the above case, this signal turns to “1” (permit MCC on).

NOTE
When the spindle motor (induction motor) is powered off while
rotating, the motor coasts at the speed before power-off, eventually
stopping after a period of time. In some cases, however, it is better
to stop the motor as quickly as possible for safety.
When the spindle is decided to be controlled even if the MCC Off
signal is set to «0», the rotation of the spindle can be stopped under
control of the ladder program (controlled stop). To do this, make a
ladder program that interrupts power upon lapse of the timer set
time after the MCC Off signal is set to «0».
MCC Off signal (output)
*MCFVx <PMC: Fn752.0 to 7><DCS PMC: F(004+m).0 to 7> (for each axis)
In case this signal is “0”, MCC is shut off through 2 channels of I/O line respectively.
This signal is set to “0”, when an alarm occurs in safe reduced speed check, safety machine position
check or safety position error check for each servo axis.
A machine tool builder makes a ladder program to output a signal to shut off the MCC of the path that the
axis belongs, when this signal is turned to “0”.
[Classification] Output signal (This signal output to both PMC but is not monitored in redundant mode)
— 66 —

5.I/O SIGNALS

B-64483EN-2/03

[Function] When the Dual Check Safety Function is applied, this signal allows turning on MCC.
0: MCC off
1: MCC on
[Operation] If each CPU finds out the abnormal state of the axis when Safety Check Request signal
for the axis (*VLDVx)=0, each CPU brings the axis into controlled stop state at first. In
case of an alarm of safe reduced speed check or safety machine position monitoring, each
CPU watches whether the axis is decelerated and stopped or not. If the axis does not stop,
each CPU turns this signal corresponding to the alarm axis to “0”. In case of an alarm of
Safety Position Error Monitoring, each CPU turns this signal corresponding to the alarm
axis to “0” immediately.
In case of an alarm other than described above and related to data communication or
position detector, each CPU turns this signal corresponding to the alarm axis to “0”
immediately. But according to the parameter setting (bit0(AVM) of parameter No.10500),
it is possible to turn to “0” this signals of all the axes belonged to the path that involves
the alarm axis in case of any servo alarms.

NOTE
When the spindle motor (induction motor) is powered off while
rotating, the motor coasts at the speed before power-off, eventually
stopping after a period of time. In some cases, however, it is better
to stop the motor as quickly as possible for safety.
When the spindle is decided to be controlled even if the MCC Off
signal is set to «0», the rotation of the spindle can be stopped under
control of the ladder program (controlled stop). To do this, make a
ladder program that interrupts power upon lapse of the timer set
time after the MCC Off signal is set to «0».
MCC Off signal (output)
*MCFPs <PMC: Fn753.0 to 3><DCS PMC: F(005+m).0 to 3> (for each spindle)
In case this signal is “0”, MCC is shut off through 2 channels of I/O Link line respectively.
This signal is set to “0”, when an alarm occurs in safe reduced speed check for each spindle.
A machine tool builder makes a ladder program to output a signal to shut off the MCC of the path that the
spindle belongs, when this signal is turned to “0”.
[Classification] Output signal (This signal output to both PMC but is not monitored in redundant mode)
[Function] When the Dual Check Safety Function is applied, this signal allows turning on MCC.
0: MCC off
1: MCC on
[Operation] When the safe reduced speed check alarm is detected because the Safety Check Request
signal (*VLDPs ) of each spindle is 0, each CPU first sets the spindle to the free-running
state or the controlled stop state. After that, if the spindle is not decelerated, each CPU
turns this signal to “0”.
In case of an alarm other than described above and related to data communication or
position detector, each CPU turns this signal corresponding to the alarm spindle to “0”
immediately. But according to the parameter setting (No.10500#1 = 1), it is possible to
turn to “0” this signals of all the spindles belonged to the path that involves the alarm
spindle in case of any spindle alarms.

MCC Off Test Execution Request signal (output)
RQT <PMC:Fn191.2> (for each machine group)
[Classification] Output signal (Single signal)

— 67 —

5.I/O SIGNALS

B-64483EN-2/03

[Function] This signal notifies that MCC off Test mode is required and a check should be made to
determine whether the safety output signals (MCC Off signal (*MCF)) operate normally.
When MCC Off Test Execution Request signal (RQT) is set to 1, set MCC off Test mode
and carry out a safety output signal MCC off Test as soon as possible.
When MCC Off Test Execution Request signal (RQT) is 1, a machine tool builder must
make ladder not to release a guard lock.
Once a guard is closed when MCC Off Test Execution Request signal (RQT) is set to “1”
while a guard is open by Guard Open Request signal (ORQ), it is necessary not to release
a guard lock until MCC off Test request signal (RQT) turns to “0”.
When MCC Off Test Execution Request signal (RQT) is 1, the following screen is
displayed and the warning “EXECUTE MCC TEST” is displayed.

MCC Off Test Execution Request signal (RQT) is not output via the DCS PMC.
Make a ladder program to lock a protective door when MCC Off Test Execution Request
signal (RQT) =1.
[Output condition] In the following case, this signal is set to “1”.

MCC off Test is not completed after power-on (when bit 3(STP) of parameter
No.10500 is 0).

Twenty-four hours have elapsed since the completion of the last MCC off Test.
In the following case, this signal sets to “0”.

MCC off Test is completed.

CAUTION
1 Do not turn Test Mode signal (OPT) to “0” during MCC off Test.
2 In case that there are plural machine groups in a machine, carry
out MCC off Test for each machine group independently.
3 If MCC is shared between two or more machine groups, do not
carry out MCC off Test for those machine groups at the same time.
4 If MCC is shared between two or more machine groups and MCC
off Test is carried out in a machine group, VRDY off alarm in
another machine group, which shared MCC, must be ignored by
using all axes of each path VRDY off alarm ignore signal IGNVRY
<Gn066.0> or each axis VRDY off alarm ignore signal IGNVRY1 to
IGNVRY8 <Gn192>.

— 68 —

5.I/O SIGNALS

B-64483EN-2/03

WARNING
While the MCC off Test processing is in progress, the MCC Off
signal (*MCF) goes high and low to turn on and off the MCC. Carry
out the MCC off Test in such a state that the turning on or off of the
MCC will not cause a problem.
Safety Brake signal (output)
*BRKx <PMC:Fn754.0 to 7><DCS PMC:F(006+m).0 to 7> (for each axis)
This signal is used to control mechanical brake of each axis.
CNC and SV output Safety Brake signal (*BRKx) to control mechanical brake. When *BRKx is “0”,
mechanical brake is active. When *BRKx is “1”, mechanical brake is not active.
[Classification] Output signal (Dual signal)
[Function] When the Dual Check Safety Function is applied, this signal notifies to activate a
mechanical brake. When MCC is off, a brake should be activated.
[Operation] In emergency stop state or alarm state, a mechanical brake is activated by this signal.
A machine tool builder must connect this signal to a mechanical brake.
[Output condition] In the following case, this signal is “1”.

Releasing brake state
In the following case, this signal is “0”.

Activating brake state
The CNC changes the state of this signal even during the brake test. For information
about the control of the brake signal, see the section titled «BRAKE TEST».

CAUTION
During the MCC off Test, the MCC is turned off and on several
times. The brake state of the signal may change depending on the
state of the MCC.
For the control of the brake during the MCC off Test, see «MCC off
Test».

— 69 —

5.I/O SIGNALS

B-64483EN-2/03

(a) In case *BRK signal is “0”
Emergency Stop state (*ESP signal is “0”)
1
*ESP
0
*BRK

1
0

Servo alarm occurs
1
Alarm
0
*BRK

1
0

Power-on
Power
*BRK

1
0
1
0

(b) In case *BRK signal is “1”
When emergency stop is released (*ESP signal is “1”), MCC can be enabled l
(*MCF signal is “1”). After that, when MCC is turned on, Safety Brake signal
*BRK is turned to “1” after the time specified by the parameter No.1950 is elapsed.

*ESP
*MCF
MCC
*BRK

1
0
1
0
1
0
1

Timer for brake signal

0

NOTE
Periodical maintenance of a brake must be done.
Safety Position Switch signal (output)
SPS1 to SPS32<PMC:Fn755 to Fn758><DCS PMC:F(007+m) to F(010+m)>
This signal shows whether the machine position of a servo axis is within the range specified by the
parameter or not.
[Classification] Output signal (Dual signal)
[Function] This signal notifies that the machine position of the axis specified by the safety parameter
(No.13880 to No.13911) is within the range specified by the safety parameter (No.13920
to No.13951, No.13960 to No.13991). In case of single path system, up to 32 points can
be used.
— 70 —

5.I/O SIGNALS

B-64483EN-2/03

In case of 2 or more path system, another 32 points in 2 path area can be used. Then up to
64 points can be used at maximum. This signal notifies that the machine position of the
axis specified by the safety parameter (No.10501 to No.10532) is within the range
specified by the safety parameter (No.10533 to No.10564, No.10565 to No.10596).

NOTE
In a system with 3 or more paths, it is also possible to specify the
path to which the Safety Position Switch signal is to be output, by
using a parameter. For the Safety Position Switch signal, 16 points
can be set for an output signal (F area) per group, and up to 4
groups can be set. Two areas can be assigned to one path.
[Output condition] In the following case, this signal is set to “1”.

The machine position of the axis is within the specified range.
In the following case, this signal is set to “0”.

The machine position of the axis is out of the specified range.
[Note] When the axis is just on the boundary of the range (machine position is equal to
parameter setting value), it is regarded that the machine position is within the range.
If the state of two Safety Position Switch of the signal of DCS PMC side and the signal of
PMC side is different more than the specified period, each CPU shuts off MCC by DCS
alarm (PW0010, PW0011).

NOTE
The Safety Position Switch signal starts to work when the reference
position of the target axis is established after the power is turned
on. Until then, «0» is output. The state of position switch is kept to
“0” till then.
Once activating, position is always checked and state of signal is
changed according to the result of checking. Even if the reference
point is lost, the state of signal is changed according to the
coordinate kept in both CNC and servo CPU. So if the special
procedure is required when the reference point is lost, design the
ladder program by combining with Position Information Effect signal
(POSEx).
Safety Speed/Safety Position Selection signal A
SVAx <PMC:Gn752.0 to 7> <DCS PMC:G(004+m).0 to 7> (for each axis)
SPAs <PMC:Gn754.0 to 3> <DCS PMC:G(006+m).0 to 3> (for each spindle)
Safety speed/safety position selection signal B
SVBx <PMC:Gn753.0 to 7> <DCS PMC:G(005+m).0 to 7> (for each axis)
SPBs <PMC:Gn754.4 to 7> <DCS PMC:G(006+m).4 to 7> (for each spindle)
[Classification] Input signal (Dual signal)
[Function] When the Dual Check Safety Function is activated, it is possible to select safety limit
speed and safety machine position of each axis.
This signal is prepared for each axis and each spindle. The final number in the signal
name shows the number of the controlled axis and spindle.

— 71 —

5.I/O SIGNALS

B-64483EN-2/03

SVAx, SVBx
x

1:
2:
3:
:
:

Select safety speed/safety machine position of the 1st axis
Select safety speed/safety machine position of the 2nd axis
Select safety speed/safety machine position of the 3rd axis
:
:

s

1:
2:
:
:

Select safety speed of the 1st spindle
Select safety speed of the 2nd spindle
:
:

SPAs, SPBs

[Operation] According to the combination of Safety Speed/Safety Machine Position Selection signal,
safety speed and safety machine position are selected as the following table.
Safety Speed/
Safety Machine Position
Selection signal
SVAx
SVBx
SPAs
SPBs
0

0

1

0

0

1

1

1

Safety limit speed
Parameter for
servo axis

Parameter
for spindle

Safety limit speed 1
No.13821
No.4372
Safety limit speed 2
No.13822
No.4438
Safety limit speed 3
No.13823
No.4440
Safety limit speed 4
No.13824
No.4442

Safety machine position
+ direction
parameter

— direction
parameter

Safety machine position 1
No.13831
No.13832
Safety machine position 2
No.13833
No.13834
Safety machine position 3
No.13835
No.13836
Safety machine position 4
No.13837
No.13838

CAUTION
Safety Speed/Safety Machine Position Selection signal is a safety
signal. This signal is input through both PMC and DCS PMC. Both
CNC and PMC check doubly inconsistency of this signal.
Safety Spindle Speed Limit Override Signal
SPOV11~SPOV41<PMC:Gn756.0~3><DCS PMC:G(008+m).0~3>(for 1st spindle)
SPOV12~SPOV42<PMC:Gn756.4~7><DCS PMC:G(008+m).4~7>(for 2nd spindle)
SPOV13~SPOV43<PMC:Gn757.0~3><DCS PMC:G(009+m).0~3>(for 3rd spindle)
SPOV14~SPOV44<PMC:Gn757.4~7><DCS PMC:G(009+m).4~7>(for 4th spindle)
Select the override value of safety speed by this signal.
[Classification] Input signal (dual signal)
[Function] In the dual check safety function, when the bit 1 (SOV) of parameter No.3797 is set to 1,
the override is valid to the safety speed.
This signal is provided for each spindle, and the number attached to the end of signal
name means spindle number.
SPOV11, SPOV21, SPOV31,SPOV41
1: The safety speed override of 1st spindle.
2: The safety speed override of 2nd spindle.
:
:
:
:
— 72 —

5.I/O SIGNALS

B-64483EN-2/03

[Operation] According to the combination with the safety spindle speed limit override signal, the
following override is applied to the safety speed.
SPOV1s
1
0
1
0
1
0
1
0
1
0

Safety spindle speed limit override signal
SPOV2s
SPOV3s
SPOV4s
0
0
1
0
1
0
0
1
0
1
1
1
1
1
0
0
0
0
1
0
Other combinations

Override value

0
0
0
0
0
0
0
1
1
1

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
100%

If all signals of the safety spindle speed limit override signals is 0 (SPOV1s=0,
SPOV2s=0, SPOV3s=0, SPOV4s=0), override is applied to 100%.

Position Information Effect signal
POSEx <PMC: Fn766.0 to 7><DCS PMC: F(018+m).0 to 7> (for each axis)
This signal is output when Dual Check Safety function is activated and the reference point is established.
When the reference point is not established, the machine system is in danger state because Safety
Machine Position Monitoring and Safety Position Error Monitoring are not active. If this signal is “0”,
Machine Tool Builder has to control not to open the protective door.
[Classification] Output signal (This signal output to both PMC but is not monitored in redundant mode)
[Function] This signal informs whether the reference point is established or not.
0: The reference point is not established.
1: The reference point is established.
[Operation] Each CPU informs whether the reference point is established or not.
In the following case, this signal is turned to “1”.

After the reference point is established.

When the follow up operation of absolute pulse coder is finished after power-on
In the following case, this signal is turned to “0”.

When the reference point is lost

NOTE
In case that the reference point is re-established, this signal is
turned to “0” till the reference point is re-established from the
dog-signal is turned off.
Safety Speed Zero Monitoring Request signal
ZSVx <PMC: Gn755><DCS PMC: G(007+m)> (for each axis)
ZSPs <PMC: Gn751.4 to 7><DCS PMC: G(003+m).4 to 7> (for each spindle)
[Classification] Input signal (Dual signal)
[Function] This signal starts or stops safety speed zero monitoring.
[Operation] 1: Safety speed zero monitoring is effective.
0: Safety speed zero monitoring is not effective.

— 73 —

5.I/O SIGNALS

B-64483EN-2/03

Safety Speed Zero Monitoring Result signal
RZVx <PMC: Fn759><DCS PMC: F(011+m)> (for each axis)
RZPs <PMC: Fn751.4 to 7><DCS PMC: F(003+m).4 to 7> (for each spindle)
[Classification] Output signal (Output to both PMC but not checked in redundant mode)
[Function] This signal notifies that an error is detected in safety speed zero monitoring.
[Operation] Each CPU notifies the monitoring result to PMC by using this signal.
In the following case, these signals are turned to «1».
Safety state
An error is not detected in safety speed zero monitoring.
In the following case, these signals are turned to «0».
Not safety state or monitoring is not effective
An error is detected in safety speed zero monitoring or safety speed zero
monitoring is not effective.

NOTE
The safety speed zero monitoring result signals(RZVx, RZPs)are
the duplicated output signals. And each output signal of RZVx,
RZPs is monitored by the different circuits respectively, so the
inconsistent state may occur between these signals according to
the stop position. In order to confirm the safety stop state certainly,
it shall be checked whether both safety speed zero monitoring
result signals of PMC and DCSPMC are «1».
Programmable Safety I/O signals
[Classification] Input/Output signal (Dual signal)
[Function] The 8 bytes (64 bit) programmable safe I/Os can be freely defined as the different address
from the above basic safe signals. Each byte of 8 byte programmable safe I/Os can be
assigned on either address of X/Y/R/D or K by parameter. Each byte of the
programmable safe I/O between the PMC and DCS PMC is cross-checked by the CNC
and PMC.

— 74 —

5.I/O SIGNALS

B-64483EN-2/03

PMC CPU(PMC)

CNC CPU(DCS PMC)

Input Signal 1

Input Signal 1

Input Signal 2

Input Signal 2

CNC and PMC
monitor each
signal.

Input Signal 8

Input Signal 8

Output Signal 1

Output Signal 1

Output Signal 2

Output Signal 2

:

:

Output Signal 8

Output Signal 8

I/O Link#3,
I/O Link i,
or
PROFIBUS-DP

I/O Link#1/#2
or
I/O Link i

[Operation] The combinations of cross-checking these signals are defined by using Safety parameters
as follows.
Signal type

Combination No.

CNC (DCS PMC)

PMC (PMC)

Input

1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8

No. 11950
No. 11951
No. 11952
No.11953
No.11954
No.11955
No.11956
No.11957
No.11960
No.11961
No.11962
No.11963
No.11964
No.11965
No.11966
No.11967

No. 11970
No. 11971
No. 11972
No.11973
No.11974
No.11975
No.11976
No.11977
No.11980
No.11981
No.11982
No.11983
No.11984
No.11985
No.11986
No.11987

Output

Brake Test Start signal
STBT <PMC:Gn193.2> (for each machine group)
[Classification] Input signal (Single signal)
[Function] This input signal is used to start or interrupt a brake test.
— 75 —

5.I/O SIGNALS

B-64483EN-2/03

Changing the state of this signal from «0» to «1» starts the brake test. When the brake test
is completed successfully, the Brake Test Execution Request signal RQBT is set to «0»,
causing the state of this signal to change from «1» to «0» as well.
Changing the state of this signal from «1» to «0» during the brake test causes the test to be
interrupted. The test sequence being executed when the signal is set to «0» is suspended,
and the amount of travel occurring during the brake test, brake signals, and torque limit
are reset. To execute the brake test again, set this signal to «1». The brake test will resume
from the beginning.

Brake Test Execution Request signal
RQBT <PMC:Fn191.3> (for each machine group)
[Classification] Output signal (Single signal)
[Function] This signal is used to request a brake test. If the signal is set to «1», a brake test is
executed. Even if this request signal is set to «1», the operation is allowed to continue
until the current stage of machining is completed. To ensure safety, however, when the
current stage of machining is completed, be sure to start a brake test by setting the Brake
Test Start signal STBT to «1».
When the brake test is executed and completed successfully, this signal is set to «0».

5.4

PROGRAMMABLE SAFETY I/O SIGNAL

The Programmable Safety I/O signal is a safety signal that can be defined by the machine tool builder.
The Dual Check Safety function performs dual monitoring on the system-defined safety signals and the
Programmable Safety I/O signals defined by the machine tool builder. To define the Programmable
Safety I/O signals, use the relevant parameters. (See also the description of the programmable safety I/O
signal in Section 5.3.)

Turning off the Programmable Safety I/O output signal
When the state of *DCALM, *MCF, *MCFPs, or *MCFVx is found to be «0», turn off the Programmable
Safety I/O output signal as necessary.
(a) In case MCC off Test is carried out,
When RQT=1 and OPT=1, ignore *MCF=0.
(b) In case of emergency stop (*ESP=0)
When *ESP=0, ignore *MCF=0.

5.5

NOTE ON MULTI PATH CONTROL

This section describes cautions about safe-related I/O signals that should be taken in multi-path control.

5.5.1

Machine Group And Multi Path Control

CNC can treat servo axes and spindles by dividing into two classes of groups, machine group and path
In case that a machine has plural machine parts that are controlled independently, machine group is
provided to control a part of machine in such machine. Emergency stop is prepared for each machine
group. The signals for MCC off Test and protective door open/close sequence are provided for each
machine group.
In case that a work piece is machined by plural cutters and plural programs at the same time, multi path
control is applied. An alarm is checked by each path. If servo alarm occurs in a path, MCC of all axes in
the path is shut off.
In case of the alarm by safety check function, MCC of all axes in the path are shut off. Then the safety
area should be set for each path basically.
— 76 —

5.I/O SIGNALS

B-64483EN-2/03

When plural safety areas are defined in a path, MCC may be shut off by an alarm that occurs in another
safety area. When the safety area is composed by the axes that change assignment to a path, MCC of
other axes are not always shut off. So wire the MCC of all paths, which include the axes changed
assignment to the path, to shut off at the same time.
The safety signals that are cross-checked are provided both on PMC and DCS PMC for each path. The
state must be controlled to be equal.

CAUTION
When “Composite control” or “Path speed control of Multi path control” is
specified, it is possible to give a command to control a servo axis or a spindle in
another path. But in this case, the correspondence between a path and a
belonging servo axis or spindle is not changed. An alarm related to a servo axis
or a spindle occurs in the path that the axis and the spindle originally belong to,
and MCC shut off signal correspond to the axis or spindle is output also in
original path.
Then, as the path that gives a command and the path that an axis and a spindle
belongs to should be regarded as the same group, it is necessary to wire MCC
off signal (*MCFVx, *MCFPs) to shut off the MCC of both path at the same time
when “Composite control” or “Path speed control of Multi path control” is
specified.

— 77 —

6.PARAMETERS

B-64483EN-2/03

6

PARAMETERS

6.1

OVERVIEW

The parameters related to the dual check safety function (safety parameters) are protected by a code (No.
3225) for the safety parameters. The value of a safety parameter cannot be modified unless the same value
as the code for the safety parameters is set as the key (No. 3226) for the safety parameters.
The safety parameters are stored in two locations on the CNC. The CNC, PMC, servo and spindle
software check the matching of the parameters stored at the two locations. If a mismatch is found, an
alarm is issued.
If the setting of a safety parameter is modified, the power must be turned off then back on. The new
setting of the parameter becomes effective after the power is turned back on.

6.2

DATA TYPE

Parameters are classified by data type as follows:
Data type

Valid data range

Remarks

Bit
Bit machine group
Bit path

0 or 1

Bit axis
Bit spindle
Byte
Byte machine group
Byte path
Byte axis
Byte spindle
Word
Word machine group
Word path
Word axis
Word spindle
2-word
2-word machine group
2-word path
2-word axis
2-word spindle
Real
Real machine group
Real path
Real axis
Real spindle

-128 to 127
0 to 225

Some parameters handle these
types of data as unsigned data.

-32768 to 32767
0 to 65535

Some parameters handle these
types of data as unsigned data.

0 to ±999999999

Some parameters handle these
types of data as unsigned data.

See the Standard Parameter Setting
Tables.

NOTE
1 Each of the parameters of the bit, bit machine group, bit path, bit axis, and bit
spindle types consists of 8 bits for one data number (parameters with eight
different meanings).
— 78 —

6.PARAMETERS

B-64483EN-2/03

NOTE
2 The machine group type allows data to be set separately for each machine
group.
3 The path type allows data to be set separately for each path.
4 The axis type allows data to be set separately for each control axis.
5 The spindle type allows data to be set separately for each spindle axis.
6 The valid data range for each data type indicates a general range. The range
varies according to the parameters. For the valid data range of a specific
parameter, see the explanation of the parameter.

6.3

REPRESENTATION OF PARAMETERS

Parameters of the bit type, bit machine group type, bit path type, bit axis type,
and bit spindle type
#7

#6

#5

0000
Data No.

#4

#3

#2

#1

#0

EIA

NCR

ISP

CTV

TVC

Data (Data #0 to #7 are bit positions.)

Parameters other than the bit-type parameters above
1023

Number of the servo axis for each axis

Data No.

Data

NOTE
1 The parameters, which are described here, are related directly to
Dual Check Safety function. As for the other parameters, please
refer to the parameter manual (B-64490EN).
2 A parameter usable with only one path control type, namely, the
lathe system (T series) or the machining center system (M series),
is indicated using two rows as shown below. When a row is blank,
the parameter is not usable with the corresponding series.
[Example 1]
Parameter HTG is a parameter common to the M and T series, but
Parameters RTV and ROC are parameters valid only for the T
series.
#7
1403

RTV

#6

#5

#4

HTG

ROC

#3

#2

#1

#0
T series
M series

HTG

[Example 2]
The following parameter is provided only for the M series.
T series
1411

Cutting feedrate

— 79 —

M series

6.PARAMETERS

B-64483EN-2/03

NOTE
3 When «to» is inserted between two parameter numbers, there are
parameters with successive numbers between the two starting and
ending parameter numbers, but those intermediate parameter
numbers are omitted for convenience.
4 The lower-case letter «x» or «s» following the name of a bit-type
parameter indicates the following:
x” : Bit axis type parameters
-”
-”
s” : Bit spindle type parameters

6.4

STANDARD PARAMETER SETTING TABLES

Overview
This section defines the standard minimum data units and valid data ranges of the CNC parameters of the
real type, real machine group type, real path type, real axis type, and real spindle type. The data type and
unit of data of each parameter conform to the specifications of each function.

Explanation
(A) Length and angle parameters (type 1)
Unit of data

mm
deg.

inch

Increment system
IS-A
IS-B
IS-C
IS-D
IS-E
IS-A
IS-B
IS-C
IS-D
IS-E

Minimum data unit
0.01
0.001
0.0001
0.00001
0.000001
0.001
0.0001
0.00001
0.000001
0.0000001

Valid data range
-999999.99
-999999.999
-99999.9999
-9999.99999
-999.999999
-99999.999
-99999.9999
-9999.99999
-999.999999
-99.9999999

to +999999.99
to +999999.999
to +99999.9999
to +9999.99999
to
+999.999999
to +99999.999
to +99999.9999
to +9999.99999
to +999.999999
to
+99.9999999

(B) Length and angle parameters (type 2)
Unit of data

mm
deg.

inch

Increment system
IS-A
IS-B
IS-C
IS-D
IS-E
IS-A
IS-B
IS-C
IS-D
IS-E

Minimum data unit
0.01
0.001
0.0001
0.00001
0.000001
0.001
0.0001
0.00001
0.000001
0.0000001

— 80 —

Valid data range
0.00
0.000
0.0000
0.00000
0.000000
0.000
0.0000
0.00000
0.000000
0.0000000

to +999999.99
to +999999.999
to +99999.9999
to +9999.99999
to
+999.999999
to +99999.999
to +99999.9999
to +9999.99999
to
+999.999999
to
+99.9999999

6.PARAMETERS

B-64483EN-2/03

(C) Velocity and angular velocity parameters
Unit of data

Increment system

Minimum data unit

Valid data range

mm/min
degree/min

IS-A
IS-B
IS-C
IS-D
IS-E

0.01
0.001
0.0001
0.00001
0.000001

0.00
0.000
0.0000
0.00000
0.000000

inch/min

IS-A
IS-B
IS-C
IS-D
IS-E

0.001
0.0001
0.00001
0.000001
0.0000001

0.000
0.0000
0.00000
0.000000
0.0000000

to +999000.00
to +999000.000
to +99999.9999
to
+9999.99999
to
+999.999999
to +96000.000
to +9600.0000
to +4000.00000
to
+400.000000
to
+40.0000000

(D)Acceleration and angular acceleration parameters
Unit of data

Increment system

mm/sec2
deg./sec2

IS-A
IS-B
IS-C
IS-D
IS-E

0.01
0.001
0.0001
0.00001
0.000001

Minimum data unit

0.00
0.000
0.0000
0.00000
0.000000

Valid data range

inch/sec2

IS-A
IS-B
IS-C
IS-D
IS-E

0.001
0.0001
0.00001
0.000001
0.0000001

0.000
to +99999.999
0.0000
to +99999.9999
0.00000 to +9999.99999
0.000000 to
+999.999999
0.0000000 to
+99.9999999

to +999999.99
to +999999.999
to +99999.9999
to +9999.99999
to
+999.999999

Notes
(1) Values are rounded up or down to the nearest multiples of the minimum data unit.
(2) A valid data range means data input limits, and may differ from values representing actual
performance.
(3) For information on the ranges of commands to the CNC, refer to Appendix, «List of Command
Ranges,» in the «OPERATOR’S MANUAL (Common to Lathe System/Machining Center System)»
(B-64484EN).
(4) The setting value of the parameter related with length and angle depends on whether the attribute of
the axis is diameter specification or radius specification. In case safety function, set the parameter
according to the attribute of the axis at power on.
Even if the attribute is changed after power on, changed value is not used by each safety function.
Each safety function refers to the value that is specified at power on. .

6.5

PARAMETERS
0980

Machine group number of each path

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Byte path
[Valid data range] 1 to 3
Set the machine group number which each path belongs.
— 81 —

6.PARAMETERS

B-64483EN-2/03

NOTE
When 0 is set, each path is assumed to belong to machine group 1.
0981

Absolute path number of each axis

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Byte axis
[Valid data range] 1 to 10
Set the path to which each axis belongs.

NOTE
When 0 is set, each axis is assumed to belong to path 1.
0982

Absolute path number of each spindle

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Byte spindle
[Valid data range] 1 to 10
Set the path to which each spindle belongs.

NOTE
When 0 is set, each spindle is assumed to belong to path 1.
1023

Servo axis number of each axis

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Byte axis
[Valid data range] 0 to Number of controlled axis
Set the servo axis for each control axis. Usually set to same number as the control axis
number.
The control axis number is the order number that is used for setting the axis-type
parameters or axis-type machine signals
*
With an axis for which Cs contour control/spindle positioning is to be performed, set
-(spindle number) as the servo axis number.
Example)
When exercising Cs contour control on the fourth controlled axis by
using the first spindle, set -1.
*
For tandem controlled axes or electronic gear box (EGB) controlled axes, two axes
need to be specified as one pair. So, make a setting as described below.
— 82 —

6.PARAMETERS

B-64483EN-2/03

Tandem axis: For a master axis, set an odd (1, 3, 5, 7, …) servo axis number.
For a slave axis to be paired, set a value obtained by adding 1 to the
value set for the master axis.
EGB axis:
For a slave axis, set an odd (1, 3, 5, 7, …) servo axis number. For a
dummy axis to be paired, set a value obtained by adding 1 to the value
set for the slave axis.
1240

Coordinates value of the reference position in the machine coordinate system

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Minimum unit of data]
[Valid data range]

Parameter input
Real axis
mm, inch, degree (machine unit)
Depend on the increment system of the applied axis
9 digit of minimum unit of data (Refer to standard parameter setting table(A). But in case
that CMR≥1, data range becomes 1/CMR of 9 digits of minimum unit of data.)
(When the increment system is IS-B and CMR=1, -999999.999 to +999999.999)
(When the increment system is IS-B and CMR=2, -499999.999 to +499999.999)

NOTE
Whether to specify this parameter by using a diameter value or
radius value depends on whether the corresponding axis is based
on diameter specification or radius specification.
Set the coordinate values of the reference position in the machine coordinate system.
1838

Position deviation limit for each axis in moving state during safety check

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
2-word axis
Detection unit
0 to 99999999
Position deviation limit for each axis in moving state for safety check of Dual Check
Safety function is specified.
If position deviation of a moving axis exceeds position deviation limit while Safety
Check is carried out (Safety Monitoring Request *VLDVx =“0”), a servo alarm (SV0475,
SV1071) is generated and axes are stopped immediately like emergency stop state.
In Dual Check Safety function, position deviation is always checked by CNC and Servo.
In case that Safety Check is carried out (Safety Monitoring Request *VLDVx =“0”), the
servo alarm (SV0475,SV1071) is generated when each CPU finds out that the deviation
exceeds position deviation limit in moving state.

— 83 —

6.PARAMETERS
1839

B-64483EN-2/03
Position deviation limit for each axis in stopped state during safety check

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

1840

Parameter input
2-word axis
Detection unit
0 to 99999999
Set the positioning deviation limit in stopped state for each axis for Dual Check Safety
function.
If the positioning deviation exceeds the positioning deviation limit during stopped state
while Safety Check is carried out (Safety Monitoring Request *VLDVx =“0”), a servo
alarm (SV0474, SV1072) is generated, and operation is stopped immediately (as in
emergency stop).
In Dual Check Safety function, position deviation is always checked by CNC and Servo.
In case that Safety Check is carried out (Safety Monitoring Request *VLDVx =“0”),
servo alarm (SV0474,SV1072) is generated when each CPU finds out that the deviation
exceeds position deviation limit in stopped state.
Position deviation limit for each axis in servo-off state during safety check

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
2-word axis
Detection unit
0 to 99999999
Set the positioning deviation limit in servo-off state for each axis for Dual Check Safety
function.
If the positioning deviation exceeds the positioning deviation limit during servo-off, a
servo alarm (SV1069,SV1070) is generated, and operation is stopped immediately (as in
emergency stop).
In Dual Check Safety function, position deviation is always checked by CNC and Servo.
Servo alarm (SV1069,SV1070) is generated when each CPU finds out that the deviation
exceeds position deviation limit in servo-off state.

1841

Position deviation limit of each axis in moving state during other than Safety Check is carried out

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
2-word axis
Detection unit
0 to 99999999
Set the positioning deviation limit in moving state for each axis for Dual Check Safety
function, in case that Safety Check is not carried out (Safety Monitoring Request
*VLDVx=“1”).
— 84 —

6.PARAMETERS

B-64483EN-2/03

In case that Safety Check is not carried out (Safety Monitoring Request *VLDVx =“1”),
servo alarm (SV0475,SV1071) is generated and operation is stopped immediately (as in
emergency stop), when each CPU finds out that the deviation exceeds position deviation
limit in moving state.
If the value of this parameter is “0”, the parameter No.1828 is used for the value of
deviation limit in moving state.
In case that Safety Check is carried out (Safety Monitoring Request “*VLDVx” =0), the
parameter No.1838 is used for the value of deviation limit in moving state.
1842

Position deviation limit of each axis in stopped state during other than Safety Check is carried out

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
2-word axis
Detection unit
0 to 99999999
Set the positioning deviation limit in stopped state for each axis for Dual Check Safety
function, in case that Safety Check is not carried out (Safety Monitoring Request
*VLDVx=“1”).
In case that Safety Check is not carried out (Safety Monitoring Request *VLDVx =“1”),
servo alarm (SV0474,SV1072) is generated and operation is stopped immediately (as in
emergency stop), when each CPU finds out that the deviation exceeds position deviation
limit in stopped state.
If the value of this parameter is “0”, the parameter No.1829 is used for the value of
deviation limit in stopped state.
In case that Safety Check is carried out (Safety Monitoring Request *VLDVx =“0”), the
parameter No.1839 is used for the value of deviation limit in stopped state.
#7

1902

#6

#5

#4

#3

#2

#1

#0

DCE

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Bit
#6

DCE Dual Check Safety function is
0: inactive.
1: active.
This parameter invalidates Dual Check Safety function temporarily.
In the system with Dual Check Safety function, this parameter is used when the system
set up without wiring and ladder related with Dual Check Safety in order to set up other
function.

— 85 —

6.PARAMETERS

B-64483EN-2/03

NOTE
1 When Dual Check Safety function is used, this parameter must be
set to “1”. If Dual Check Safety function is ordered and this
parameter is “0”, an alarm (DS0022) is displayed at power-on. This
alarm can be reset by pushing “CAN” and “RESET” key on MDI at
the same time.
2 When the Dual Check Safety function is disabled, almost
safety-related functions become disabled. Only the following
functions become enabled when the Dual Check Safety function is
disabled.
• MCC Off signal *MCF (for each machine group)
The state of MCC Off signal *MCF on the PMC and DCSPMC
sides changes depending on the state of the emergency stop
signal on the PMC side (the state of the emergency stop signal
on the DCSPMC side has no effect). The MCC off Test is
disabled.
• Brake signal *BRKx (for each axis)
Brake signal *BRKx operates only on the PMC side. Note that
the signal on the DCSPMC side always indicates the brake
release state. The output signals other than the above are
described below.
(1) The following signals always indicate «1» on both the PMC and
DCSPMC sides.
— MCC Off signal *DCALM (one for each system)
— MCC Off signals *MCFVx (for each axis) and *MCFPs (for
each spindle)
— Safety monitoring result signals RSVx (for each axis) and
RSPs (for each spindle)
(2) The following signals always indicate «0» on both the PMC and
DCSPMC sides.
— Safe Position Switch signals SPS1 to SPS32
— Guard Open Inhibit signal *OPIHB
— MCC Off Test Execution Request signal RQT
— Position Information Effect signal POSEx
#7
1904

#6

#5

#4

#3

#2

#1

DCN

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Bit axis
#6

DCN The checks of the target axis by Dual Check Safety function are:
0: carried out.
1: not carried out.

— 86 —

#0

6.PARAMETERS

B-64483EN-2/03

NOTE
1 It is not possible to inhibit each check of Dual Check Safety
Function of all axes by the parameter DCN.
2 Set the DCN bit to 1 for the dummy axis under tandem control or
for the tool axis of a electronic gear box or electronic gear box
2-pair.
3 The checks by the dual check safety function are not carried out on
an axis for which the DCN bit is set to 1. Set the DCN bit to 0 for
normal axes.
1945

Safety-related I/O check timer

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
Word machine group
msec
0 to 2000
There are two paths for the safety-related I/O signals (those duplicated by the Dual Check
Safety function): one on the PMC side and the other on the DCS PMC side. The CNC
CPU and the PMC CPU constantly exchange their I/O signals with each other and
monitor each other. If a mismatch between double input/output signals through two paths
lasts greater than the time set in this parameter, alarm PW0010, PW0011, PW0012 or
PW0013 is generated.
If a value of less than 16 is specified, it is assumed that 16 ms is specified.
If a value of more than 2000 is specified, it is assumed that 2000 ms is specified.

NOTE
The same value is applied to each path that belongs to a machine
group.
1946

MCC off Test timer

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
Word machine group
msec
0 to 32767
When MCC off Test mode is selected with Dual Check Safety function, CNC CPU
carries out MCC off Test by the safety output signal (*MCF). If MCC off Test is not
completed within the time set in this parameter, a servo alarm SV0488 is generated.
If a value of less than 0 is specified, it is assumed that 10000 ms is specified.

NOTE
The same value is applied to each path that belongs to a machine
group.
— 87 —

6.PARAMETERS

B-64483EN-2/03

1948

MCC off timer

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
Word machine group
msec
0 to 32767

CNC CPU and PMC CPU set MCC Off signal (*MCFVx) to 0, when an axis is not
stopped within the time set by this parameter after Safe Speed Monitoring or Safe
Machine Position Monitoring function of Dual Check Safety function detects
abnormal condition.

When there is no spindle (spindle for which *VLDPs = 1 is set) not being monitored
for its safety in the machine group, MCC Off signal *MCF (for each machine group)
is set to «0» upon elapse of the time set in this parameter after an emergency stop is
made.

When a crosscheck alarm or CPU self diagnosis alarm occurs, MCC Off signal
*DCALM (one for each system) is set to «0» upon elapse of the time set in this
parameter. If a crosscheck alarm or CPU self diagnosis alarm related to the spindle
occurs, however, the time set in this parameter takes no effect.

NOTE
The same value is applied for each path that belongs to a machine
group.
1950

Brake signal timer

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
Word machine group
msec
0 to 32767
Set a time period from when CNC CPU and Servo CPU in Dual Check Safety function
detects that the servo amplifier is ready (MCC on state) until Safety Brake signal
(*BRKx) goes 1 (brake release enabled).

NOTE
The same value is applied for each path that belongs to a machine
group.
3021

Address to which an axis signal is assigned

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
— 88 —

6.PARAMETERS

B-64483EN-2/03

[Data type] Byte axis
[Valid data range] 0 to 7, 10 to 17, 20 to 27, … , 90 to 97
For each axis of the CNC, set a PMC interface address.
Set a value according to the tables below.
Value of parameter No. 3021 (the second digit)
Setting value
Input signal address
Output signal address
0
1

G0000 to G0767
G1000 to G1767
⋅⋅⋅
G9000 to G9767

9

F0000 to F0767
F1000 to F1767
F9000 to F9767

Value of parameter No. 3021 (the first digit)
Setting value
Input signal address
0
1

Output signal address

#0
#1
⋅⋅⋅
#7

7

#0
#1
#7

[Example of setting]
Axis number

No.3021

1
2
3
4
5

0
1
2
10
11

Signal allocation
+J1<G0100.0>, -J1<G0102.0>, ZP1<F0090.0>, …
+J2<G0100.1>, -J2<G0102.1>, ZP2<F0090.1>, …
+J3<G0100.2>, -J3<G0102.2>, ZP3<F0090.2>, …
+J4<G1100.0>, -J4<G1102.0>, ZP4<F1090.0>, …
+J5<G1100.1>, -J5<G1102.1>, ZP5<F1090.1>, …

If eight or less axes are used per path, the following signal allocation results when 0 is set
for all axes:
Axis 1 of path 1 = Setting equivalent to 0
Axis 2 of path 1 = Setting equivalent to 1
:
Axis 1 of path 2 = Setting equivalent to 10
:

NOTE
Set this parameter when more than eight axes are used per path.
The valid data range varies, depending on the system software.
3022

Address to which a spindle signal is assigned

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Byte spindle
[Valid data range] 0to3,10to13,20to23, … ,90to93
For each axis of the CNC, set a PMC interface address.
Set a value according to the tables below.

— 89 —

6.PARAMETERS

B-64483EN-2/03

Value of parameter No. 3022 (the second digit)
Setting value
Input signal address
0
1

G0000 to G0767
G1000 to G1767
⋅⋅⋅
9
G9000 to G9767
Value of parameter No. 3022 (the first digit)
Setting value
Input signal address
0
1
2
3

Bit position A
Bit position B
Bit position C
Bit position D

Output signal address
F0000 to F0767
F1000 to F1767
F9000 to F9767
Output signal address
Bit position A
Bit position B
Bit position C
Bit position D

(The bit positions A, B, C and D vary, depending on the type of signal.)
[Example of setting]
Spindle number

No.3022

Signal allocation

1
2
3
4

0
1
10
11

TLMLA<G0070.0>, TLMHA<G0070.1>, ALMA<F0045.0>, …
TLMLB<G0074.0>, TLMHB<G0074.1>, ALMB<F0049.0>, …
TLMLA<G1070.0>, TLMHA<G1070.1>, ALMA<F1045.0>, …
TLMLB<G1074.0>, TLMHB<G1074.1>, ALMB<F1049.0>, …

If four or less axes are used per path, the following signal allocation results when 0 is set
for all axes:
Axis 1 of path 1 = Setting equivalent to 0
Axis 2 of path 1 = Setting equivalent to 1
:
Axis 1 of path 2 = Setting equivalent to 10

NOTE
Set this parameter when more than four axes are used per path.
The valid data range varies, depending on the system software.
3225

Code for safety parameters

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] 2-word
[Valid data range] 0 to 99999999
Set a code (password) for protecting against modifications to parameters related to Dual
Check Safety function (safety parameters). When a code for safety parameters is set other
than the value “0”, the parameters are locked. In this state, the setting (code) is not
displayed but is blank, and safety parameter input is disabled.
If an attempt is made to input data in a locked safety parameter, the result indicated in the
table below is produced, depending on the method of input. No attempt is successful.
Input method
MDI input
Input via reader/puncher interface
Input through window function

Result
Warning “WRITE PROTECT”
No alarm is generated. But parameter input is disabled.
Completion code 7 (WRITE PROTECT)

— 90 —

6.PARAMETERS

B-64483EN-2/03

If the value other than “0” is set to this parameter, the safety parameter is not displayed.
The safety parameters can be set when the safety parameters are not locked, that is, when
the code for safety parameters is 0, or when the code for safety parameters is the same as
the key for safety parameters (No. 3226).
The following safety parameters are protected by a code for safety parameters:
No.980, No.981, No.982, No.1023, No.1240, No.1838, No.1839, No.1840, No.1841,
No.1842, No.1902#6, No.1904, No.1945, No.1946, No.1948, No.1950, No.2000,
No.2023, No.2024, No.2084, No.2085, No.2185, No.3021, No.3022, No.3225, No.3717,
No.3797, No.4372, No.4438, No.4440, No.4442, No.4448, No.4460, No.4545,
No.10500- No.10596, No.11950-No.11957, No.11960-No.11967, No.11970-No.11977,
No.11980- No.11987, No.13806, No.13811, No.13821-No.13829, No.13831-No.13838,
No.13840-No.13844, No.13880-No.13919, No.13920- No.13951, No.13960- No.13991

NOTE
Once parameters are locked, the lock must be released or memory
must be cleared before the safety parameters can be modified.
Moreover, the code for the safety parameters cannot be modified in
locked condition. Be careful when setting a code for safety
parameters.
3226

Key for safety parameters

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] 2-word
[Valid data range] 0 to 99999999
When the same value as the code for safety parameters No.3225 is set in this parameter,
the key is opened to enable modifications to the safety parameters. The value set in this
parameter is not displayed.
When the value other than 0 is set to the code for safety parameters No.3225 and the
value is different from this parameter, the key is locked and the safety parameters can not
be modified.
When the power is turned off, the value set in this parameter is cleared to 0. Then the
power-off results in the locked state.
3717

Motor number to each spindle

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Byte spindle
[Valid data range] 0 to Maximum number of controlled spindle axes
Set a spindle amplifier number to be assigned to each spindle.
0: No spindle amplifier is connected.
1: Spindle motor connected to amplifier number 1 is used.
2: Spindle motor connected to amplifier number 2 is used.
to
n: Spindle motor connected to amplifier number n is used.
— 91 —

6.PARAMETERS

B-64483EN-2/03

#7

#6

#5

#4

#3

#2

3797

#1

#0

SOV

DCN

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Bit spindle
#0

DCN Each safety check of Dual Check Safety function for the specified spindle is
0: carried out.
1: not carried out.
Set “1” to this bit for the spindle that is not required to apply Dual Check Safety.

#1

SOV In the safe speed monitoring function of the dual check safety function, the safety spindle
speed limit override signal is
0: Invalid.
1: Valid.

4372

Safe speed 1 for each spindle

4438

Safe speed 2 for each spindle

4440

Safe speed 3 for each spindle

4442

Safe speed 4 for each spindle

NOTE
When these parameters are set, the power must be turned off
before operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
Word spindle
min-1
0 to 32767
Set a safe speed for each spindle in terms of motor speed. In case Dual Check Safety
function is activated, CNC and Spindle always check the speed of each spindle motor.
When it is detected that revolution speed of spindle exceeds safety speed limit,
Monitoring Result signal (RSPs) is set to “0”. Moreover if the safety check is carried out
(Safety Check Request signal *VLDPs =”0”), an alarm SP0757(CNC side) or
SP9069(Spindle side) occurs.
Safety Speed can be set up to 4 data. Which speed should be selected is decided by Safety
Speed Selection signal (SPAs/SPBs). Please refer more detail to the description about
Safety Speed/Safety Position Selection signal.
#7

#6

#5

#4

4399

#3

#2

#1
CTLSTP

[Input type] Parameter input
[Data type] Bit spindle

— 92 —

#0

6.PARAMETERS

B-64483EN-2/03

#1

CTLSTP When the safe speed over alarm is detected:
0: Performs a free running stop.
1: Performs a controlled stop. (When the motor speed is reduced to the zero-speed
detection signal (SST) level or less, excitation is turned off.)
4448

Stop check level

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
Word spindle
min-1
0 to 32767
When the speed of the spindle motor is reduced to the speed specified by this parameter
or less during free running or controlled stop operation due to the safe speed over alarm,
the motor is assumed to have stopped. The setting value must be lower than the parameter
“Safe Speed for each spindle”.

4460

Safety speed zero monitoring width for a spindle

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
Word spindle
deg
0 to 32767
Set the safety speed zero monitoring width for a spindle. Please set not the spindle angle
but the motor angle to this parameter in degree.
#7

#6

#5

#4

10500

#3
STP

#2

#1

#0

APM

AVM

NOTE
When at least one of these parameters is set, the power must be
turned off before operation is continued.
[Input type] Parameter input
[Data type] Bit path
#0

AVM In case that a servo alarm occurs,
0: MCC off signal (*MCFVx) is turned to “0” when some servo alarm occurs.
1: MCC off signal (*MCFVx) is turned to “0” when any servo alarm occurs.
In case that this parameter is set to “1”, MCC off signal (*MCFVx) of all axes, which
belong to the same path as the alarm axis, are turned to “0” when a servo alarm occurs.

#1

APM In case that a spindle alarm (SPxxxx) occurs
0: MCC off signal (*MCFPs) is turned to “0” when some spindle alarm occurs.
1: MCC off signal (*MCFPs) is turned to “0” when any spindle alarm occurs.
— 93 —

6.PARAMETERS

B-64483EN-2/03

In case that this parameter is set to “1”, MCC off signal (*MCFPs) of all spindles, which
belong to the same path as the alarm spindle, are turned to “0” when a spindle alarm
occurs.
#3

STP

When the power is turned on, a MCC off test is:
0: Carried out. (The screen is changed to Dual Check Safety Diagnosis screen
automatically and the warning «EXECUTE MCC TEST» is displayed at power-on,
and MCC off Test execution request signal (RQT) is output.)
1: Not carried out.

CAUTION
1 The STP parameter is used temporarily, for example, when a MCC
off Test is not to be made at power-on as in the case of machine
adjustment.
2 After adjustment, set STP = 0.
3 Even if STP is “1”, the MCC off Test is required if the power is
turned on after the specified time (normally 24 hours) has passed
since the completion of the previous MCC off Test.
4 The same value must be set to the path that belongs to the same
machine group.
5 The screen is changed to “ALARM SCREEN” when an alarm
occurs at power-on. In this case, Dual Check Safety Diagnosis
screen is not displayed at power-on automatically.
#7

#6

#5

#4

10597

#3

#2

#1

#0

SDS

DPN

IDD

[Input type] Parameter input
[Data type] Bit path
#0

IDD On the Dual Check Safety Diagnosis screen, the following information is:
0: Not displayed.
1: Displayed.

Safety speed limit (unit: mm/min, inch/min, deg/min)

Safety speed zero monitoring request signal.

Safe feed limit/safe machine position selection signal

Safe feed limit/safe machine position selection signal in case of an alarm

Programmable Safety I/O signal

NOTE
When using the virtual MDI key function, do not set this parameter to
«1».
#1

DPN The ALARM INFORMATION screen for the cross check by the Dual Check Safety
function displays:
0: CNC-side address
1: PMC-side address and PMC path number

— 94 —

6.PARAMETERS

B-64483EN-2/03

#2

SDS In the CROSS CHECK DATA screen of the Dual Check Safety Diagnosis screen, the
code name of the signal is:
0: Not displayed.
1: Displayed.
#7

#6

#5

#4

#3

13805

#2

#1

DTS

SOF

#0

[Input type] Parameter input
[Data type] Bit

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
# 1 SOF When the setting of that follow-up is executed by follow-up signal (*FLWU) in servo-off
state is effective (the value of the parameter FUPx(No.1819#0) is 0), the following limit
is applied to the safety position error monitoring function during servo off state and
follow-up state including emergency stop and servo alarm etc, or pole position detection .
0: The position deviation limit in moving state (The parameter No.1838, 1841)
1: The position deviation limit in servo-off state (The parameter No.1840)
# 2 DTS Test mode of Acceptance test is
0: ineffective
1: effective
The Acceptance Test mode becomes effective by setting the parameter DTS to ‘1’.
This function becomes ineffective when DTS is changed from ‘1’ to ‘0’, and a usual DCS
function works.
Moreover, when the power is turned on when this parameter DTS is ‘1’, the alarm
“DS0081 ACCEPTANCE TEST MODE IS SELECTED” is generated to alert to an
operator. This alarm can be released by pushing both “RESET” and “CAN” of MDI key
during Acceptance Test mode. It is possible to confirm in diagnosis screen No.3703#0
that Test Mode for Acceptance Test is effective, too.
Finish Acceptance Test within 24 hours after this parameter DTS set to ‘1’. When 24
hours pass away, the parameter DTS is compulsorily changed to ‘0’ and the alarm of
“PW0023 ACCEPTANCE TEST MODE TIME OVER” is generated. As this alarm can
not be released if the power is not turned off, when you want to continue Acceptance Test,
set this parameter to ‘1’ again and the power is turned off/on It is possible to confirm the
remainder time until 24 hours pass in diagnosis No.3704.

CAUTION
It is dangerous when a machine is operated with parameter DTS
set to ‘1’. Please set it to ‘0’ when the machine is shipped.
#7

#6

#5

#4

13806

#3

#2

#1
D10

[Input type] Parameter input
[Data type] Bit axis

— 95 —

#0

6.PARAMETERS

B-64483EN-2/03

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
#1

D10 In the safety limit speed monitoring of the feed axis of Dual Check Safety function, the
unit of safety speed monitoring of the safety limit speed in position control (parameter
No.13821 to No.13824) is
0: Not changed.
1: Regarded as ten times.
When above parameter is set to ‘1’, the range of the safety limit speed of the feed axis is
from 0 to 9999999.99 in the case of IS-B.

13810

Power-on safety-related I/O check start timer

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

13811

Parameter input
Word
msec
0 to 32767
In Dual Check Safety function, the time from “CNC start-up” to “I/O cross check error
start” is specified just after power-on.
Hysteresis width of position switch (Dual Check Safety)

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Least unit of data]
[Valid data range]

Parameter input
Real axis
mm, inch, deg (Machine unit)
According to the input increment of corresponding axis
0 or positive 9 digit of least input increment of data (Refer to standard parameter setting
table(B). But in case that CMR≥1, data range becomes 1/CMR of 9 digits of least input
increment of data.)
(When the increment system is IS-B and CMR=1, 0 to +999999.999)
(When the increment system is IS-B and CMR=2, 0 to +499999.999)

NOTE
Whether to specify this parameter by using a diameter value or
radius value depends on whether the corresponding axis is based
on diameter specification or radius specification.
Around the position switch boundary for the Dual Check Safety function, the Safety
Position Switch signal may repeatedly turn on and off due to motor vibration. According
to this problem, position switch is inconvenient to use. So “hysteresis” described below is
applied.

— 96 —

6.PARAMETERS

B-64483EN-2/03

Minimum limit of
position switch

Maximum limit of
position switch

Width of hysteresis
Width of hysteresis
Activated area of position switch

Fig.6.5(a) Activated area of the position switch when the Safety Position Switch signal is set to «0»
Minimum limit of
position switch

Maximum limit of
position switch

Activated area of position switch

Fig.6.5(b) Activated area of the position switch when the Safety Position Switch signal is set to «1»

Suppose that the minimum limit and maximum limit of the position switch are
represented by an area like those shown above. If the value of the Safety Position Switch
signal used for the last measurement is «0», then the check is made in an area that takes
into account the width of hysteresis (Fig. 6.5 (a)). If the value of the last used Safety
Position Switch signal is «1», then the check is made in an area that does not take into
account the width of hysteresis (Fig. 6.5 (b)). This reduces the fluctuation in the Safety
Position Switch signal.
13821

Safety limit speed 1 in position control for each axis

13822

Safety limit speed 2 in position control for each axis

13823

Safety limit speed 3 in position control for each axis

13824

Safety limit speed 4 in position control for each axis

NOTE
When these parameters are set, the power must be turned off
before operation is continued.
[Input type]
[Data type]
[Unit of data]
[Minimum unit of data]
[Valid data range]

Parameter input
Real axis
mm/min, inch/min, degree/min (machine unit)
Depend on the increment system of the applied axis
Refer to the standard parameter setting table (C)
(When the increment system is IS-B, 0.0 to +240000.0)
Set a safety speed for each axis in position control.
CNC and Servo always check the velocity command of each axis in Dual Check Safety
function. If the speed is exceeded the safety limit even on one axis, Monitoring Result
signal (RSVx) corresponding to that axis is set to “0”. Moreover if Safety Check request
signal (*VLDVx) is set to “0”, an alarm SV0476 or SV0494 is generated for the
corresponding axis.
A safety speed parameter for each axis in feed control is from No.13826 to No.13829.
Up to 4 safety speed can be specified. Safety speed is selected by Safety Speed / Safety
Position Selection signal (SVAx/SVBx). As for the detail of Safety Speed / Safety
Position Selection signal, refer to the description about Safety Speed / Safety Position
Selection signal.

— 97 —

6.PARAMETERS

B-64483EN-2/03

CAUTION
1 The safe reduced speed checks are made on the basis of the
speed converted to the detection unit. Accordingly, a calculation
error may occur.
2 After safety speed parameters No.13821 to No.13824 have been
set, the power must be turned off then back on for the setting to
become effective
3 For diameter specification, set the speed by the diameter (use
changes in diameter/rev or in diameter/min).
13825

Speed regarded as axis stop for Dual Check Safety

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Minimum unit of data]
[Valid data range]

Parameter input
Real axis
mm/min, inch/min, degree/min (machine unit)
Depend on the increment system of the applied axis
0 to 10000
This parameter sets the speed regarded as axis stop in case that an abnormal condition is
found in safety speed check or safety machine position check of Dual Check Safety
function.
When an abnormal condition is found in safety speed check or safety machine position
check, a servo alarm occurs. And whether MCC off signal (*MCFVx) is turned off or not
is decided by judging if an axis is stopped after the decided time elapse. At that time, this
parameter gives the speed to judge axis stop.
In case an abnormal condition is detected and an axis is stopped within the given time, an
MCC is not turned off. Then the system can be recovered by reset operation without
power-off.

NOTE
1 For diameter specification, set the speed by the diameter (use
changes in diameter/rev or in diameter/min).
2 In case of velocity control, set the value calculated by the following
formula to this parameter when R(min-1) is the velocity, at which the
axis is regarded as stopped.
Setting value = R * PLS * Minimum data unit (Machine unit)
* N / CMR
PLS: Pulse per one revolution of motor (Detection unit)
CMR: Command multiplier
N:
In case of diameter specification, N=2.
In other case, N=1.
Minimum data unit: Refer to “STANDARD PARAMETER
SETTING TABLE”.
13826

Safety limit speed 1 in velocity control for each axis

13827

Safety limit speed 2 in velocity control for each axis

— 98 —

6.PARAMETERS

B-64483EN-2/03
13828

Safety limit speed 3 in velocity control for each axis

13829

Safety limit speed 4 in velocity control for each axis

NOTE
When these parameters are set, the power must be turned off
before operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
2-word axis
min-1
0 to maximum motor speed
This parameter sets the safety speed 1 to 4 for each axis in velocity control mode in Dual
Check Safety function.

13831

Safety machine position 1 for each axis (+ direction)

13832

Safety machine position 1 for each axis (- direction)

13833

Safety machine position 2 for each axis (+ direction)

13834

Safety machine position 2 for each axis (- direction)

13835

Safety machine position 3 for each axis (+ direction)

13836

Safety machine position 3 for each axis (- direction)

13837

Safety machine position 4 for each axis (+ direction)

13838

Safety machine position 4 for each axis (- direction)

NOTE
When these parameters are set, the power must be turned off
before operation is continued.
[Input type]
[Data type]
[Unit of data]
[Minimum unit of data]
[Valid data range]

Parameter input
Real axis
mm, inch, degree (machine unit)
Depend on the increment system of the applied axis
9 digits of minimum unit of data (Refer to standard parameter setting table(A). But in
case that CMR≥1, data range becomes 1/CMR of 9 digits of minimum unit of data.)
(When the increment system is IS-B and CMR=1, -999999.999 to +999999.999)
(When the increment system is IS-B and CMR=2, -499999.999 to +499999.999)

NOTE
Whether to specify this parameter by using a diameter value or
radius value depends on whether the corresponding axis is based
on diameter specification or radius specification.
Set a safe machine position for each axis.
CNC and Servo always check the machine position on each axis in Dual Check Safety
function.
If the machine position is out of the safety machine range even on one axis, Monitoring
Result signal (RSVx) corresponding to that axis is set to “0”. Moreover if Safety Check
request signal (*VLDVx) is set to “0”, an alarm SV0477 or SV0495 is generated for the
corresponding axis.
— 99 —

6.PARAMETERS

B-64483EN-2/03

Up to 4 safety machine position can be specified. Safety machine position is selected by
Safety Speed / Safety Position Selection signal (SVAx/SVBx). As for the detail of Safety
Speed / Safety Position Selection signal, refer to the description about Safety Speed /
Safety Position Selection signal.

CAUTION
The safety machine position checks are made on the basis of the
machine position to the detection unit. Accordingly, a calculation
error may occur.
WARNING
1 CNC and Servo check the machine position of only each axis
whose reference position is established, and not check it of each
axis whose reference position is not established.
2 After safety machine position parameters No.13831 to No.13838
have been set, the power must be turned off then back on for the
setting to become effective.
13840

Address to which safety position switch 1 to 16 are assigned

13841

Address to which safety position switch 17 to 32 are assigned

13842

Address to which safety position switch 33 to 48 are assigned

13843

Address to which safety position switch 49 to 64 are assigned

NOTE
When these parameters are set, the power must be turned off
before operation is continued.
[Input type] Parameter input
[Data type] Byte
[Valid data range] 0 to 1, 10 to 11, 20 to 21, … , 90 to 91
According to this parameter, the address to output 64 points of position switch signals can
be assigned for each 16 points. The assigning addresses are F*755 to F*756 (PMC) /
F(007+m) to F(008+m) (DCS PMC) and F*757 to F*758 (PMC) / F(009+m) to
F(010+m) (DCS PMC) in each path. (*: 0 to 9 [path])
The units of this parameter value specifies which address the signal of each path should
be output to, “F*755 to F*756” (PMC) / “F(007+m) to F(008+m)” (DCS PMC) or
“F*757 to F*758” (PMC) / “F(009+m) to F(010+m)” (DCS PMC).
Setting value

Assigned address

0

F*755 to F*756(PMC),
F(007+m) to F(008+m) (DCS PMC)
F*757 to F*758(PMC),
F(009+m) to F(010+m) (DCS PMC)

1

The tens of this parameter value specify which path the signal should be output to.
Setting value

Output path

0
1

Path 1
Path 2

9

Path 10

— 100 —

6.PARAMETERS

B-64483EN-2/03

The relationship between parameter settings and assigned addresses is shown below.
Setting value

Assigned address (PMC)

Assigned address (DCS PMC)

00
01
10
11
20
21
30
31
40
41
50
51
60
61
70
71
80
81
90
91

F0755 — F0756
F0757 — F0758
F1755 — F1756
F1757 — F1758
F2755 — F2756
F2757 — F2758
F3755 — F3756
F3757 — F3758
F4755 — F4756
F4757 — F4758
F5755 — F5756
F5757 — F5758
F6755 — F6756
F6757 — F6758
F7755 — F7756
F7757 — F7758
F8755 — F8756
F8757 — F8758
F9755 — F9756
F9757 — F9758

F007 — F008
F009 — F010
F027 — F028
F029 — F030
F047 — F048
F049 — F050
F067 — F068
F069 — F070
F087 — F088
F089 — F090
F107 — F108
F109 — F110
F127 — F128
F129 — F130
F147 — F148
F149 — F150
F167 — F168
F169 — F170
F187 — F188
F189 — F190

[Example]
Parameter No.

Setting value

13840

00

13841

01

13842

50

13843

71

Output address of position switch signal
F755-F756 (1st to 16th position switch)(PMC)
F007-F008 (1st to 16th position switch)(DCS PMC)
F757-F758 (17th to 32nd position switch) (PMC)
F009-F010 (17th to 32nd position switch)(DCS PMC)
F5755-F5756 (33rd to 48th position switch) (PMC)
F107-F108 (33rd to 48th position switch)(DCS PMC)
F7757-F7758 (49th to 64th position switch) (PMC)
F149-F150 (49th to 64th position switch)(DCS PMC)

NOTE
1 If all setting values are “0”, the output address is regarded as
follows.
Position switch 1 to 16: F755-F756 (PMC) / F007-F008 (DCS PMC)
Position switch 17 to 32: F757-F758 (PMC) / F009-F010 (DCS
PMC)
Position switch 33 to 48: F1755-F1756 (PMC) / F027-F028 (DCS
PMC)
Position switch 49 to 64: F1757-F1758 (PMC) / F029-F030 (DCS
PMC)
2 Do not assign two or more position switch to the same address.
3 The specifiable range depends on the system software.

— 101 —

6.PARAMETERS
13844

B-64483EN-2/03
Safety speed zero monitoring width for a servo axis

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Minimum unit of data]
[Valid data range]

Parameter input
Real axis
mm, inch, degree (machine unit)
Depend on the increment system of the applied axis
9 digits of minimum unit of data (Refer to standard parameter setting table(A).
(When the increment system is IS-B, -999999.999 to +999999.999)
Set the safety speed zero monitoring width for a servo axis.

13880

Axis corresponding to the 1st safe position switch

13881

Axis corresponding to the 2nd safe position switch

:

:

13910

Axis corresponding to the 31st safe position switch

13911

Axis corresponding to the 32nd safe position switch

10501

Axis corresponding to the 33rd safe position switch

10502

Axis corresponding to the 34th safe position switch

:

:

10531

Axis corresponding to the 63rd safe position switch

10532

Axis corresponding to the 64th safe position switch

NOTE
When these parameters are set, the power must be turned off
before operation is continued.
[Input type] Parameter input
[Data type] Byte
[Valid data range] 0 to Number of controlled axes
Specify the control axis number corresponding to each of the first to 64th safety position
switches sequentially. If the machine coordinate value of the associated axis is within the
range specified by the parameter, the corresponding Safety Position Switch signal is
output on the PMC side and DCS PMC side.

NOTE
1 Set 0 for those position switch numbers that are not to be used.
(The safe position switch signal of that number is not output.)
The safe position switch signal for the axis whose bit 6 (DCN) of
parameter No.1904 is 1 (Dual Check Safety is disabled) is not
output.
2 After safety position switch parameters No.13880 to No.13911,
No.10501 to No.10532 have been set, the power must be turned
off then back on for the setting to become effective.

— 102 —

6.PARAMETERS

B-64483EN-2/03
13920

The maximum limit of the 1st safe position switch

13921

The maximum limit of the 2nd safe position switch

:

:

13950

The maximum limit of the 31st safe position switch

13951

The maximum limit of the 32nd safe position switch

10533

The maximum limit of the 33rd safe position switch

10534

The maximum limit of the 34th safe position switch

:

:

10563

The maximum limit of the 63rd safe position switch

10564

The maximum limit of the 64th safe position switch

NOTE
When these parameters are set, the power must be turned off
before operation is continued.
[Input type]
[Data type]
[Unit of data]
[Min. unit of data]
[Valid data range]

Parameter input
Real
mm, inch, deg (machine unit)
Depend on the increment system of the reference axis
9 digit of minimum unit of data (refer to standard parameter setting table (A)). But in case
that CMR≥1, data range becomes 1/CMR of 9 digits of minimum unit of data.)
(When the increment system is IS-B and CMR=1, -999999.999 to +999999.999)
(When the increment system is IS-B and CMR=2, -499999.999 to +499999.999)

NOTE
Whether to specify this parameter by using a diameter value or
radius value depends on whether the corresponding axis is based
on diameter specification or radius specification.
These parameters set the maximum limit of the 1st through 64th safe position switches.

CAUTION
1 When the machine position is equal to parameter setting value, it is
regarded that the machine position is within the range.
2 When the setting of operation range is “maximum limit < minimum
limit”, the corresponding safe position switch is not output.
3 After safety position switch parameters Nos. 13920 to 13951 and
10533 to 10564 have been set, the power must be turned off then
back on for the setting to become effective.
13960

The minimum limit of the 1st safe position switch

13961

The minimum limit of the 2nd safe position switch

:

:

13990

The minimum limit of the 31st safe position switch

13991

The minimum limit of the 32nd safe position switch

10565

The minimum limit of the 33rd safe position switch

— 103 —

6.PARAMETERS
10566

B-64483EN-2/03
The minimum limit of the 34th safe position switch

:

:

10595

The minimum limit of the 63rd safe position switch

10596

The minimum limit of the 64th safe position switch

NOTE
When these parameters are set, the power must be turned off
before operation is continued.
[Input type]
[Data type]
[Unit of data]
[Min. unit of data]
[Min. unit of data]
[Valid data range]

Parameter input
Real
mm, inch, deg (machine unit)
Depend on the increment system of the reference axis
Depend on the increment system of the reference axis
9 digit of minimum unit of data (refer to standard parameter setting table (A)). But in case
that CMR≥1, data range becomes 1/CMR of 9 digits of minimum unit of data.)
(When the increment system is IS-B and CMR=1, -999999.999 to +999999.999)
(When the increment system is IS-B and CMR=2, -499999.999 to +499999.999)

NOTE
Whether to specify this parameter by using a diameter value or
radius value depends on whether the corresponding axis is based
on diameter specification or radius specification.
These parameters set the minimum limit of the 1st through 64th safe position switches.

CAUTION
1 When the machine position is equal to parameter setting value, it is
regarded that the machine position is within the range.
2 When the setting of operation range is “maximum limit < minimum
limit”, the corresponding safe position switch is not output.
3 After safety position switch parameters Nos. 13960 to 13991 and
10565 to 10596 have been set, the power must be turned off then
back on for the setting to become effective.
13912

Brake test enable/disable

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
Byte axis
None
0,1
Select whether to enable or disable the brake test. Set «0» to disable the test and «1» to
enable it.

— 104 —

6.PARAMETERS

B-64483EN-2/03
13913

Brake test interval

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

13914

Parameter input
Word machine group
Hour
0 to 168
Set the interval of time between the last brake test and the next one. When the time set in
this parameter has elapsed after the brake test ends, the Brake Test Execution Request
signal RQBT is set to «1». If «0» is set, the interval is assumed to be 8 hours.
Time t1 allowed to elapse after the output of the brake signal until the brake is applied

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
2-word axis
ms
0 to 999999999
To control when to output the *BRKx signal and move command during the brake test
for an individual axis, set the time allowed to elapse after the *BRKx signal is controlled
until the brake is applied, as well as the time allowed to elapse after the *BRKx signal is
controlled until the brake is released. If the time for applying the brake differs from the
time for releasing it, set the longer time. If «0» is set, the time is assumed to be 400 ms.

13915

Brake test current limit override value

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
2-word axis
(100/255)%
0 to 255
Set the current limit override value for the brake test. The relationship between the value
set in this parameter and the torque limit override value is as follows.
Torque limit override value = (set value/255) × 100 (%)
If «0» is set, 12% is assumed.

13916

Amount of travel specified for the brake test

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Real axis
— 105 —

6.PARAMETERS

B-64483EN-2/03

[Unit of data] mm, inch, degree (machine unit)
[Min. unit of data] Depend on the increment system of the applied axis
[Valid data range] 9 digit of minimum unit of data (refer to standard parameter setting table (A))
(When the increment system is IS-B, -999999.999 to +999999.999)
Set the amount of travel to be specified for each axis at the time of the brake test. If «0» is
set, 1.000 mm is assumed.

CAUTION
If this parameter specifies a value that is smaller than the tolerance
value (No. 13918) for the positional deviation to be checked by the
brake test, the brake test may fail to be executed normally.
NOTE
When the diameter is specified («1» is set in bit 3(DIAx) of parameter
No. 1006), set the diameter value.
13917

Feedrate specified for the brake test

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Min. unit of data]
[Valid data range]

Parameter input
Real axis
mm/min, inch/min, degree/min (machine unit)
Depend on the increment system of the applied axis
Refer to the standard parameter setting table (C)
(When the increment system is IS-B, 0.0 to +240000.0)
Set the feedrate to be specified for each axis at the time of the brake test. If «0» is set, 10
mm/min is assumed.

13918

Tolerance value for the positional deviation amount checked by the brake test

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
2-word axis
Detection unit
0 to 999999999
Set the tolerance value for the positional deviation amount to be checked by the brake test
for an individual axis. The specified amount is compared with the positional deviation
value during brake control, and the amount is considered to be valid if it is within the
range represented by the positional deviation value plus the value set in this parameter
and the positional deviation value minus that value. If the amount is outside this range, an
alarm occurs. If «0» is set, 100 is assumed.

— 106 —

6.PARAMETERS

B-64483EN-2/03

Range for comparing the positional deviation amount
Tolerance value

Tolerance value

Reference positional deviation amount (positional deviation amount relative to the specified
amount)

13919

Time (t2) during which the positional deviation amount is checked during the brake test

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
Word axis
ms
0 to 32767
Set the time (t2) during which the positional deviation amount is checked during the brake
test for an individual axis. During this time, the torque is applied to the brake. If «0» is set,
1000 ms is assumed.

11950

1st byte address of Safety input signal for CNC CPU

11951

2nd byte address of Safety input signal for CNC CPU

:

:

11957

8th byte address of Safety input signal for CNC CPU

NOTE
When these parameters are set, the power must be turned off
before operation is continued.
[Input type] Parameter input
[Data type] 2-word
[Valid data range] 0 to 5999999
Specify the address of the input signal on the CNC CPU side subject to dual monitoring
for programmable safety I/O.
Setting value = TYPE + ADRS
ADRS = Byte address
TYPE

Meaning
0
1000000
2000000
3000000
5000000

This signal is not checked.
X address
R address
D address
K address

Ex.) X8 : setting value = 1000008
R8 : setting value = 2000008
11960

1st byte address of Safety output signal for CNC CPU

11961

2nd byte address of Safety output signal for CNC CPU

:

:

11967

8th byte address of Safety output signal for CNC CPU

— 107 —

6.PARAMETERS

B-64483EN-2/03

NOTE
When these parameters are set, the power must be turned off
before operation is continued.
[Input type] Parameter input
[Data type] 2-word
[Valid data range] 0 to 5999999
Specify the address of the output signal on the CNC CPU side subject to dual monitoring
for programmable safety I/O.
Setting value = TYPE + ADRS
ADRS = Byte address
TYPE

Meaning
0
1000000
2000000
3000000
5000000

This signal is not checked.
Y address
R address
D address
K address

Ex.) Y8 : setting value = 1000008
R8 : setting value = 2000008
11970

1st byte address of Safety input signal for PMC CPU

11971

2nd byte address of Safety input signal for PMC CPU

:

:

11977

8th byte address of Safety input signal for PMC CPU

NOTE
When these parameters are set, the power must be turned off
before operation is continued.
[Input type] Parameter input
[Data type] 2-word
[Valid data range] 0 to 505999999
Specify the address of the input signal on the PMC CPU side subject to dual monitoring
for programmable safety I/O.
Setting value = TYPE + ADRS
ADRS = Byte address
TYPE

Meaning
0
101000000
102000000
103000000
104000000
105000000
201000000
202000000
203000000
204000000
205000000
301000000
302000000
303000000

This signal is not checked
X address of 1st PMC
R address of 1st PMC
D address of 1st PMC
E address of 1st PMC
K address of 1st PMC
X address of 2nd PMC
R address of 2nd PMC
D address of 2nd PMC
E address of 2nd PMC
K address of 2nd PMC
X address of 3rd PMC
R address of 3rd PMC
D address of 3rd PMC

— 108 —

6.PARAMETERS

B-64483EN-2/03

TYPE

Meaning
304000000
305000000
401000000
402000000
403000000
404000000
405000000
501000000
502000000
503000000
504000000
505000000

E address of 3rd PMC
K address of 3rd PMC
X address of 4th PMC
R address of 4th PMC
D address of 4th PMC
E address of 4th PMC
K address of 4th PMC
X address of 5th PMC
R address of 5th PMC
D address of 5th PMC
E address of 5th PMC
K address of 5th PMC

Ex.) X8 of 1st PMC : setting value = 101000008
X8 of 2nd PMC: setting value = 201000008
11980

1st byte address of Safety output signal for PMC CPU

11981

2nd byte address of Safety output signal for PMC CPU

:

:

11987

8th byte address of Safety output signal for PMC CPU

NOTE
When these parameters are set, the power must be turned off
before operation is continued.
[Input type] Parameter input
[Data type] 2-word
[Valid data range] 0 to 505999999
Specify the address of the output signal on the PMC CPU side subject to dual monitoring
for programmable safety I/O.
Setting value = TYPE + ADRS
ADRS = Byte address
TYPE

Meaning
0
101000000
102000000
103000000
104000000
105000000
201000000
202000000
203000000
204000000
205000000
301000000
302000000
303000000
304000000
305000000
401000000
402000000
403000000
404000000

This signal is not checked
Y address of 1st PMC
R address of 1st PMC
D address of 1st PMC
E address of 1st PMC
K address of 1st PMC
Y address of 2nd PMC
R address of 2nd PMC
D address of 2nd PMC
E address of 2nd PMC
K address of 2nd PMC
Y address of 3rd PMC
R address of 3rd PMC
D address of 3rd PMC
E address of 3rd PMC
K address of 3rd PMC
Y address of 4th PMC
R address of 4th PMC
D address of 4th PMC
E address of 4th PMC

— 109 —

6.PARAMETERS

B-64483EN-2/03

TYPE

Meaning
405000000
501000000
502000000
503000000
504000000
505000000

K address of 4th PMC
Y address of 5th PMC
R address of 5th PMC
D address of 5th PMC
E address of 5th PMC
K address of 5th PMC

Ex.) Y8 of 1st PMC: setting value = 101000008
Y8 of 2nd PMC: setting value = 201000008

6.6

PROFIBUS-DP PARAMETER SETTINGS

PROFIBUS-DP DI/DO signals can be assigned to Dual Check Safety PMC per each slot unit.
To configure PROFIBUS-DP parameters, please refer to “Chapter II.SETTING” of “FANUC
PROFIBUS-DP board CONNECTION MANUAL (B-63993EN)”. The following is the additional
information relating to Dual Check Safety function.

Assigning PROFIBUS-DP DI/DO signals to Dual Check Safety PMC
Assigning PROFIBUS-DP DI/DO signals to Dual Check Safety PMC can be set up as follows.
1. Press soft key [DI/DO ADDR] to display the DI/DO ADDRESS screen.
2. Set the DI/DO addresses (DI ADDR and DO ADDR) according to the following format.
S : <PMC-address>
For R0500 of Dual Check Safety PMC, for example, “S:R0500” must be entered.
X and R address is available to DI Address.
Y and R address is available to DO Address.
If there is no “:” key in your CNC control unit, it is substituted with the “/” or “EOB” key.

Broken wire detection
“Broken wire detection” enables slaves to monitor the communication interval, detect the communication
error when a slave cannot receive data from the Master, and clear the DO data which is received from
Master.
“Broken wire detection” and “Watchdog time” are configured with Slave parameters which are
transferred from Master to Slaves during initialization.
When PROFIBUS-DP signal is used for Dual Check Safety, please activate “Broken wire detection”.
“Watchdog time” should be set to several times longer than the refresh time in consideration of
re-transmission. The refresh time can be observed in STATUS INFORMATION screen of
PROFIBUS-DP setting screen.
“Broken wire detection” and “Watchdog time” can be configured in PROFIBUS-DP setting screen.
— 110 —

6.PARAMETERS

B-64483EN-2/03

When “1” is set into “WD”, “Broken wire detection” becomes active.
“Watchdog time” is calculated with the following expression.
10 x WD_FACT1 x WD_FACT2 (ms)
For example, in the following setting, “Broken wire detection” will activate when a watchdog time of
250ms expires.

— 111 —

7.START-UP

B-64483EN-2/03

7

START-UP

7.1

START-UP OPERATION

The machine tool builder has to do tests for insulation and protective bonding. Testing must be performed
according to Chapter 18.2 and 18.3 of the standard IEC 60204-1 by an appropriately authorized person
and recorded.

Continuity of the protective bonding circuit
When the machine is installed and the electrical connections are complete, including those to the power
supply, the continuity of the protective bonding circuit can be verified by a loop impedance test in
accordance with 612.6.3 of IEC 60364-6-61. For further details, please refer to Chapter 18.2 of IEC
60204-1.

Insulation resistance tests
The insulation resistance measured at 500 V d.c. between the power circuit conductors and the protective
bonding circuit is to be not less than 1 M Ω. For further details, please refer to Chapter 18.3 of IEC
60204-1.

7.1.1

Acceptance Test and Report for Safety Functions

Acceptance test for Safety function
The machine tool builder is to conduct a dual check safety function check test during machine start-up
operation.
In this test, limits need to be exceeded to check that the dual check safety function operates normally.

Acceptance report
A qualified person is to check each dual check safety function and record the test results in a check report.

NOTE
When modifying dual check safety function data, conduct an additional check
test on the modified dual check safety function and record the test results in a
check report.

Example of Acceptance Test
— Safety-related I/O monitoring test
Data cross-check operation is tested by generating intentionally a mismatch of the signals, such as
detaching the I/O device connector.

— MCC off Test check
The test mode signal is used to check that a MCC off Test is conducted.
Negative test:
Conduct a MCC off Test by disconnecting the MCC contact signal (input). Check that an alarm is
issued and the MCC remains to be shut off.

— Safe Reduced Speed Check test
This test checks that when the actual speed exceeds a speed limit, safety stop state is set by a stop
response.
— 112 —

7.START-UP

B-64483EN-2/03

— Safety machine position monitoring test
A positional limit test is conducted by making many different movements.
A positional limit is placed at the center of an axis, and the position is moved at many different speeds in
a rapid traverse mode. Thus, the distance traveled on the axis until stop state is set by a stop response is
measured. The machine tool builder is to determine a safety limit stop position including a safety margin.

— Safe Spindle Stop function test
The test items are as follows.
a) When the protective door is open, check if the excitation status of Spindle Amplifier is monitored by
two ladders of the PMC and the DCS PMC independently. Concretely, when generating the
abnormal status in either ladder intentionally, check that the safety stop state is set.
b) Check if the mismatch between two excitation status signals (EXOF1, EXOF2) outputted from
Spindle Amplifier is checked. Concretely, when generating the mismatch between two signals
intentionally, check that “USER I/O CROSS CHECK ERROR” is generated and the safety stop state
is set.
Moreover, in case of driving the spindle with protective door open, following c) and d) should be done.
c) Check if the relation among the following signals is monitored by two ladders of the PMC and the
DCS PMC independently.
• The Guard State signal (*SGOPN)
• The excitation status signal (EXOF1 or EXOF2) outputted from Spindle Amplifier
• The Spindle Enabling Switch signal (SPEN1 or SPEN2)
Concretely, when generating the abnormal status in either ladder intentionally, check that the safety
stop state is set.
d) Check if the mismatch between two Spindle Enabling Switch signals (SPEN1, SPEN2) is checked.
Concretely, when generating the mismatch between two signals intentionally, check that “USER I/O
CROSS CHECK ERROR” is generated and the safety stop state is set.

Data modification
The user needs to enter the correct password before setting safety parameters with the system. After a
safety parameter is modified, a check test needs to be conducted on the related safety function, and the
test results need to be recorded in a report.

7.2

START-UP OF THE SAFETY FUNCTION

7.2.1

Initial Start-up

Main flow
Disable dual check
safety
Machine start-up

Safety related I/O
setting

Safety parameter
input

Step 1
Initial state
First, check that the machine starts up normally when the dual check safety function is disabled.
Preparation 1
Preparation 2

Disable the dual check safety function.
Wire to control the MCC

— 113 —

Bit 6 (DCE) of PRM No. 1902 = 0
Connect the relay to control MCC with I/O output

7.START-UP

B-64483EN-2/03

NOTE
When the dual check safety function is disabled, the MCC Off signal (*DCALM,
*MCFVx, *MCFPs) is set to “1”. (The MCC Off signal (*MCF) is changed
according to the emergency stop signal. ) So, make a ladder program to output
DO signal to control the relay for the MCC control according to the MCC Off
signal.

Step 2
DCS PMC side I/O setting
Set the related I/O on the DCS PMC side. Make a ladder program for the safe related I/O.
(PMC/DCS PMC)
In case PROFIBUS-DP is used, please refer to the sub-section “6.6PROFIBUS-DP PARAMETER
SETTINGS”.

Step 3
Safety parameter input
Enable the dual check safety function, and enter the safety parameters.
Preparation 1

Enable the dual check safety function.

Bit 6 of PRM No. 1902 = 1

Set the safety parameters indicated in the table below.
Parameter setting
980
981
982
1023
1240
1838
1839
1840
1841
1842
1904#6
1945
1946
1948
1950
3717
3797#0
4372
4438
4440
4442
4448
13821
13822
13823
13824
13825
13831
13832
13833

Meaning
Machine group number of each path
Absolute path number of each axis
Absolute path number of each spindle
Servo axis number of each axis
Coordinates value of the reference position in the machine coordinate system
Position deviation limit for each axis in moving state
Position deviation limit for each axis in stopped state
Position deviation limit for each axis in servo-off state
Position deviation limit of each axis in moving state during other than Dual Check
Safety monitoring (for Dual Check Safety Function)
Position deviation limit of each axis in stopped state during other than Dual Check
Safety monitoring (for Dual Check Safety Function)
Enable safety function for each axis
Timer for safety-related I/O check
Timer for MCC off Test
Timer for MCC off
Break signal timer
Motor number to each spindle
Enable safety function for each spindle
Safety speed 1 on each spindle
Safety speed 2 on each spindle
Safety speed 3 on each spindle
Safety speed 4 on each spindle
Speed regarded as spindle stop for Dual Check Safety
Safety speed 1 on each axis
Safety speed 2 on each axis
Safety speed 3 on each axis
Safety speed 4 on each axis
Speed regarded as axis stop for Dual Check Safety
Safety position 1 (+ direction) on each axis
Safety position 1 (- direction) on each axis
Safety position 2 (+ direction) on each axis

— 114 —

7.START-UP

B-64483EN-2/03

Parameter setting
13834
13835
13836
13837
13838

Meaning
Safety position 2 (- direction) on each axis
Safety position 3 (+ direction) on each axis
Safety position 3 (- direction) on each axis
Safety position 4 (+ direction) on each axis
Safety position 4 (- direction) on each axis

Step 4
When a servo amplifier is started up for the first time, alarm SV0498, “AXIS NUMBER NOT SET
(CNC)”, is issued. When a spindle amplifier is started up for the first time, alarm SP9148, “AXIS
NUMBER NOT SET”, is issued.
In this case, turn the power to the CNC, servo amplifier, and spindle amplifier off, then on the power to
the servo amplifier, spindle amplifier, and CNC on in this order.
If the configuration of servo amplifiers is changed, alarms SV0478, “ILLEGAL AXIS DATA (SV)”, and
SV0496, “ILLEGAL AXIS DATA (CNC)”, are issued. For the relevant axes, set
Bit 4 of parameter No. 2212 to 1, then to 0 successively,
and turn the power to the CNC, servo amplifiers, and spindle amplifiers off. Then, turn the power to the
servo amplifiers, spindle amplifiers, and CNC on in this order.
If the configuration of spindle amplifiers is changed, alarms SP0756 and SP9070, “ILLEGAL AXIS
DATA”, are issued, For the relevant spindles, set
Bit 7 of parameter No. 4541 to 1, then to 0 successively,
and turn the power to the CNC, servo amplifiers, and spindle amplifiers off. Then, turn the power to the
servo amplifiers, spindle amplifiers, and CNC on in this order.

Step 5
Execution of general machine tests
Axis and spindle optimization
Dual check safety function adjustment (safety limitation speed, safety machine position, Safe position
error monitoring)

Step 6
Test for checking the safety function
Check test execution and report creation

Step 7
Parameter preservation
Save all parameters including the safety parameters. The parameters are used to start up the series.

Step 8
Set a password.
A password is used to disable unauthorized persons from modifying safety parameters. Before safety
parameters of the equipment for which a password (No. 3225) is set can be modified, the password
value must be set as the keyword (No. 3226). Only those persons authorized to conduct a check test
should know the password value.

7.2.2

Series (2nd and Subsequent Machines) Startup

The parameters for the safety monitoring function are transferred together with other parameters to the
CNC as in the case of normal series start-up. Perform a safety function check test in addition to the
normal start-up procedure.

— 115 —

7.START-UP

7.2.3

B-64483EN-2/03

Troubleshooting

Alarms related to the safety function are output on the ALARM screen.
Correct the cause of trouble according to the chapter describing alarms and messages in this manual.
When a component related to the safety function is to be replaced, an authorized person must conduct a
safety function check test.

7.3

TEST MODE FUNCTION FOR ACCEPTANCE TEST

7.3.1

Outline

A machine tool builder must perform safety confirmation test called “Acceptance Test”, to confirm
whether the safety function of a machine works correctly. In Acceptance Test, it must be confirmed that
an alarm is generated correctly and a machine stops safely, when the machine is placed in not safe
condition intentionally. If Acceptance Test is performed in the conventional state, the power of CNC must
be turned off/on every time when the safely related alarm of Dual Check Safety function is generated and
the safety parameter is rewritten. Redundant time is required for power on/off.
By using Test Mode Function, the following functions are effective in Acceptance Test. Therefore, it is
possible to continue the acceptance test without turning off/on the power of CNC, and then the test time
can be shortened.
When the safety parameter is changed, the changed parameter is effective without turning the
power-off.
Even if the safety related alarm is generated, the alarm state can be released by the reset operation.

NOTE
This function is not safety function.

7.3.2

How to select a Test Mode

Test Mode for Acceptance Test becomes effective, when the parameter DTS(No.13805#2) sets to ‘1’ and
the power of CNC is turned off/on.
In case Test Mode for Acceptance Test is effective (When the parameter DTS is ‘1’), the alarm «DS0081
ACCEPTANCE TEST MODE IS SELECTED” is generated when CNC starts up. You can perform
Acceptance Test after releasing this alarm by pushing both “RESET” and “CAN” of MDI key. It is
possible to confirm in diagnosis screen No.3703#0 that Test Mode for Acceptance Test is effective, too.
It is necessary to finish Acceptance Test within 24 hours after this parameter DTS set to ‘1’. The
parameter DTS will be changed to ‘0’ automatically when 24 hours pass, and the alarm of «PW0023
ACCEPTANCE TEST MODE TIME OVER» is generated. As this alarm can not be released if the power
is not turned off, when you want to continue Acceptance Test, set this parameter to ‘1’ again and the
power is turned off/on. It is possible to confirm the remainder time until 24 hours pass in diagnosis
No.3704.
The sample of test items/procedure of Acceptance Test is described in the next chapter. Perform
Acceptance Test along the test item and the procedure of the next chapter.
Change the parameter DTS from ‘1’ to ‘0’ when Acceptance Test is finished.
When the parameter DTS is changed from ‘1’ to ‘0’, Test Mode for Acceptance Test is released.

CAUTION
Set the parameter DTS to ‘0’ when a machine is shipped. Moreover, do not
operate a machine with the parameter DTS set to ‘1’.
— 116 —

7.START-UP

B-64483EN-2/03

7.3.3

About the Execution Item of Acceptance Test

Acceptance Test, the safety confirmation test, is performed to confirm whether the safety function of a
machine works correctly. Acceptance Test should be done by a qualified person, because a machine is
placed in not safe state intentionally during the test. And, it is necessary to record the test result in the
report.
The execution items and the execution procedures of standard Acceptance Test are described as follows.
Because the content of the items and the procedures are different according to the composition of a
machine, necessary items and procedures should be selected and tested.

Safe I/O monitoring test
Whether the safe I/O monitoring operates normally is tested.
At first, you perform the test for DI signal (G signal) of PMC side and DCSPMC side by manupulating
signals intentionally so that two signals are put into different state. For instance, you may short-circuit X
signal connected with G signal on PMC side, or change PMC ladder temporarily to cause difference
between the signal of PMC side and DCSPMC side. As a result of this test, the alarm PW0010 and
PW0011 (SAFE I/O CROSS CHECK ERROR) are generated.
In the following example, the feedback of the input signal <X0010.0 > of *SMC<G0748.6> on PMC side
is short-circuited so that *SMC on the PMC side is held «0». As a result, *SMC on PMC side differs from
*SMC <G000.6> of DCSPMC side in MCC off state, and the alarm PW0010 and PW0011 are generated.
Next, you perform the test for DO signal of PMC side and DCSPMC side. In case that Y signal is used for
a programmable safe I/O, the test can be done by putting two Y signals into different state intentionally.
Similar to the test of DI signal, you may short-circuit Y signal, or change PMC ladder temporarily to put
the signal of PMC side and DCSPMC side into different state. As a result of this test, the alarm PW0012
and PW0013 (USER I/O CROSS CHECK ERROR) are generated.
In the following example, the test is done by putting Y signal < Y0010.0 > on PMC side and DCSPMC
side into different state. In case Y signal <Y0010.0>= «1» DCSPMC side and Y signal <Y0010.0>= «1»
on the PMC side, if an intentional difference is caused by short-circuiting the feedback of Y signal on
PMC side, and the alarm PW0012 and PW0013 are generated.
Example of making report
No.

Contents of Test

Test signals

1

Test to confirm whether
cross check of G signal is
executed correctly.

PMC: *SMC=”1”
DCSPMC:
*SMC=”1”

2

Test to confirm whether
cross check of Y signal is
executed correctly.

PMC<Y0010.0>=”1”
DCSPMC
<Y0010.0>=”1”

Test Method
Short-circuit the input of X
signal<X0010.0> of *SMC on
PMC side
Short-circuit the output of Y
signal<Y0010.0> on PMC
side

Result (Alarm)
PW0010
PW0011
SV1068
MCC OFF
PW0012
PW0013
SV1068
MCC OFF

— Return the short-circuited signal to the former state when the test is finished.
— Though the power must be turned off after generating PW0010, PW0011, PW0012, PW0013, and
SV1068 alarm usually, the power need not be turned off because these can be released by reset during the
test mode.

MCC off test
Whether the MCC off test operates normally is tested.
At first, you perform a usual MCC off test by using the test mode signal OPT<G0191.2 > as usual and
confirm whether it works normally.
Next, in order to confirm whether the MCC test timer works correctly, you perform the MCC off test after
the value of parameter No.1946 is set to a small value (e.g. No.1946=10) not to complete the MCC off
test in prescribed time. If alarm SV0488 (SELF TEST OVER TIME) is generated, this fact shows that the
MCC off test works normally.
— 117 —

7.START-UP

B-64483EN-2/03

This test has to be done for each machine group.
In the example, the alarm SV0488 is generated after about 10ms, when the MCC off test is executed after
the value of parameter No.1946 is set to 10.
Example of making report
No.
1
2

Contents of Test
Usual MCC off test
Test that to confirm
whether MCC off test
timer works normally

Test parameters
None

Test Method
OPT = “1”

MCC off test timer
(PRM1946) is set to 10.

OPT = “1”

Result (Alarm)
No alarm
SV0488
SV1068
MCC OFF

Return the value of parameter No.1946, which is changed when the test is executed, to the former
value.
Though the power must be turned off by changing the parameter No.1946 or generating SV0488 and
SV1068 alarm usually, the power need not be turned off by these alarms and changing the parameter
during the test mode.

Emergency switch test
Whether the emergency stop signal operates correctly is tested.
At first, you perform the test to confirm whether the emergency stop operates normally by turning on and
off the emergency stop switch as usual.
Next, you confirm whether an alarm is generated by putting two emergency stop signals, *ESP<X0008.4
> on PMC side and *ESP<X0008.4 > on DCSPMC side, into different state. This test can be done by
short-circuiting one of two emergency stop DI signals, the signal of PMC and DCSPMC. If PW0010 and
PW0011 (SAFE I/O CROSS CHECK ERROR) are generated, this fact shows that the emergency stop
signal is monitored normally.
In the example, *ESP on PMC side becomes «0» and *ESP on DCSPMC side becomes «1», when *ESP
signal on PMC side is short-circuited on the terminal stand. Then PW0010 and the PW0011 alarm are
generated.
Example of making report
No.
1

2

Contents of Test
Test to confirm
whether emergency
stop signal is turned
on/off correctly.
Test to confirm
whether cross check
of emergency stop
signal is executed
correctly.

Test parameters
None

*ESP on PMC side is
short-circuited on the
terminal stand.

Test Method

Result (Alarm)

The emergency stop
switch is turned on and
off.

No Alarm

None

PW0010
PW0011
SV1068
MCC OFF

Return the short-circuited signal to the former state when the test is finished.
Though the power must be turned off by generating PW0010, PW0011 and SV1068 alarm usually,
the power need not be turned off because these can be released by reset during the test mode.

Safe brake test
In case that a servo axis has a brake, whether the brake works correctly is tested.
At first, you perform the safe brake test by setting the signal STBT<G0193.2> to «1» as usual and confirm
whether the brake works normally.
Next, in order to generate the alarm intentionally in the safe brake test, you set a small value to the
parameter No.13918, the tolerance of positional deviation, which is monitored during the safe brake test
(e.g. No.13918=1). The safe brake test is started by changing the signal STBT<G0193.2> to «1». If the
alarm DS0040 (BRAKE TEST ERROR) is generated during the safe brake test, this fact shows the safe
brake test works normally.
This test has to be done for each machine group.
This item is not necessary when all servo axes do not have brakes.
— 118 —

7.START-UP

B-64483EN-2/03

Example of making report
No.
1

2

Contents of Test
Test to confirm
whether brake test is
executed normally.
Test to confirm
whether an alarm is
generated when brake
test ends abnormally.

Test parameters
None
Tolerance of positional
deviation for Z axis,
Change the parameter
No.13918 from 100 to 1

Test Method
STBT=”0”→”1”
in JOG mode and no
alarm.
STBT=”0”→”1”
in JOG mode and no
alarm.

Result (Alarm)
No Alarm

DS0040

Return the value of parameter No.13918, which is changed when the test has been executed, to the
former value.
Though the power must be turned off by changing the parameter No.13918 usually, the power need
not be turned off because PW0000 alarm is not generated during the test mode. The DS0040 alarm
can be released by reset.

Safe speed monitoring test
Whether the safe speed monitoring operates normally is tested.
As for the safe speed monitoring test, you confirm whether speed for each axis and each spindle is
monitored correctly. In this test for a servo axis, JOG speed is changed intentionally to the big value that
exceeds the safe speed limit, and the axis is moved in JOG mode after the safe guard is opened. If the
alarm SV0494 and SV0476 (ILLEGAL SPEED CMD) are generated when the speed exceeds the limit,
this fact shows that the safe speed monitoring function works normally.
In this test for a spindle, the spindle is rotated at the speed, which exceeds the safety limit, in automatic
operation mode after the safe guard is opened. If the alarm SP0707 and SP9069 (ILLEGAL SPEED
CMD) are generated when the speed exceeds the limit, this fact shows that the safe speed monitoring
function works normally.
In the example, SV0494 and SV0476 alarm are generated when the axis is moved in JOG mode at
3000mm/min, which exceeds the safe speed limit of 2000mm/min. SP0707 and SP9069 alarm are
generated when the spindle is rotated in automatic operation mode at 50 1/min, which exceeds the safe
speed limit of 40 1/min.
This test has to be done for each axis, each spindle and the safe speed limit 1-4.
Example of making report
No.

Contents of Test

Test parameters

1

Test to confirm whether
safe speed limit 1
monitoring of X axis
works normally

JOG speed of each axis
Change the X axis
parameter No.1423 from
1000 to 3000

2

Test to confirm whether
the safe speed limit 1
monitoring of Y axis
works normally

JOG speed of each axis
Change the Y axis
parameter No.1423 from
1000 to 3000

3

Test to confirm whether
the safe speed limit 1
monitoring of Z axis
works normally

JOG speed of each axis
Change the Z axis
parameter No.1423 from
1000 to 3000

— 119 —

Test Method
Safe speed limit 1 is
selected. The safe guard is
opened, and X-axis is moved
in JOG mode. The speed
exceeds safe speed limit
1(2000 mm/min) of X-axis.
Safe speed limit 1 is
selected. The safe guard is
opened, and Y-axis is moved
in JOG mode. The speed
exceeds safe speed limit
1(2000 mm/min) of Y-axis.
Safe speed limit 1 is
selected. The safe guard is
opened, and Z-axis is moved
in JOG mode. The speed
exceeds safe speed limit
1(2000 mm/min) of Z-axis.

Result (Alarm)

SV0494
SV0476

SV0494
SV0476

SV0494
SV0476

7.START-UP

B-64483EN-2/03

No.

Contents of Test

Test parameters

4

Test to confirm whether
safe speed limit 2
monitoring of X axis o
works normally

JOG speed of each axis
Change the X axis
parameter No.1423 from
3000 to 5000

5

Test to confirm whether
safe speed limit 2
monitoring of Y axis
works normally

JOG speed of each axis
Change the Y axis
parameter No.1423 from
3000 to 5000

6

Test to confirm whether
safe speed limit 2
monitoring of Z axis
works normally

JOG speed of each axis
Change the Z axis
parameter No.1423 from
3000 to 5000

7

Test to confirm whether
safe speed limit 1
monitoring of the first
spindle S works
normally

None

Test Method
Safe speed limit 2 is
selected. The safe guard is
opened, and X-axis is moved
in JOG mode. The speed
exceeds safe speed limit
2(4000 mm/min) of X-axis.
Safe speed limit 2 is
selected. The safe guard is
opened, and Y-axis is moved
in JOG mode. The speed
exceeds safe speed limit
2(4000 mm/min) of Y-axis.
Safe speed limit 2 is
selected. The safe guard is
opened, and Z-axis is moved
in JOG mode. The speed
exceeds safe speed limit
2(4000 mm/min) of Z-axis.
Safe speed limit 1 is
selected. The safe guard is
opened, and spindle is
rotated by the command of
M3S50. The speed exceeds
safe speed limit 1(40 1/min)
of the first spindle. (In case
the gear ratio between
spindle and motor is 1:1.)

Result (Alarm)

SV0494
SV0476

SV0494
SV0476

SV0494
SV0476

SP0757
SP9069

Return the value of parameter, which is changed when the test has been executed, to the former
value.
Though the power must be turned off by generating SV494, SV476, SP0757 and SP9069 alarm
usually, the power need not be turned off because these can be released by reset during the test
mode.

Safety position error monitoring test
Whether the safety position error monitoring of each axis works normally is tested.
At first, you confirm whether safety position error monitoring works on stop condition normally. After
the safe guard is opened, the position deviation limit in stopped state, the parameter No.1839, is changed
to a low value (e.g. No.1839=0) intentionally. If the alarm SV0474 and SV1072 (EXCESS ERROR
(STOP)) are generated, this fact shows that the safety position error monitoring function works normally
on stop condition.
Next, you confirm whether safety position error monitoring works on moving condition normally. After
the safe guard is opened, the position deviation limit in moving state, the parameter No.1838, is set to a
low value (e.g. No.1838=300) intentionally. If the alarm SV0475 and SV1071 (EXCESS ERROR
(MOVE)) are generated when an axis is moved in JOG mode, this fact shows that the safety position error
monitoring function works normally on moving condition
This test has to be done for each axis.
Example of making report
No.

1

Contents of Test
Test to confirm whether
safety position error
monitoring on stop
condition for X axis
works correctly

Test parameters

Test Method

Position deviation limit for each
axis on stop condition
Change the X axis parameter
No.1839 from 2000 to 0

The safe guard is
opened and the
parameter is changed.

— 120 —

Result (Alarm)
SV0474
SV1072
MCC OFF

7.START-UP

B-64483EN-2/03

No.

2

3

4

5

6

Contents of Test
Test to confirm whether
safety position error
monitoring in moving
state of X axis works
correctly
Test to confirm whether
safety position error
monitoring on stop
condition for Y axis
works correctly
Test to confirm whether
safety position error
monitoring on moving
condition for Y axis
works correctly
Test to confirm whether
safety position error
monitoring on moving
condition for Z axis
works correctly
Test to confirm whether
safety position error
monitoring on moving
condition for Z axis
works correctly

Test parameters
Position deviation limit for each
axis on moving condition
Change the X axis parameter
No.1838 from 40000 to 300

Test Method
The safe guard is
opened, the parameter
is changed, and X-axis
is moved in JOG
mode.

Result (Alarm)
SV0475
SV1071
MCC OFF

Position deviation limit for each
axis on stop condition Change
the Y axis parameter No.1839
from 2000 to 0

The safe guard is
opened and the
parameter is changed.

SV0474
SV1072
MCC OFF

Position deviation limit for each
axis on moving condition
Change the Y axis parameter
No.1838 from 40000 to 300

The safe guard is
opened, the parameter
is changed and Y-axis
is moved in JOG
mode.

SV0475
SV1071
MCC OFF

Position deviation limit for each
axis on stop condition Change
the Z axis parameter No.1839
from 2000 to 0

The safe guard is
opened and the
parameter is changed.

SV0474
SV1072
MCC OFF

Position deviation limit for each
axis on moving condition
Change the Z axis parameter
No.1838 from 40000 to 300

The safe guard is
opened, the parameter
is changed and Z-axis
is moved in JOG
mode.

SV0475
SV1071
MCC OFF

Return the values of parameter No.1838 and No.1839, which are changed when the test is performed,
to the former value.
Though the power must be turned off by changing the parameter No.1838, 1839 and generating
SV474, SV475, SV1071 and SV1072 alarm usually, the power need not be turned off because these
alarms can be released by reset during the test mode.

Safe machine position monitoring test
Whether safe machine position monitoring works normally is tested.
After the safe guard is opened, an axis is moved in the plus direction in JOG mode. If the alarm SV0477
and SV0495 (ILLEGAL MACHINE POS) are generated when the axis exceeds the safe machine position
in the plus direction, this fact shows that the machine position monitoring function works normally.
As for minus direction, the similar test has to be done.
This test has to be done for each safe machine position 1-4 and each axis.
In case that the stored stroke check disturbs this test, it is necessary to change the value of the effective
stored stroke limit.
Example of making report
No.

Contents of Test

Test parameters

1

Test to confirm X plus
direction of safe
machine position
monitoring 1 works
correctly

Setting of stored stroke
limit 1
Change No.1320 X from
600.000 to 700.000

2

Test to confirm X
minus direction of safe
machine position
monitoring 1 works
correctly

Setting of stored stroke
limit 1
Change No.1321 X from
-200.000 to -350.000

— 121 —

Test Method
The safe guard is opened,
X-axis is moved in the plus
direction in JOG mode, and it
exceeds plus direction limit
(X=665.000) of safe machine
position 1.
The safe guard is opened,
X-axis is moved in the minus
direction in JOG mode, and it
exceeds minus direction limit
(X=-300.000) of safe machine
position 1.

Result (Alarm)

SV0477
SV0495

SV0477
SV0495

7.START-UP

B-64483EN-2/03

No.

Contents of Test

3

Test to confirm Y plus
direction of safe
machine position
monitoring 1 works
correctly

Setting of stored stroke
limit 1
Change No.1320 Y from
300.000 to 350.000

4

Test to confirm Y
minus direction of safe
machine position
monitoring 1 works
correctly

Setting of stored stroke
limit 1
Change No.1321 Y from
-180.000 to -200.000

5

Test to confirm Z plus
direction of safe
machine position
monitoring 1 works
correctly

Setting of stored stroke
limit 1
Change No.1320 Z from
180.000 to 200.000

6

Test to confirm Z
minus direction of safe
machine position
monitoring 1 works
correctly

Setting of stored stroke
limit 1
Change No.1321 Z from
-30.000 to -60.000

Test parameters

Test Method
The safe guard is opened,
Y-axis is moved in the plus
direction in JOG mode, and it
exceeds plus direction limit
(Y=344.000) of safe machine
position 1.
The safe guard is opened,
Y-axis is moved in the minus
direction in JOG mode, and it
exceeds minus direction limit
(Y=-190.000) of safe machine
position 1.
The safe guard is opened,
Z-axis is moved in the plus
direction in JOG mode, and it
exceeds plus direction limit
(Z=195.000) of safe machine
position 1.
The safe guard is opened,
Z-axis is moved in the minus
direction in JOG mode, and it
exceeds minus direction limit
(Z=-50.000) of safe machine
position 1.

Result (Alarm)

SV0477
SV0495

SV0477
SV0495

SV0477
SV0495

SV0477
SV0495

Return the value of parameter, which is changed when the test is performed, to the former value.
Though the power must be turned off by generating SV477 and SV495 alarm usually, the power
need not be turned off because these can be released by reset during the test mode.

Safety position switch test
Whether the state of position switch signal is changed normally corresponding to the present position of
an axis is tested
At first, an axis is moved slowly in JOG mode in the area over the maximum value or under the minimum
value of the safety position switch. If the output signal SPSxx(PMC, DCSPMC) of the safety position
switch is «0», this fact shows this function works normally.
Next, an axis is moved slowly in JOG mode within the area between the maximum value and the
minimum value of the safety position switch. If the output signal SPSxx(PMC, DCSPMC) of the safety
position switch is «1», this fact shows this function works normally.
This test has to be done for each safety position switch signal.
This item is not necessary when the safety position switch is not used.
Example of making report
No.

1

2

Contents of Test
Test to confirm whether the
signal output correctly when
X-axis moves over the
maximum value of the first
position switch range.
Test to confirm whether the
signal output correctly when
X-axis moves under the
minimum value of the first
position switch range.

Test signals

None

None

— 122 —

Test Method
X axis is moved in the plus
direction in JOG mode, and the
position exceeds the maximum
setting value X450.0 of the first
position switch.
X axis is moved in the minus
direction in JOG mode, and the
position goes down the
minimum setting value X0.0 of
the first position switch.

Result (Alarm)
SPS01=”0”
(PMC and DCSPMC)

SPS01=”0”
(PMC and DCSPMC)

7.START-UP

B-64483EN-2/03

No.

3

4

5

6

Contents of Test
Test to confirm whether the
signal is output correctly
when X-axis moves
between the maximum and
minimum value of the first
position switch range.
Test to confirm whether the
signal is output correctly
when X-axis moves over
the maximum value of the
second position switch
range.
Test to confirm whether the
signal is output correctly
when X-axis moves under
the minimum value of the
second position switch
range.
Test to confirm whether the
signal is output correctly
when X-axis moves
between the maximum and
minimum value of the
second position switch
range.

Test signals

Test Method

Result (Alarm)

None

X axis is moved in JOG mode
within the setting range of the
first position switch from 0 to
450.0.

SPS01=”1”
(PMC and DCSPMC)

None

X axis is moved in the plus
direction in JOG mode, and the
position exceeds the maximum
setting value X515.2 of the
second position switch.

SPS02=”0”
(PMC and DCSPMC)

None

X axis is moved in the minus
direction in JOG mode, and the
position goes down the
minimum setting value X10.2 of
the second position switch.

SPS02=”0”
(PMC and DCSPMC)

None

X axis is moved in JOG mode
within the setting range of the
second position switch from
10.2 to 515.2.

SPS02=”1”
(PMC and DCSPMC)

As for this test, it is not necessary to turn off the power.

7.3.4

About the Parameter, the Alarm, and the Signal that the
Specification Changes

The parameters, the alarms, and the signals, which need to be turned off the power usually when they are
operated but need not be turned off the power during Acceptance Test mode, are as follows.

1

Parameter

The following safety parameters need not to be turned off the power, because the power off alarm
(PW0000) is not generated even if the value is changed during the Acceptance Test mode (when setting it
to parameter DTS (No.13805#2)= ‘1′).
The changed value becomes effective immediately when the parameter value is changed.

2

1838

Position deviation limit for each axis in moving state during safety check

1839

Position deviation limit for each axis in stopped state during safety check

1946

MCC off Test timer

13918

Tolerance value for the positional deviation amount checked by the brake test

Alarm

After removing the cause of the alarm, the following alarms can be released by resetting it during
Acceptance Test mode. Therefore, it is not necessary to be turned off the power by this alarm.
Number

Message

Description

SV0474 EXCESS ERROR (STOP:SV) The Servo detected that the positional deviation during stopping exceeded
the parameter (No. 1839, No.1842) setting value.

— 123 —

7.START-UP
Number

B-64483EN-2/03

Message

Description

SV0475 EXCESS ERROR
The Servo detected that the positional deviation during traveling exceeded
(MOVE:SV)
the parameter (No. 1838, No.1841) setting value
SV0476 ILLEGAL SPEED CMD. (SV) The Servo detected that the specified speed on the axis exceeded the
safety speed (parameter No. 13821 to 13824, No. 13826 to 13829) during
safety monitoring (the safety check request signal (*VLDVx) is 0).
When the guard is open, confirm a proper value is set to parameter (No.
13821 to 13824, No. 13826 to 13829), and the operation is done within the
safety speed.
SV0477 ILLEGAL MACHINE
The Servo detected that the machine position on the axis is not in the safety
POS.(SV)
area (parameter No.13831 to 13838) during safety monitoring (the safety
check request signal (*VLDVx) is 0).
When the guard is open, confirm a proper value is set to parameter
No.13831 to 13838 and do an operation in the safety area.
The safe machine position monitoring is done after the machine reference
position is established.
SV0488 SELF TEST OVER TIME
MCC off Test was not completed within the specified time (parameter No.
1946).
Check the MCC contact.
SV0494 ILLEGAL SPEED CMD.
The CNC detected that the specified speed exceeded the setting
(CNC)
(parameter No. 13821 to 13824 in case of position control, No. 13826 to
13829 in case of velocity control) during safety monitoring (the safety check
request signal (*VLDVx) is 0).
When the guard is open, confirm a proper value is set to parameter (No.
13821 to 13824, No. 13826 to 13829), and the operation is done within the
safety speed.
SV0495 ILLEGAL MACHINE
The CNC detected that the machine position is not in the safety area
POS.(CNC)
(parameter No.13831 to 13838) during safety monitoring (the safety check
request signal (*VLDVx) is 0).
When the guard is open, confirm proper values is set to parameter
No.13831 to 13838, and operation is done in the safety area.
The safe machine position monitoring is done for the axis whose machine
reference position is established.
SV1071 EXCESS ERROR (MOVE:
The CNC detected that the positional deviation during moving exceeded the
CNC)
parameter (No.1838, No.1841) setting value.
SV1072 EXCESS ERROR
The CNC detected that the positional deviation during stopping exceeded
(STOP:CNC)
the parameter (No.1839, No.1842) setting value.
SV1068 DUAL CHECK SAFTY
The alarm which shut off the MCC (system common) occurred in the dual
ALARM
check safety function.
SP0757 SAFETY SPEED OVER
The CNC CPU detected that during safety monitoring (the safety check
request signal (*VLDPs) is 0), the spindle motor speed was greater than the
safety speed (parameter No. 4372, 4438, 4440, or 4442) on the n-th
spindle. Operate within the safety speed.
SP9069 SAFETY SPEED OVER
1 Check the safety speed parameter (parameter No.4372/
No.4438/No.4440 /No.4442).
2 Perform an operation at a speed not exceeding the safety speed.
PW0010 SAFE I/O CROSS CHECK
The DCS PMC detected the error of system define safe I/O in the I/O cross
ERROR(DCS PMC)
check function.
PW0011 SAFE I/O CROSS CHECK
The PMC detected the error of system define safe I/O in the I/O cross
ERROR(PMC)
check function.
PW0012 USER I/O CROSS CHECK
The DCS PMC detected the error of user define safe I/O in the I/O cross
ERROR(DCS PMC)
check function.
PW0013 USER I/O CROSS CHECK
The PMC detected the error of user define safe I/O in the I/O cross check
ERROR(PMC)
function.

— 124 —

7.START-UP

B-64483EN-2/03

NOTE
Release these alarms by turning on the reset signals ERS(Gn008.6) of all paths
or pushing the reset key of MDI key, because the alarm of PW0010 to PW0014
is generated in all paths.
3

Signals

The following MCC off signals become from «1» to «0» after the alarm is generated, but during
Acceptance Test mode these signals become from «0» to «1» when the alarm is released by reset.
The power must be turned off when the low voltage alarm of the amplifier is generated, if * ESP on the
servo or spindle amplifier is not input when MCC is turned off by these MCC off signals. * ESP on the
amplifier must be turned off so as not to cause a low voltage alarm during Acceptance Test mode when
MCC is turned off.

MCC Off signal
*DCALM<PMC:F0748.7><DCSPMC:F000.7>(for all system)
When SV0488, PW0010, PW0011 PW0012 and PW0013 alarm are generated, this signal is changed
from «1» to «0» in Acceptance Test mode. Moreover, this signal is changed from «0» to «1» at the same
time when the alarm is released by reset.

*MCFVx<PMC:Fn752.0~7><DCSPMC:F(004+m).0~7>(for each axis)
When SV0474, SV0475, SV1071 and SV1072 alarm are generated, this signal is changed from «1» to «0»
at once in Acceptance Test mode. Moreover, when SV0476, SV0477, SV0494, and SV0495 alarm is
generated, this signal is changed from «1» to «0» when the axis doesn’t become a stop condition (When
the speed exceeds the parameter No.13825) within MCC off timer (parameter No.1948). This signal is
changed from «0» to «1» at the same time when these alarms are released by reset.

*MCFPs<PMC:Fn753.0~3><DCSPMC:F(005+m).0~3>(for each spindle)
When SP0757 and SP9069 alarm are generated, this signal is changed from «1» to «0» if the axis, of
which alarm is generated, is accelerated or the speed does not go down the stop check level (No.4448) in
Acceptance Test mode.
Moreover, this signal is changed from «0» to «1» at the same time when the alarm is released by reset.

— 125 —

8.ALARM MESSAGE

8

B-64483EN-2/03

ALARM MESSAGE

Alarm
When Dual Check Safety function finds out some abnormal condition in safety check and generates an
alarm, the alarm can be reset by reset operation if the abnormal condition is cleared.
However, if the problem related with the system is found and an alarm is generated when unfit condition
is found by double check function of signals or so on, alarm cannot be cancelled by a reset. In this case, to
cancel the alarms, turn off the power. After removing the cause of the alarm, turn on the power again.

Servo Alarms (SV alarm)
No.

Message

Description

SV0474 EXCESS ERROR (STOP:SV)
SV0475
SV0476

SV0477

SV0478

SV0481
SV0484

SV0488

The Servo detected that the positional deviation during stopping
exceeded the parameter (No. 1839, No.1842) setting value.
EXCESS ERROR (MOVE:SV)
The Servo detected that the positional deviation during moving
exceeded the parameter (No. 1838, No.1841) setting value
ILLEGAL SPEED CMD. (SV)
The Servo detected that the specified speed on the axis exceeded the
safety speed (parameter No. 13821 to 13824, No. 13826 to 13829)
during safety monitoring (the safety check request signal (*VLDVx) is
0).
When the guard is open, confirm a proper value is set to parameter
(No. 13821 to 13824, No. 13826 to 13829), and the operation is done
within the safety speed.
ILLEGAL MACHINE POS.(SV)
The Servo detected that the machine position on the axis is not in the
safety area (parameter No.13831 to 13838) during safety monitoring
(the safety check request signal (*VLDVx) is 0).
When the guard is open, confirm a proper value is set to parameter
No.13831 to 13838 and do an operation in the safety area.
The safe machine position monitoring is done after the machine
reference position is established.
ILLEGAL AXIS DATA (SV)
The Servo detected that an error occurred on the axis during axis
data transfer.
If the alarm occurs after performing axis number setting for the servo
amplifier, set parameter No.2212#4 to 1, and reset the bit to 0, and
then turn off the power to the entire system.
When a multiaxis amplifier is used, the alarm may not be cleared even
if the above operation is performed once. In this case, repeat the
operation on the axis for which the alarm persists until it is cleared.
In the other case, replace the servo amplifier if the alarm occurred.
SAFETY PARAM ERROR(SV)
Error detected for safety parameter check function by Servo.
SAFETY FUNCTION ERROR (SV) An error occurred in safety functions of Servo:
1. The Servo or CNC detected the inexecution of servo software
safety functions.
2. A mismatch between the servo software results of the safety
functions and the CNC results of them occurred.
3. An error occurred in a servo CPU test.
4. An error occurred in a servo RAM test.
In case of 1, 3 and 4, replace the axis control card.
SELF TEST OVER TIME
MCC off Test was not completed within the specified time (parameter
No. 1946).
Check the MCC contact.

— 126 —

8.ALARM MESSAGE

B-64483EN-2/03

No.

Message

SV0489 SAFETY PARAM ERROR(CNC)

SV0490 SAFETY FUNCTION ERROR
(CNC)

SV0494 ILLEGAL SPEED CMD. (CNC)

SV0495 ILLEGAL MACHINE POS.(CNC)

SV0496 ILLEGAL AXIS DATA (CNC)

SV0498 AXIS NUMBER NOT SET (CNC)

SV1068 DUAL CHECK SAFETY ALARM
SV1069 EXCESS ERROR (SERVO OFF:
CNC)
SV1070 EXCESS ERROR (SERVO
OFF:SV DSP)
SV1071 EXCESS ERROR (MOVE: CNC)
SV1072 EXCESS ERROR (STOP:CNC)
SV1073 SAFETY SPEED ZERO ERROR
(CNC)
SV1074 SAFETY SPEED ZERO ERROR
(SV)

Description
Error for safety parameter check function is detected on n-th axis by
CNC.
Execute memory all clear according to the following procedure.
1. Refer to the «Appendix J.3 DATA TYPES TO BE CLEARED» in
the MAINTENANCE MANUAL (B-64485, B-64525, B-64575) and
confirm the data that will be cleared.
2. Output the necessary data to an external device.
3. Execute memory all clear.
4. Input the necessary data from the external device.
An error occurred in safety functions of CNC:
1. The Servo detected the inexecution of CNC safety functions.
2. A mismatch between the CNC results of the safety functions and
the Servo results of them occurred.
Replace the CPU card.
The CNC detected that the specified speed exceeded the setting
(parameter No. 13821 to 13824 in case of position control, No. 13826
to 13829 in case of velocity control) during safety monitoring (the
safety check request signal(*VLDVx) is 0).
When the guard is open, confirm a proper value is set to parameter
(No. 13821 to 13824, No. 13826 to 13829), and the operation is done
within the safety speed.
The CNC detected that the machine position is not in the safety area
(parameter No.13831 to 13838) during safety monitoring (the safety
check request signal(*VLDVx) is 0).
When the guard is open, confirm proper values is set to parameters
Nos. 13831 to 13838, and operation is done in the safety area.
The safe machine position monitoring is done for the axis whose
machine reference position is established.
The CNC detected that an error occurred during axis data transfer.
If the alarm occurs after performing axis number setting for the servo
amplifier, set parameter No.2212#4 to 1, and reset the bit to 0, and
then turn off the power to the entire system.
When a multiaxis amplifier is used, the alarm may not be cleared even
if the above operation is performed once. In this case, repeat the
operation on the axis for which the alarm persists until it is cleared.
In the other case, replace the servo amplifier where the alarm
occurred.
The CNC detected that the axis number is not set with the servo
amplifier.
Turn off the power to the entire system. Then an axis number is
automatically set.
The alarm which shut off the MCC(system common) occurred in the
dual check safety function.
The CNC detected that the positional deviation at servo off time
exceeded the parameter (No. 1840) setting value.
The Servo detected that the positional deviation at servo off time
exceeded the parameter (No. 1840) setting value.
The CNC detected that the positional deviation during moving
exceeded the parameter (No.1838, No.1841) setting value.
The CNC detected that the positional deviation during stopping
exceeded the parameter (No.1839, No.1842) setting value.
The CNC detected that the axis position exceeded the safety speed
zero monitoring width (parameter No.13844).
The Servo detected that the axis position exceeded the safety speed
zero monitoring width (parameter No.13844).

— 127 —

8.ALARM MESSAGE

Spindle Alarms (SP alarm)
No.

Message

SP0755 SAFETY FUNCTION ERROR

SP0756 ILLEGAL AXIS DATA

SP0757 SAFETY SPEED OVER

SP1700 SAFETY PARAM ERROR
SP1701 SAFETY SPEED ZERO
ERROR(CNC)

B-64483EN-2/03

Description
An error occurred in safety functions of the n-th spindle:
The CNC detected that the safely function of the n-th spindle was
not executed.
A mismatch between the CNC results of the safety functions and
the Spindle results of them occurred.
The CNC CPU detected an error on the n-th spindle during spindle
data transfer.
If this alarm is issued after the configuration of spindle amplifiers is
changed, set the spindle numbers to the spindle amplifiers (set bit 7 of
parameter No. 4541 to 1, then to 0 again, and turn the power to the
entire system off).
The CNC CPU detected that during safety monitoring (the safety
check request signal(*VLDPs) is 0), the spindle motor speed exceeds
the safety speed (parameter No. 4372, 4438, 4440, or 4442, the
safety spindle speed limit override signal SPOV1s to SPOV4s) on the
n-th spindle. Operate within the safety speed.
The CNC CPU detected error in safety parameter check function.
The CNC detected that the spindle motor position exceeded the
safety speed zero monitoring width (parameter No.4460).

Alarms requiring power to be turned off (PW alarm)
No.

Message

PW0008 CPU SELF TEST ERROR(DCS
PMC)
PW0009 CPU SELF TEST ERROR(PMC)
PW0010 SAFE I/O CROSS CHECK
ERROR(DCS PMC)
PW0011 SAFE I/O CROSS CHECK
ERROR(PMC)
PW0012 USER I/O CROSS CHECK
ERROR(DCS PMC)
PW0013 USER I/O CROSS CHECK
ERROR(PMC)
PW0014 CPU TEST ALARM (CNC)
PW0015 SAFETY PARAM ERROR
PW0016 RAM CHECK ERROR
PW0017 INEXECUTION OF SAFETY
FUNCTIONS
PW0018 CRC CHECK ERROR
PW0023 ACCEPTANCE TEST MODE
TIME OVER

Description
The DCS PMC detected the error in the CPU self test function.
The PMC detected the error in the CPU self test function.
On the DCS PMC side, the I/O cross check function detected an error
in system definition safety-related I/O.
On the PMC side, the I/O cross check function detected an error in
system definition safety-related I/O.
On the DCS PMC side, the I/O cross check function detected an error
in programmable safety I/O.
On the PMC side, the I/O cross check function detected an error in
programmable safety I/O.
An error occurred in a CNC CPU test.
The CNC detected error for safety parameter check function other
than the servo axis type and the spindle axis type parameter..
The CNC detected error in RAM check function.
The CNC detected abnormal condition in the execution of CNC safety
functions.
The CNC detected the CRC check error.
Because 24 hours have passed away after Acceptance Test mode
DTS (No.13805#2=’1’) is selected, the setting of DTS was returned to
‘0’. When the power turns off and on, Acceptance Test mode is
cancelled.
DCS PMC CPU test failed.
PMC CPU test failed.
The DCS PMC detected an error in safety parameter.

PW0024 CPU TEST ALARM(DCS PMC)
PW0025 CPU TEST ALARM(PMC)
PW0026 SAFETY PARAM ERROR(DCS
PMC)
PW0027 SAFETY PARAM ERROR(PMC) The PMC detected an error in safety parameter.
PW0028 RAM CHECK ERROR(DCS
The DCS PMC detected RAM check error.
PMC)
PW0029 RAM CHECK ERROR(PMC)
The PMC detected RAM check error.

— 128 —

8.ALARM MESSAGE

B-64483EN-2/03

No.

Message

Description

PW0030 INEXECUTION OF SAFETY
FUNCTIONS(DCS PMC)
PW0031 INEXECUTION OF SAFETY
FUNCTIONS(PMC)
PW0032 CRC CHECK ERROR(DCS
PMC)
PW0033 CRC CHECK ERROR(PMC)
PW0034 SAFETY PARAM SETTING
ERROR(DCS PMC)
PW0035 SAFETY PARAM SETTING
ERROR(PMC)

The PMC detected the safety functions of the DCS PMC stopped.
The DCSPMC detected CRC check error.
The PMC detected CRC check error.
The DCS PMC detected an error in safety parameter setting.
The PMC detected an error in safety parameter setting.

Other alarms (DS alarm)
No.

The DCS PMC detected the safety functions of the PMC stopped.

DS0022

Message
DUAL CHECK SAFETY IS NOT
WORKED

Description

DS0039

BRAKE TEST ERROR

A brake test did not terminate normally. For the cause of this
alarm, check the number displayed for diagnosis No. 3701.

DS0040

n AXIS BRAKE TEST ERROR

DS0081

ACCEPTANCE TEST MODE IS
SELECTED

An error was detected in the n axis during a brake test, and the brake
test did not terminate normally. For the cause of this alarm, check the
number displayed for diagnosis No. 3701.
Acceptance Test mode (No.13805#2) is selected in Dual Check
Safety.

Dual Check Safety function is unavailable by setting bit 6 (DCE) of
parameter No. 1902 to 0. This alarm can be reset by pressing the
“CAN” and “RESET” MDI keys simultaneously.

Serial Spindle Alarms
No.

Message

SP
indication

SP9016 RAM ERROR

16

SP9069 SAFETY SPEED
OVER

69

SP9070 ILLEGAL AXIS
DATA

70

SP9071 SAFETY
PARAMETER
ERROR

71

Remedy

Description

Replace the Spindle amplifier
control printed-circuit board.
1 Check the safety speed
parameter (parameter No.4372/
No.4438/No.4440 /No.4442).
2 Check the safety spindle speed
limit override signal (SPOV1s to
SPOV4s)
3 Perform operation at a speed
not exceeding the safety speed.

An error occurred in a spindle RAM test.
Replace spindle amplifier.
The spindle detected that the speed of
the spindle motor exceeded the safety
speed (parameter No.
4372/No.4438/No.4440 /No.4442, the
safety spindle speed limit override
signal SPOV1s to SPOV4s) during
safety monitoring (the safety check
request signal (*VLDPs) is 0).
The spindle detected an error during
spindle data transfer.

Check the connection status of
the spindle amplifier.
If this alarm is issued after the
configuration of spindle amplifiers
is changed, set the spindle
numbers to the spindle amplifiers
(set bit 7 of parameter No. 4541
to 1, then to 0 again, and turn the
power to the entire system off).
Set the safety parameter again. The spindle detected a safety
The following are spindle safety parameter error.
parameters. (No.4372/No.4438
/No.4440/No.4442/No.4448
/No.4545/No.4460/No.4462)

— 129 —

8.ALARM MESSAGE
No.

B-64483EN-2/03

SP
indication

Message

Description

SP9072 MISMATCH
RESULT OF
MOTOR SPEED
CHECK
SP9074 CPU TEST
ERROR

72

Replace the Spindle amplifier
control printed-circuit board.

The spindle detected a mismatch
between the CNC result of the motor
speed check and the spindle result of it.

74

Replace the Spindle amplifier
control printed-circuit board.

An error occurred in a spindle amplifier
CPU test.

SP9075 CRC ERROR

75

Replace the Spindle amplifier
control printed-circuit board.
Replace the Spindle amplifier
control printed-circuit board.

An error occurred in a spindle ROM
CRC test.
Any safety function was not executed.

Replace the Spindle amplifier
control printed-circuit board.

The spindle detected a mismatch
between the CNC result of the axis
number check and the spindle result of
it.
The spindle CPU detected a mismatch
between the CNC result of the safety
parameters check and the spindle result
of it.

76
SP9076 INEXECUTION
OF SAFETY
FUNCTIONS
77
SP9077 MISMATCH
RESULT OF AXIS
NUMBER CHECK

Remedy

SP9078 MISMATCH
RESULT OF
SAFETY
PARAMETER
CHECK
SP9079 INITIAL TEST
ERROR
SP9135 SAFETY SPEED
ZERO
ERROR(SP)

78

SP9136 MISMATCH
RESULT OF
SAFETY SPEED
ZERO
CHECK(SP)
SP9148 AXIS NUMBER
NOT SET

d6

79
d5

E8

Set the safety parameter again.
The following are spindle safety
parameters. (No.4372/No.4438
/No.4440/No.4442/No.4448
/No.4545)
Replace the Spindle amplifier
control printed-circuit board.
1 Check the safety speed zero
monitoring width parameter
(parameter No.4460).
2 The safety speed zero
monitoring should be activated
after confirming the stop of a
spindle.
The safety speed zero monitoring
should be activated after
confirming the stop of a spindle.

The safety functions at power-up for
spindle were not executed.
The spindle detected that the spindle
motor position exceeded the safety
speed zero monitoring width (parameter
No.4460).

A mismatch between the CNC results of
the safety functions and the Spindle
results of them occurred.

The system detected that no spindle
The spindle number is
automatically set. Turn the power number was set for the spindle
amplifier.
to the entire system off.

Boot System Alarms
Message

Description

CRC CHECK ERROR:NC BASIC. CRC error occurs in CNC BASIC ROM. Please install CNC BASIC ROM in flash
memory again.

Servo Alarms to turn MCC off Signal (*MCFVx) to “0”

In case that the parameter No.10500#0 (AVM) is set to “0”, the MCC off Signal (*MCFVx) of an alarm
axis is turned to “0” immediately when the alarm related to data communication or detector occurs. The
following table shows this kind of servo alarm.
Number
SV0301

Message
APC ALARM: COMMUNICATION
ERROR

Description
Since the absolute-position detector caused a communication
error, the correct machine position could not be obtained. (data
transfer error)
The absolute-position detector, cable, or servo interface module is
thought to be defective.

— 130 —

8.ALARM MESSAGE

B-64483EN-2/03

Number
SV0302

SV0303

SV0304

SV0305

SV0306
SV0307
SV0360
SV0361
SV0362
SV0363
SV0364
SV0365
SV0366
SV0367
SV0368
SV0369
SV0380
SV0381
SV0382
SV0383
SV0384
SV0385
SV0386
SV0387
SV0445
SV0448

Message

Description

APC ALARM: OVER TIME ERROR

Since the absolute-position detector caused an overtime error, the
correct machine position could not be obtained. (data transfer
error)
The absolute-position detector, cable, or servo interface module is
thought to be defective.
APC ALARM: FRAMING ERROR
Since the absolute-position detector caused a framing error, the
correct machine position could not be obtained. (data transfer
error)
The absolute-position detector, cable, or servo interface module is
thought to be defective.
APC ALARM: PARITY ERROR
Since the absolute-position detector caused a parity error, the
correct machine position could not be obtained. (data transfer
error)
The absolute-position detector, cable, or servo interface module is
thought to be defective.
APC ALARM: PULSE ERROR
Since the absolute-position detector caused a pulse error, the
correct machine position could not be obtained.
The absolute-position detector or cable is thought to be defective.
APC ALARM: OVER FLOW ERROR Since the amount of positional deviation overflowed, the correct
machine position could not be obtained.
APC ALARM: MOVEMENT EXCESS Since the machine moved excessively, the correct machine
ERROR
position could not be obtained.
ABNORMAL CHECKSUM(INT)
The checksum alarm occurred on the built–in Pulsecoder.
ABNORMAL PHASE DATA(INT)
The phase data abnormal alarm occurred on the built–in
Pulsecoder.
ABNORMAL REV. DATA(INT)
The speed count abnormal alarm occurred on the built-in
Pulsecoder.
ABNORMAL CLOCK(INT)
The clock alarm occurred on the built–in Pulsecoder.
SOFT PHASE ALARM(INT)
A digital servo soft detected an abnormality on the built in
Pulsecoder.
BROKEN LED(INT)
The digital servo software detected abnormal data on the built–in
Pulsecoder.
PULSE MISS(INT)
A pulse error occurred on the built–in Pulsecoder.
COUNT MISS(INT)
A count error occurred on the built–in Pulsecoder.
SERIAL DATA ERROR(INT)
The communications data could not be received from the built–in
Pulsecoder.
DATA TRANS. ERROR(INT)
A CRC error or stop bit error occurred in the communications data
from the built–in Pulsecoder.
BROKEN LED(EXT)
Separate detector error
ABNORMAL PHASE (EXT)
An abnormal alarm in the position data occurred on the separate
linear scale.
COUNT MISS(EXT)
A count error occurred on the separate detector.
PULSE MISS(EXT)
A pulse error occurred on the separate detector.
SOFT PHASE ALARM(EXT)
The digital servo software detected abnormal data on the
separate detector.
SERIAL DATA ERROR(EXT)
The communications data could not be received from the separate
detector.
DATA TRANS. ERROR(EXT)
A CRC error or stop bit error occurred in the communications data
from the separate detector.
ABNORMAL ENCODER(EXT)
An abnormality occurred on a separate detector. For more
information, contact the scale manufacturer.
SOFT DISCONNECT ALARM
The digital servo software detected a disconnected Pulsecoder.
UNMATCHED FEEDBACK ALARM The sign of the feedback signal from the separate detector is
opposite to that from the feedback signal from the built–on
Pulsecoder.

— 131 —

8.ALARM MESSAGE
Number

B-64483EN-2/03

Message

SV0453

SPC SOFT DISCONNECT ALARM

SV0460

FSSB DISCONNECT

SV0462

SEND CNC DATA FAILED

SV0463

SEND SLAVE DATA FAILED

SV0474

EXCESS ERROR(STOP:SV )

SV0475

EXCESS ERROR(MOVE:SV)

SV1067

FSSB:CONFIGURATION
ERROR(SOFT)

SV5134

FSSB:OPEN READY TIME OUT

SV5136

FSSB:NUMBER OF AMP. IS
INSUFFICIENT

SV5137

FSSB:CONFIGURATION ERROR

SV5139

FSSB : ERROR

SV5197

FSSB:OPEN TIME OUT

SV5311

FSSB:ILLEGAL CONNECTION

Description
Software disconnection alarm of the pulse coder.
Turn off the power to the CNC, then remove and insert the pulse
coder cable. If this alarm is issued again, replace the pulse coder.
The FSSB connection was discontinued. Or, the FSSB connection
cable was disconnected or broken.
The amplifier was turned off.
In the amplifier, the low-voltage alarm occurred.
The correct data could not be received on a slave side because of
the FSSB communication error.
The correct data could not be received in the servo software
because of the FSSB communication error.
The Servo detected that the positional deviation during stopping
exceeded the parameter (No. 1839, No.1842) setting value.
The Servo detected that the positional deviation during moving
exceeded the parameter (No. 1838, No.1841) setting value.
The FSSB configuration error occurred. (Detected in software).
Or, there is a difference in the type of connected amplifier and
FSSB setting.
In the initialization, the FSSB could not be in an open ready sate.
The servo card is thought to be defective.
The number of amplifier identified by the FSSB is insufficient than
the number of control axes. Or, the setting of the number of axes
or the amplifier connection is in error.
An FSSB configuration error occurred.
The connecting amplifier type is incompatible with the FSSB
setting value.
Servo initialization did not terminate normally.
The optical fiber cable may be defective, or there may be an error
in connection to the amplifier or another module.
Check the optical cable and the connection status.
The initialization of the FSSB was completed, but it could not be
opened. Or, the connection between the CNC and the amplifier in
is incorrect.
The current control cycles (HRV) set for FSSB lines are not the
same. Set the same current control cycle for the FSSB lines.

Spindle Alarms to turn MCC off Signal (*MCFPs) to “0”

In case that the parameter No.10500#1 (APM) is set to “0”, the MCC off Signal (*MCFPs) of an alarm
spindle is turned to “0” immediately when the alarm related to data communication or detector occurs.
The following table shows this kind of spindle alarm.
Number
SP1220
SP1225
SP1226
SP1227
SP1228
SP1229
SP1245
SP1246

Message

Description

NO SPINDLE AMP.

Either the cable connected to a serial spindle amplifier is broken,
or the serial spindle amplifier is not connected.
CRC ERROR (SERIAL SPINDLE)
A CRC error (communications error) occurred in communications
between the CNC and the serial spindle amplifier.
FRAMING ERROR (SERIAL
A framing error occurred in communications between the CNC
SPINDLE)
and the serial spindle amplifier.
RECEIVING ERROR (SERIAL
A receive error occurred in communications between the CNC and
SPINDLE)
the serial spindle amplifier.
COMMUNICATION ERROR (SERIAL A communications error occurred between the CNC and the serial
SPINDLE)
spindle amplifier.
COMMUNICATION ERROR SERIAL A communications error occurred between serial spindle
SPINDLE AMP.
amplifiers (motor Nos. 1 and 2, or motor Nos. 3–4).
COMMUNICATION DATA ERROR
A communication data error was detected on the CNC.
COMMUNICATION DATA ERROR
A communication data error was detected on the CNC.

— 132 —

8.ALARM MESSAGE

B-64483EN-2/03

Number
SP1247
SP1976

Message

Description

SP1980
SP1981

COMMUNICATION DATA ERROR
SERIAL SPINDLE
COMMUNICATION ERROR
SERIAL SPINDLE
COMMUNICATION ERROR
SERIAL SPINDLE
COMMUNICATION ERROR
SERIAL SPINDLE
COMMUNICATION ERROR
SERIAL SPINDLE AMP. ERROR
SERIAL SPINDLE AMP. ERROR

SP1982

SERIAL SPINDLE AMP. ERROR

SP1983
SP1987

SERIAL SPINDLE AMP. ERROR
SERIAL SPINDLE CONTROL
ERROR
MOTOR SENSOR DISCONNECTED The motor sensor feedback signal is disconnected.
1-ROT MOTOR SENSOR ERROR
The one-rotation signal of the motor sensor cannot be correctly
detected.
NO 1-ROT MOTORSENSOR
The one-rotation signal of the motor sensor is not generated.
MOTOR SENSOR SIGNAL ERROR An irregularity was detected in a motor sensor feedback signal.

SP1977
SP1978
SP1979

SP9073
SP9081
SP9082
SP9083

A communication data error was detected on the CNC.
The amplifier No. could not be set to the serial spindle amplifier.
An error occurred in the spindle control software.
A time–out was detected during communications with the serial
spindle amplifier.
The communications sequence was no longer correct during
communications with the serial spindle amplifier.
Defective SIC–LSI on serial spindle amplifier
An error occurred during writing the data to SIC–LSI on the
spindle amplifier side.
An error occurred during reading of the data from SIC–LSI on the
spindle amplifier side.
Could not clear alarm on the spindle amplifier side.
Defective SIC–LSI on the CNC

Reference of Dual Check Alarm message
Dual Check Alarm by Servo CPU and CNC CPU
No.
SV0474
SV0475
SV0476
SV0477
SV0478
SV0481
SV0484
SV1070
SV1074

Message (Servo)

No.

EXCESS ERROR(STOP:SV )
EXCESS ERROR(MOVE:SV)
ILLEGAL SPEED CMD.(SV )
ILLEGAL MACHINE POS.(SV)
ILLEGAL AXIS DATA(SV)
SAFETY PARAM ERROR(SV)
SAFETY FUNCTION ERROR(SV)
EXCESS ERROR(SERVO OFF:SV)
SAFETY SPEED ZERO ERROR (SV)

SV1072
SV1071
SV0494
SV0495
SV0496
SV0489
SV0490
SV1069
SV1073

Message (CNC)
EXCESS ERROR(STOP:CNC)
EXCESS ERROR(MOVE:CNC)
ILLEGAL SPEED CMD.(CNC)
ILLEGAL MACHINE POS.(CNC)
ILLEGAL AXIS DATA(CNC)
SAFETY PARAM ERROR(CNC)
SAFETY FUNCTION ERROR(CNC)
EXCESS ERROR(SERVO OFF:CNC)
SAFETY SPEED ZERO ERROR (CNC)

Dual Check Alarm by Spindle CPU and CNC CPU
No.
SP9069
(69)
SP9070
(70)
SP9071
(71)

Message (Spindle)

No.

Message (CNC)

SAFETY SPEED OVER

SP0757

SAFETY SPEED OVER

ILLEGAL AXIS DATA

SP0756

ILLEGAL AXIS DATA

SAFETY PARAMETER ERROR

SP1700

SAFETY PARAM ERROR

SP9072
(72)
SP9076
(76)

MISMATCH RESULT OF MOTOR SPEED
CHECK
INEXECUTION OF SAFETY FUNCTIONS

SP0755

SAFETY FUNCTION ERROR

SP9077
(77)

MISMATCH RESULT OF AXIS NUMBER
CHECK

SP9078
(78)

MISMATCH RESULT OF SAFETY
PARAMETER CHECK

— 133 —

8.ALARM MESSAGE
No.

B-64483EN-2/03

Message (Spindle)

No.

SP9136
(d6)

MISMATCH RESULT OF SAFETY SPEED
ZERO CHECK(SP)

SP9135
(d5)

SAFETY SPEED ZERO ERROR(SP)

SP1701

Message (CNC)

SAFETY SPEED ZERO ERROR(CNC)

Dual Check Alarm by PMC CPU and CNC CPU (Power must be off)
No.

Message (PMC)

No.

PW0009
PW0011

CPU SELF TEST ERROR(PMC)
SAFE I/O CROSS CHECK ERROR(PMC)

PW0013

USER I/O CROSS CHECK ERROR (PMC)

PW0025
PW0027
PW0029
PW0031

CPU TEST ALARM(PMC)
SAFETY PARAM ERROR(PMC)
RAM CHECK ERROR(PMC)
INEXECUTION OF SAFETY
FUNCTIONS(PMC)
CRC CHECK ERROR(PMC)
SAFETY PARAM SETTING ERROR(PMC)

PW0033
PW0035

— 134 —

Message (CNC)

PW0008 CPU SELF TEST ERROR(DCS PMC)
PW0010 SAFE I/O CROSS CHECK ERROR(DCS
PMC)
PW0012 USER I/O CROSS CHECK ERROR(DCS
PMC)
PW0024 CPU TEST ALARM(DCS PMC)
PW0026 SAFETY PARAM ERROR(DCS PMC)
PW0028 RAM CHECK ERROR(DCS PMC)
PW0030 INEXECUTION OF SAFETY
FUNCTIONS(DCS PMC)
PW0032 CRC CHECK ERROR(DCS PMC)
PW0034 SAFETY PARAM SETTING
ERROR(DCS PMC)

9.DIAGNOSIS

B-64483EN-2/03

9

DIAGNOSIS

The diagnosis screen for the maintenance operation of the Dual Check Safety function is displayed in the
group of [SYSTEM] screens.
The operation to select the Dual Check Safety diagnosis screen is as a follows:
(1) Press the

key.

(2) Press the continuous menu key [+] key several times then the [DUAL CHECK] soft key is
displayed.
(3) Press the [DUAL CHECK] soft key then the Dual Check Safety diagnosis screen is displayed.
The state of MCC OFF TEST, the state of signals in case that the alarm related to safety occurs and the
cause of alarm is displayed on the Dual Check Safety diagnosis screen.

9.1

MCC OFF TEST STATUS SCREEN

By pressing [MCC TEST] soft key, the following MCC OFF TEST STATUS screen is displayed.

The following items are displayed for each machine group.
Passing time from the last MCC OFF TEST
Passing time from the last MCC OFF TEST is displayed.
Count of time is stopped when reaching 24:00:00.
24:00:00 is displayed at power-on.
MCC OFF TEST execution request
The CNC system notifies that it is necessary to select MCC OFF TEST mode and check whether
MCC off signal (*MCF) works normally or not. When the MCC OFF TEST execution request signal
is turned to “1”, select MCC OFF TEST mode and execute MCC OFF TEST as soon as possible.

— 135 —

9.DIAGNOSIS

B-64483EN-2/03

Last number of test sequence
The current sequence number of MCC OFF TEST is displayed. If MCC OFF TEST is finished
normally, “128” is displayed. Refer to the section of “MCC OFF TEST” for further detail.
When the MCC off Test has never been performed after power-on, «0» is displayed.
Message
When the power is turned on or 24 hours passes from the last MCC OFF TEST, this screen is
selected and the message “EXECUTE MCC TEST” is displayed.

9.2

CROSS CHECK DATA SCREEN

The CROSS CHECK DATA screen displays
(1) [ALARM INFORMATION] SCREEN
Press the [CROSS CHECK] soft key then the screen shown below appears.
This screen shows the DI/DO status when the cross check alarm occurs.

When bit 1 (DNP) of parameter No. 10597 is set to 1, the address and path number of the PMC are
displayed as shown below.

— 136 —

9.DIAGNOSIS

B-64483EN-2/03

Example) When parameter No. 11920 (I/O address of CNC-PMC interface 1) is set to 201
(F1000 to F1767/G1000 to G1767 of the 2nd PMC assigned)

(2) [DI SIGNAL STAUS] SCREEN
Press the [PAGE DOWN] key and select the second page. The screen shown below appears. This
screen shows the current DI status. The parenthesized number following G address represents the
PMC path. If there is difference of DI state between PMC and DCS PMC, “#” is displayed on the
left side of the address.

When bit 2 (SDS) of parameter No. 10597 is set to 1, under each address, the relevant signal name is
displayed as shown below.

— 137 —

9.DIAGNOSIS

B-64483EN-2/03

The status of the following signals can be checked in the [DI SIGNALS] screen.
PMC

DCSPMC

X0008
G0748
G0750
G0751
G0752
G0753
G0754
G0755
G0756
G0757
G0008

X0008
G0000
G0002
G0003
G0004
G0005
G0006
G0007
G0008
G0009
G0019

Signal name
#4 : *ESP1; #0 : *ESP2; #1 : *ESP3
#6 : *SMC
#0-#7: *VLDVx
#0-#3: *VLDPs
#0-#7: SVAx
#0-#7: SVBx
#1-#3: SPAs;
#4-#7: SPBs
#0-#7: ZSVx
#0-#3: SPOV11- SPOV 41; #4-#7: SPOV12- SPOV 42
#0-#3: SPOV13- SPOV 43; #4-#7: SPOV14- SPOV 44
#4 : *ESP

(3) [PROGRAMMABLE DI SIGNALS] screen
The [PROGRAMMABLE DI SIGNALS] screen appears as the next page of the [DI SIGNALS]
screen.
If there is difference of DO state between PMC and DCS PMC, “#” is displayed on the left side of
the address.
If a parameter is not set on either the PMC or DCS PMC side, the line is left blank.

— 138 —

9.DIAGNOSIS

B-64483EN-2/03

(4) [DO SIGNAL STATUS] SCREEN
Press the [PAGE DOWN] key several times to select the [DO SIGNALS] page. The screen shown
below appears. This screen shows the current DO status. The parenthesized number following F
address represents the PMC path. If there is difference of DO state between PMC and DCS PMC,
“#” is displayed on the left side of the address.

When bit 2 (SDS) of parameter No. 10597 is set to 1, under each address, the relevant signal name is
displayed as shown below.

— 139 —

9.DIAGNOSIS

B-64483EN-2/03

The status of the following signals can be checked in the [DO SIGNALS] screen.
PMC

DCSPMC

F0748
F0750
F0751
F0752
F0753
F0754
F0755
F0756
F0757
F0758
F0759

F0000
F0002
F0003
F0004
F0005
F0006
F0007
F0008
F0009
F0010
F0011

Signal name
#1 : *MCF;
#7: *DCALM
#0-#7: SRVx
#0-#3: RSPs
#0-#7: *MCFVx
#0-#3: *MCFPs
#0-#7: *BRKx
#0-#7: SPS01-SPS08
#0-#7: SPS09-SPS16
#0-#7: SPS17-SPS24
#0-#7: SPS25-SPS32
#0-#7: RZVx

(5) [PROGRAMMABLE DO SIGNALS] screen
The [PROGRAMMABLE DO SIGNALS] screen appears as the next page of the [DO SIGNALS]
screen.
If there is difference of DO state between PMC and DCS PMC, “#” is displayed on the left side of
the address.
If a parameter is not set on either the PMC or DCS PMC side, the line is left blank.

— 140 —

9.DIAGNOSIS

B-64483EN-2/03

(6) [SPINDLE STATUS] SCREEN
Press the [PAGE DOWN] key and select the [SPINDLE] screen. The screen shown below appears.
When the judging result of safety function of CNC is not the same as other CPU, the cross check
alarm occurs. This screen shows the cause of cross check alarm related to a spindle.

Cross check data about the following items for the spindle CPU and CNC CPU is displayed.
When no alarm is detected in a cross check, the results of the current check are indicated. When an
alarm is detected in a cross check, the held data is indicated upon detection.
Bit (symbol)
N
O
P

Description
Set to «1» when a safety parameter failure is detected.
Set to «1» when an axis data failure is detected.
Set to «1» when the speed exceeds «Safety Limit Speed for each Spindle» set by the parameter.

— 141 —

9.DIAGNOSIS

B-64483EN-2/03

(7) [SERVO STATUS] SCREEN
Press the [PAGE DOWN] key and select the [SERVO] screen. The screen shown below appears.
When the judging result of safety function of CNC is not the same as other CPU, the cross check
alarm occurs. This screen shows the cause of cross check alarm related to a servo motor.

Cross check data about the following items for the servo CPU and CNC CPU is displayed.
When no alarm is detected in a cross check, the results of the current check are indicated. When an
alarm is detected in a cross check, the held data is indicated upon detection.
Bit (symbol)
J
K
L
M
N

Description
Set to «1» when the amount of positional deviation exceeds «Positional Deviation Limit during
Safety Monitoring» set by the parameter.
Set to «1» when the speed exceeds «Safety Limit Speed for each Axis» set by the parameter.
Set to «1» when the machine position falls outside the range of «Safety Machine Position for
each Axis» set by the parameter.
Set to «1» when an axis data failure is detected.
Set to «1» when a safety parameter failure is detected.

— 142 —

9.DIAGNOSIS

B-64483EN-2/03

9.3

BRAKE TEST SCREEN

The [BRAKE TEST] screen shows the remaining time of a brake test.
And press the [BRAKE TEST] soft key. The screen shown below appears.

In this screen, the following information can be displayed:
(1) REST TIME OF BRAKE TES (each machine group)
When no brake test is performed for any axis: “—:—:—“ appears.
(2) BRAKE TEST REQUEST (each machine group)
When it is necessary to execute a brake test: “1” appears.
When it is not necessary to execute a brake test: “0” appears.
(3) Warning message (each machine group)
When a brake test is not executed though a request to execute a brake test is made
“EXECUTE BRAKE TEST” appears.
When a brake test is being executed:
“BRAKE TEST EXECUTING” appears.
When a brake test is interrupted:
“BRAKE TEST STOP/ERROR” appears.

9.4

FLOW MONITORING SCREEN

The FLOW MONITORING screen displays
Press the [+] continuous menu soft key.
And press the [FLOW MONIT.] soft key. The screen shown below appears.
This screen shows the counter for program flow monitoring.

— 143 —

9.DIAGNOSIS

B-64483EN-2/03

If each safety function works normally, the present value shows the same value as the default.

9.5

FEED LIMIT MONITORING SCREEN

The feed limit monitoring screen shows data related to the safety limitation feed of the Dual Check Safety
function.
(1) SERVO
The data that are related to the safety limitation feed of the servo and the Dual Check Safety function
are displayed.
Press the [FEED LMT.] soft key. The screen shown below appears.

The following items (a) to (d) are displayed for every servo axis.
(a) MNT.
0:Not Monitoring / 1:Monitoring

— 144 —

9.DIAGNOSIS

B-64483EN-2/03

(b) FEED LMT.
(c) UNIT
(d) ACT. FEED

In the safety limitation feed 1 to 4 (Set by the parameter No.13821 to
No.13829), the safety limit feed that is selected by the Safety speed/Safety
Position Selection signal A,B(SVAx,SVBx) is displayed
Unit of feed (Position control: D/sec) (Velocity control:min-1)
Current actual feed rate (NC side and Servo side)

When bit 0 (IDD) of parameter No. 10597 is set to 1, the following screen appears.

The following items (a) to (f) are displayed for every servo axis.
(a) MNT.
OFF: Not Monitoring / ON: Monitoring
(b) ZERO MNT The state of the safety speed zero monitoring request signal (SVZRx) is displayed.
OFF:Not Monitoring / ON:Monitoring
(c) FEED
Safety limitation feed 1 to 4 that is selected is displayed.
(d) FEED LMT. In the safety limitation feed 1 to 4 (Set by the parameters Nos.13821 to 13824
(in position control) and 13826 to 13829 (in velocity control)), the safety limit
feed that is selected by the Safety speed/Safety Position Selection signal
A,B(SVAx,SVBx) is displayed
(e) UNIT
Unit of feed (Position control: mm/min, inch/min, deg/min), (Velocity control:
min-1)
(f) ACT. FEED Current actual feed rate (NC side and Servo side)
(g) FEED LV (ALM)
Safety limitation feed level 1 to 4 that was selected when a Dual Check Safety
alarm occurred is displayed. 0 is displayed when no alarm occurs.
(2) SPINDLE
The data that are related to the safety limitation feed of the spindle and the Dual Check Safety
function are displayed.
Press the [PAGE DOWN] key, the screen of the Safety limitation feed of the spindle shown below
appears.

— 145 —

9.DIAGNOSIS

B-64483EN-2/03

The following items (a) to (d) are displayed for every spindle axis.
(a) MNT.
0:Not Monitoring / 1:Monitoring
(b) FEED LMT. In the Safety feed limit 1 to 4 (Set by the parameter No.4372, 4438, 4440, and
4442), the safety limit feed that is selected by the Safety speed/Safety Position
Selection signal A,B (SPAx, SPBx) is displayed.
(c) UNIT
Unit of the feed (min-1)
(d) ACT. FEED Current actual feed rate (NC side and Spindle side)
When bit 0 (IDD) of parameter No. 10597 is set to 1, the following screen appears.

The following items (a) to (f) are displayed for every spindle axis.
(a) MNT.
OFF: Not Monitoring / ON: Monitoring
(b) ZERO MNT The state of the safety speed zero monitoring request signal (SPZRx) is
displayed.
OFF:Not Monitoring / ON:Monitoring
(c) FEED
Safety limitation feed 1 to 4 that is selected is displayed.
— 146 —

9.DIAGNOSIS

B-64483EN-2/03

(d) FEED LMT.

In the Safety feed limit 1 to 4 (Set by the parameters Nos.4372, 4438, 4440 and
4442), the safety limit feed that is selected by the Safety speed/Safety Position
Selection signal A,B (SPAx, SPBx) is displayed.
(e) UNIT
Unit of the feed (min-1)
(f) ACT. FEED Current actual feed rate (NC side and Spindle side)
(g) FEED LV (ALM)
Safety limitation feed level 1 to 4 that was selected when a Dual Check Safety
alarm occurred is displayed. 0 is displayed when no alarm occurs.

9.6

SAFE MACHINE POSITIONING MONITORING SCREEN

The data that are related to the safe machine positioning monitoring of the Dual Check Safety function are
displayed.
MCHN.
Press the POS. soft key, The screen shown below appears.

The following items (a) to (c) are displayed for every servo axis.
(a) MNT.
0:Not Monitoring / 1:Monitoring/-: The reference position is not established
(b) RANGE
In the safety machine position 1 to 4 (Set by the parameter No.13830 to 13838), the
maximum limit and minimum limit of the safety machine position that are
selected by the Safety speed/Safety Position Selection signal A,B (SVAx, SVBx)
are displayed
(c) MCHN. POS. Current machine position (NC side and Spindle side)

9.7

SAFETY POSITION ERROR MONITORING SCREEN

The data that are related to the safety position error monitoring of the Dual Check Safety function are
displayed.
Press the [POS. ERR.] soft key, The screen shown below appears.

— 147 —

9.DIAGNOSIS

B-64483EN-2/03

The following items (a) to (c) are displayed for every servo axis.
(a) MNT.
0:Not Monitoring / 1:Monitoring/-: The reference position is not established
(b) LIMIT
In the safety positioning error, the limit values corresponding to the current state
(Stopping/Moving/Servo off) are displayed
(c) POS. ERR. Current positioning error (NC side and Servo side)

9.8

DIAGNOSIS SCREEN

In addition to the diagnosis screen used for the maintenance of the Dual Check Safety function, the
ordinary diagnosis screen shows items related to the Dual Check Safety function.
Diagnosis 379

Test number of an MCC off Test

[Data type] Word
[Unit of data] None
[Valid data range] 0 to 128
Displays a test number of an MCC off Test.
In other than the MCC off Test mode, 0 is displayed. When the Test Mode signal OPT is
input and the system enters the MCC off Test mode, the test number increases from 0 to 1,
2, and so on. When the MCC off Test is completed, the test number becomes 128. When
the Test Mode signal OPT is set to 0 and the MCC off Test mode is canceled, the test
number is cleared to 0.
Diagnosis 3700

Sequence number of a brake test

[Data type] Word axis
[Unit of data] None
[Valid data range] 0 to 128
Displays one of the following numbers for each axis while a brake test of the Dual Check
Safety function is being executed.
When the test is interrupted, the number when the test is interrupted is displayed.
0 : No test is executed (normal status)
1 : The torque limit is changed.
10 : Test 1: Brake activated. Waiting for the timer to expire.
— 148 —

9.DIAGNOSIS

B-64483EN-2/03

11 : Test 1: Moving
12 : Test 1: Positional deviation check
13 : Test 1: Reverse moving
14 : Test 1: Brake deactivated. Waiting for the timer to expire.
20 : Test 2: Brake activated. Waiting for the timer to expire.
21 : Test 2: Moving
22 : Test 2: Positional deviation check
23 : Test 2: Reverse moving
24 : Test 2: Brake deactivated. Waiting for the timer to expire.
30 : Test 3: Brake activated. Waiting for the timer to expire.
31 : Test 3: Moving
32 : Test 3: Positional deviation check
33 : Test 3: Reverse moving
34 : Test 3: Brake deactivated.
2 : Torque limit released
128 : Normal termination
See Fig. 9.8 (a) Relationship between the brake test timing chart and sequence numbers.
Next test

Current test
Torque limit

Enable

Disable

1

*BRKx(PMC,
DCSPMC)

0
Command +

Command
(POS)

t1

No command

t1
Command
(travel
amount/feedrate)

Cancel
command

Command —

Monitored

Error monitoring

Not monitored

Test 1

t2

10

11

12

13

14

Test 2

20

21

22

23

24

Test 3

30

31

32

33

34

0

1

2

128

Fig. 9.8 (a) Relationship between the brake test timing chart and sequence numbers
Diagnosis 3701

Cause of the interruption of a brake test

[Data type] Word axis
[Unit of data] None
[Valid data range] 0 to 128
Displays the cause of the interruption with one of the following numbers when a brake
test in progress is interrupted due to a reason such as an alarm.
0 : Normal status (the brake test is not interrupted.)
1 : An alarm was issued at the start of a brake test.
2 : The PMC axis control mode was on at the start of a brake test.
— 149 —

9.DIAGNOSIS

B-64483EN-2/03

3:
4:
5:
6:
7:
8:
9:
10 :
20 :
21 :
22 :
23 :
24 :
25 :

The system was not in the JOG mode at the start of a brake test.
The tool was moving along an axis at the start of a brake test.
The manual numeric command was being executed at the start of a brake test.
The system was in the servo off or emergency stop state at the start of a brake test.
The system was in the reset state at the start of a brake test.
Torque limit control was applied at the start or a brake test.
The system was in the torque or feed control mode at the start of a brake test.
The system was in the automatic operation mode at the start of a brake test.
The local motor was stopped due to an alarm detected by a positional deviation
check in a brake test (the brake of the local motor is faulty).
The V-READY or D-READY signal of the amplifier was turned off during a brake
test of the local motor.
The local motor was stopped due to the reset mode change during a brake test
(restart operation is required).
The local motor was stopped in a brake test due to an alarm other than the above.
The system entered the torque or feed control mode during a brake test of the local
motor.
A brake test of the local motor was interrupted due to emergency stop.
#7

Diagnosis

#0

#6

#5

#4

#3

#2

3703

#1

#0
ATE

ATE Test Mode of Acceptance Test is
1: Effective
0: Ineffective

Diagnosis

3704

The remainder time of Test Mode for Acceptance Test

[Data type] 2-word axis
[Unit of data] second
[Valid data range] 0 to 86400
It is necessary to finish Test Mode for Acceptance Test within 24 hours after the
parameter DTS(No.13805#2) set to ‘1’. This diagnosis item displays the remainder time
by a second until 24 hours pass. The parameter DTS(No.13805#2) will be changed to ‘0’
automatically when 24 hours pass, and the alarm of “PW0023 ACCEPTANCE TEST
MODE TIME OVER” is generated.

— 150 —

10.SAMPLE SYSTEM CONFIGURATION

B-64483EN-2/03

10

SAMPLE SYSTEM CONFIGURATION

10.1

SAMPLE CONFIGURATION

10.1.1

Sample Configuration for One Machine Group (1)
I/O UNIT
(PMC
side)
+24V

PMC

CNC
RQT

OPT_P

OPERATORS PANEL

OPT

ORQ_P

ORQ

ESP

*ESP1
*ESP_X

*ESPG

+24V

DOOR
STATUS

(*SGOPN)

*VLDVx
*VLDPs
*OPIHB
RSVx
RSPs

DOORL
OCK

*DCALM
*MCF
*MCFVx
*MCFPs

MCC
OFF

MCC
STATUS

*SMC

I/O UNIT
(DCS PMC
side)

DCS PMC
*ESP2

DOOR
STATUS
MCC
STATUS

*SGOPN
*VLDVx
*VLDPs
*SMC
+24V

*DCALM
*MCF
*MCFVx
*MCFPs

MCC
OFF

0V
U

Common
power
supply

V

Spindle
amplifier

Servo
amplifier

24V

200A
200B

U
V
W
LINE CONTACTOR
(MAIN MCC)

SPINDLE
Motor

— 151 —

Servo
Motor

Servo
Motor

10.SAMPLE SYSTEM CONFIGURATION

10.1.2

B-64483EN-2/03

Sample Configuration for One Machine Group (2: when
Multiple MCCs are Used)
I/O UNIT
(PMC side)

PMC

CNC
RQT

+24V

OPERATORS PANEL
ESP

OPT_P

OPT
ORQ

ORQ_P

*ESP1
*ESP_X

*ESPG

+24V
DOOR
STATUS

(*SGOPN)

*VLDVx
*VLDPs
*OPIHB
RSVx
RSPs

DOORL
OCK

*DCALM
*MCF
*MCFVx1
*MCFPs1
*DCALM
*MCF
*MCFVx2
*MCFPs2

MCC
OFF1A
MCC
OFF2A
MCC
STATUS

*SMC
I/O UNIT
(DCS PMC
side)

DCS PMC
*ESP2

DOOR
STATUS
MCC
STATUS
MCC
OFF1B

*SGOPN
*VLDVx
*VLDPs
*SMC
+24V

*DCALM
*MCF
*MCFVx1
*MCFPs1
*DCALM
*MCF
*MCFVx2
*MCFPs2

0V

Common power
supply
24V

Spindle
amplifier

Servo
amplifier

Common power
supply
24V

Spindle
amplifier

Servo
amplifier

200A
200B
U
V
W
LINE CONTACTOR
(MAIN MCC)

200A
200B
U

LINE CONTACTOR
(MAIN MCC2)

V
W

— 152 —

10.SAMPLE SYSTEM CONFIGURATION

B-64483EN-2/03

10.2

SAMPLE CONNECTIONS

10.2.1

Emergency Stop Signal (*ESP)
I/O-Link (PMC
side)
*ESP
<X008.4>

+24V

I/O-Link (DCS
PMC side)
*ESP
<X008.4>

0V

PSM
CX4
ESP

NOTE
Use a two-contact emergency stop button with a forced guided contact mechanism. Connect the
emergency stop button to the PSM(common power supply), as illustrated in the figure. When the signal is
input, the spindle slows down and stops. Input a power-down factor to [G008#4] other than the signal
from the emergency stop button. Create a Ladder program so that [X008#4] becomes a factor of
[G008#4].
Machine side

I/O-Link I/O UNIT

PMC
Emergency
stop factor

Emergency
stop button

X008.4

Emergency stop factor
other than emergency
stop button

X00n.n

Ladder
program

*ESPG
<G008.4>

IMPORTANT
Emergency stop button must fulfill the Standard IEC60947-5-1.This is
mandatory.

— 153 —

10.SAMPLE SYSTEM CONFIGURATION

10.2.2

B-64483EN-2/03

Guard Open Request Signal (ORQ)
+24V

Guard
open
request button

I/O-Link I/O UNIT PMC
X00n.n

Ladder program

ORQ

NOTE
Create a Ladder program of conditions for making a guard open request and then input the program to the
PMC side.
When the guard open request signal (ORQ) is input, CNC will output the *OPNIHB signal. After the
ladder program confirms the safety status, the signal for the guard unlock enable signal should be
outputted by the ladder program. Also, the ladder program should inform the status of guard open by the
*VLDVx and *VLDPs signals.
If the input of ORQ is canceled while the guard is open, the ladder program should enter a safely stopped
status (state in which the guard is open although the guard open request signal is not input). Close the
guard (*VLDVx and *VLDPs are set to 1), then cancel this signal.

10.2.3

Test Mode Signal (OPT)
Test start button

+24V

I/O-Link I/O UNIT PMC

X00n.n

Ladder program

OPT

NOTE
When all the conditions for the MCC off test become ready, this signal (OPT) should be set to “1”.

— 154 —

10.SAMPLE SYSTEM CONFIGURATION

B-64483EN-2/03

10.2.4

Guard Open Inhibit Signal (*OPIHB), Monitoring Result Signal
(RSVx,RSPx), Safety check Request Signal (*VLDVx,*VLDPs)

PERATING PRINCIPLE
+24V

Guard closed
SW1

SW2

Safety relay

Guard-monitoring
limit switch

RY1

SW3

RY1
RY3
RY2
RY2
RY3
0V
RY1

RY2

RY3

0V
0V

(注)

[Sample control components]

PMC

I/O UNIT
X00n.n
(Guard state
*SGOPN)

SW1/SW2:
Guard state monitoring
switch with forced guided

Ladder
program

*OPIHB

Y00n.n

contact

RSVx
RSPs

(Guard Lock)

SW3:

*VLDVx
*VLDPs

Guard lock switch
RY1, RY2, RY3:

I/O UNIT

Safety relay

X00m.n
(Guard state
*SGOPN)
Y00n.n
(Guard Lock)

— 155 —

DCS PMC
Ladder
program

*VLDVx
*VLDPs
RSVx
RSPs

10.SAMPLE SYSTEM CONFIGURATION

B-64483EN-2/03

This section describes the operation of various guard monitoring limit switches with lock mechanism and
safety relays.
State transition of components
SW1

SW2

SW3

RY1

RY2

RY3

*SGOPN
(*VLDVx,
*VLDPs)

1

Guard closed
Protection door locked

CLOSE

CLOSE

CLOSE

ON

ON

OFF

1

2

Guard closed
Protection door unlocked

CLOSE

CLOSE

OPEN

OFF

ON

OFF

0

3

Guard opened
Protection door unlocked

OPEN

OPEN

OPEN

OFF

OFF

ON

0

4

Guard opened
Protection door locked

OPEN

OPEN

CLOSE

OFF

OFF

ON

0

1

Guard closed
Protection door locked

CLOSE

CLOSE

CLOSE

ON

ON

OFF

1

In a normal operation, the transition of 1, 2, 3, 4,1, 2, and so on is repeated.
RY3 detects whether RY1 and RY2 contacts are made. If an unusual event is detected, *SGOPN input is
turned off.

NOTE
The VLDVx and VLDPs signals monitor the state of the protective door and their
states affect the Dual Check Safety function.
The illustrated sample system determines that the protection door is open (sets
*VLDVx and *VLDPs to 0) when the guard is unlocked.
When the guard open request signal (ORQ) is accepted, CNC will negate the
guard open inhibit signal (*OPIHB).
Machine tool builder can create the signal to release the guard-lock by his ladder
program, when the following conditions are met.
*OPIHB=1, RSVx and RSPs to be refered=1 and the safety conditions of the
machine
The safety monitor signals (RSVx and RSPs) are redundant output signals. Each
set of RSVx and RSPs monitors the speed or other data items with a separate
circuit. Therefore, a temporary mismatch may occur between both sets when, for
example, one set of RSVx and RSPs has been shifted to the safe state, while
the other set is not yet shifted to the safe state (for example, situations where the
spindle is in a deceleration state).
In such a case, if a circuit that releases a guard lock based on the state of one
set of RSVx and RSPs is created, an alarm such as speed limit monitoring may
occur depending on the state of the other set of RSVx and RSPs. To prevent
this, create a circuit that releases a guard lock when both sets of RSVx and
RSPs have shifted to the safe state as shown by (NOTE) in the figure or a circuit
that releases a guard lock after a while from when RSVx and RSPs shift to the
safe state.
When using a guard lock switch of two-contact type, the safety relay can be
omitted as shown in the following figure.

— 156 —

10.SAMPLE SYSTEM CONFIGURATION

B-64483EN-2/03

Example of connection when both the guard state monitoring switch and the guard lock switch are of
two-contact type.
+24V

When the protective door is open
SW1

SW2

Guard monitoring
limit switch
SW3
SW4

0V

0V

(Note)

PMC

I/O UNIT
X00n.n
Guard open
state (*SGOPN)

[Example of control parts]
SW1/SW2 :
Guard state monitoring
switch with the forced
guided contact
SW3/SW4 :
Guard lock switch

Ladder
program

*OPIHB

Y00n.n

RSVx
RSPs

Guard lock

I/O UNIT
X00m.n
Guard open
state (*SGOPN)
Y00n.n
Guard lock

— 157 —

*VLDVx
*VLDPs

DCS PMC
Ladder
program

*VLDVx
*VLDPs
RSVx
RSPs

10.SAMPLE SYSTEM CONFIGURATION

10.2.5

B-64483EN-2/03

MCC Off Signal (*MCF,*MCFVx,*MCFPs,*DCALM),
MCC Contact State Signal (*SMC)

I/O UNIT

+24V

X00n.n

Y00n.n

PMC
*SMC

*MCF
*MCFVx, *MCFPs
*DCALM

0V
I/O UNIT
X00n.n
Y00n.n
0V

DCS PMC
*SMC
*MCF
*MCFVx, *MCFPs
*DCALM

Common Power
Supply
200A
200B

CX3
MCC

U
V
W
Electromagnetic contactor (MAIN MCC)

NOTE
Only in case that all the signals (*MCF, *MCFVx, *MCFPs, *DCALM) of the PMC
side are “1”, the signal which turns on the MCC should be asserted by the ladder
program. Also in the DCS PMC side, similar logic should be made.
Also connect the MCC control signal to common power supply (PSM), as
illustrated in the figure. If an error occurs in the common power supply, the
common power supply turns off the MCC.
Any equipment should not be connected on the 3- phase AC line between the
MAIN MCC and common power supply.
CAUTION
The MCC shall have the mechanism such as a mirror contact that can monitor
the state of the main contact by mechanically linked auxiliary contacts.

— 158 —

10.SAMPLE SYSTEM CONFIGURATION

B-64483EN-2/03

10.3

EXAMPLE OF APPLICATION

10.3.1

Rotating the Spindle Manually in the Emergency Stop State

The Dual Check Safety function allows the spindle to rotate at a safe speed by the safe reduced speed
check function even when the protective door is open.
In some cases, the operator rotates the spindle manually by entering the emergency stop state to interrupt
excitation of the spindle with the protective door open. Generally, the safe speed limit with the protective
door open is set to a much lower value. Therefore, if the spindle is rotated manually, the rotation speed
may exceed the safe speed limit. To prevent a safe reduced speed check alarm from occurring even in the
case above, it is necessary to create a ladder program that implements the following circuitry.
(1) Method by the Safety Check Request signal (*VLDPs)
When the MCC is placed in the off state (*SMC = 1) in the emergency stop state, a safety
monitoring alarm can be disabled by setting *VLDPs to «1» even if the protective door is open.
(2) Method by the safe speed limit/safe machine position selection signals (SPAs and SPBs)
Switching between SPAs and SPBs is made depending on whether the MCC is placed in the off state
(*SMC = 1) in the emergency stop state.
As the safe speed setting (parameter) selected when the MCC is placed in the off state in the
emergency stop state (*SMC = 1), select a value that does not cause a safety monitoring alarm to
occur even when the operator rotates the spindle manually.

— 159 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

11

APPLICATION OF OTHER FUNCTIONS

11.1

OVERVIEW

The dual check safety function becomes easier to use when combined with various other functions. This
section describes the functions.
Part of the section assumes the use of the dual check safety function. Therefore, if the function is not used,
the specifications described in the chapter may differ.
Since only a summary is provided for each function, refer to the Connection Manual (Function) or other
documents for detailed specifications.
Section 11.2 describes combination with external deceleration, Section 11.3 describes combination with
spindle output control by the PMC, Section 11.4 describes combination with spindle positioning, Section
11.5 describes combination with Cs contour control, Section 11.6 describes combination with spindle
orientation, and Section 11.7 describes controlled axis detach.

11.2

EXTERNAL DECELERATION

11.2.1

Overview

The dual check safety function uses the CNC CPU and servo DSP to separately monitor the speed of the
feed axis (safe reduced speed check function). When the safe speed is exceeded by some axes with the
protective door closed after a guard open request is input (RSVx = “0”), the protective door needs to be
locked by the ladder program to prevent it from opening. When the safe speed is exceeded in some axes
with the protective door open (*VLDVx = “0”), an alarm SV0476 or SV0494 occurs to stop the servo
motor.
The external deceleration function decelerates the speed of the feed axis to the external deceleration speed
specified in the parameter by inputting the external deceleration signal. A maximum of five external
deceleration speeds can be set.
The dual check safety function and external deceleration function can be used to construct a machine that
operates as shown below.

Automatically reduces the speed of the feed axis to the safe speed or lower after a guard open
request is input to allow the guard to open.

Prevents an alarm by the safe speed limit monitoring function from occurring by limiting the speed
of the feed axis to the safe speed limit or less with the protective door open.
The external deceleration function is optional.
For speed control of the spindle, see Section 11.3, «SPINDLE OUTPUT CONTROL BY THE PMC.»

— 160 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

11.2.2

Specifications

External deceleration speed
The external deceleration speed is set for each of rapid traverse and cutting feed. Five sets of external
deceleration speeds and external deceleration signals are provided as external deceleration settings 1, 2, 3,
4, and 5, which can be selected depending on the operator’s skill or machine condition. When multiple
cutting conditions are provided, the lowest deceleration speed is selected. External deceleration settings 2,
3, 4, and 5 can be disabled by the parameters EX2, EX3, EX4, and EX5.
Since the dual check safety function monitors the safe speed for both rapid traverse and cutting feed, the
external deceleration speed of the cutting feed must be set according to the axis having the lowest safe
speed.

External deceleration signal
For safety, external deceleration is enabled when the external deceleration speed signal is 0, and disabled
when the signal is 1. Two signals in the positive and negative directions are provided for each axis to
select a deceleration direction. For manual handle feed, however, when either the signal in the positive
direction or the signal in the negative direction is 0, external decelerations in both directions are enabled
(it is impossible to select one direction).

Manual handle feed
The maximum speed of manual handle feed is normally the manual rapid traverse rate, but can be the
maximum speed set in the parameter with the maximum speed switching signal. However, another speed
can be selected by the external deceleration function depending on the external deceleration signal.

Relationships between signals and parameters
For cutting feed and rapid traverse, the relationships between external deceleration settings, external
signals, and parameters are shown in the table below.
Settings

Signal
External
deceleration signal

1
2
3
4
5

Gn118, Gn120
Gn101, Gn103
Gn107, Gn109
Gn341, Gn342
Gn343, Gn344

Parameter
Valid/Invalid
External deceleration speed
Positive direction Negative direction Cutting feed Rapid traverse
No.1005#4(*1)
No.1005#5(*1)
No.1406#0
No.1406#1
No.12750#0
No.12750#1

No.1426
No.1440
No.1443
No.12751
No.12754

No.1427
No.1441
No.1444
No.12752
No.12755

(*1) Only when external deceleration is enabled in cutting feed, bits 4 and 5 of parameter No. 1005 must
be set to 1. (In rapid traverse, external deceleration is enabled regardless of this setting.)
In manual handle feed, the relationships between external deceleration settings, external signals, and
parameters are shown in the table below.
Settings

External deceleration
signal

Signal
Manual handle feed maximum
speed switching signal

1
2
3
4
5

— (*2)
Gn101, Gn103
Gn107, Gn109
Gn341, Gn342
Gn343, Gn344

Gn023.3
Gn023.3(*3)
Gn023.3(*3)
Gn023.3(*3)
Gn023.3(*3)

Parameter
External
Valid/Invalid
deceleration speed
No.1406#0
No.1406#1
No.12750#0
No.12750#1

No.1434
No.1442
No.1445
No.12753
No.12756

(*2) The external deceleration signal <Gn118, Gn120> of external deceleration setting 1 has no effect on
the maximum speed of manual handle feed.
(*3) To enable external deceleration settings 2, 3, 4, and 5 during manual handle feed, the operation of
<Gn023.3> and both <Gn101> and <Gn103> (or <Gn107>, <Gn109>, <Gn341>, <Gn342>,
<Gn343>, <Gn344>) is necessary.
— 161 —

11.APPLICATION OF OTHER FUNCTIONS

11.2.3

B-64483EN-2/03

Signals

11.2.3.1 Details on signals
Manual handle feed maximum feedrate change signal
HNDLF <Gn023.3>
[Classification] Input signal
[Function] This signal switches to or from the maximum manual handle feedrate.
[Operation] When this signal is 1, the speed set in parameter No. 1434 is assumed as the manual
handle feed maximum speed. When external deceleration setting 2, 3, 4, or 5 is used, the
speed set in parameter No. 1442, 1445, 12753, or No.12756 can also be enabled.

External deceleration signals
*+ED1 to *+ED8 <Gn118>
*-ED1 to *-ED8 <Gn120>
*+ED21 to *+ED28 <Gn101>
*-ED21 to *-ED28 <Gn103>
*+ED31 to *+ED38 <Gn107>
*-ED31 to *-ED38 <Gn109>
*+ED41 to *+ED48 <Gn341>
*-ED41 to *-ED48 <Gn342>
*+ED51 to *+ED58 <Gn343>
*-ED51 to *-ED58 <Gn344>
[Classification] Input signal
[Function] This signal selects which external deceleration to apply for each direction of the control
axes with the external deceleration function. In a signal name, «+» and «-» indicate a
direction, the second number from the end indicates the target setting, and the last number
indicates the control axis number.
*xEDyz
x
y

z

+:
-:
1:
2:
3:
4:
5:
1:
2:
3:
:

Feed in the positive direction
Feed in the negative direction
External deceleration setting 1
External deceleration setting 2
External deceleration setting 3
External deceleration setting 4
External deceleration setting 5
External deceleration for 1st axis
External deceleration for 2nd axis
External deceleration for 3rd axis
:

[Operation] When this signal is 0, the feedrate of the corresponding axis in the corresponding
direction is decreased to the corresponding speed.
In manual handle feed, however, when the external deceleration signal in either the
positive direction or the negative direction is 0, external decelerations in both directions
are enabled (it is impossible to select one direction). The external deceleration signal
<Gn118, Gn120> of external deceleration setting 1 has no effect on the maximum speed
of manual handle feed.

— 162 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

11.2.3.2 Signal address
#7

#6

#5

#4

Gn023

#3

#2

#1

#0

HNDLF
#7

#6

#5

#4

#3

#2

#1

#0

Gn101

*+ED28

*+ED27

*+ED26

*+ED25

*+ED24

*+ED23

*+ED22

*+ED21

Gn103

*-ED28

*-ED27

*-ED26

*-ED25

*-ED24

*-ED23

*-ED22

*-ED21

#7

#6

#5

#4

#3

#2

#1

#0

Gn107

*+ED38

*+ED37

*+ED36

*+ED35

*+ED34

*+ED33

*+ED32

*+ED31

Gn109

*-ED38

*-ED37

*-ED36

*-ED35

*-ED34

*-ED33

*-ED32

*-ED31

#7

#6

#5

#4

#3

#2

#1

#0

Gn118

*+ED8

*+ED7

*+ED6

*+ED5

*+ED4

*+ED3

*+ED2

*+ED1

Gn120

*-ED8

*-ED7

*-ED6

*-ED5

*-ED4

*-ED3

*-ED2

*-ED1

#7

#6

#5

#4

#3

#2

#1

#0

Gn341

*+ED48

*+ED47

*+ED46

*+ED45

*+ED44

*+ED43

*+ED42

*+ED41

Gn342

*-ED48

*-ED47

*-ED46

*-ED45

*-ED44

*-ED43

*-ED42

*-ED41

#7

#6

#5

#4

#3

#2

#1

#0

Gn343

*+ED58

*+ED57

*+ED56

*+ED55

*+ED54

*+ED53

*+ED52

*+ED51

Gn344

*-ED58

*-ED57

*-ED56

*-ED55

*-ED54

*-ED53

*-ED52

*-ED51

#5
EDMx

#4
EDPx

#3

#2

#1

#0

11.2.4

Parameters
#7

#6

1005

[Data type] Bit axis
EDPx In cutting feed, an external deceleration signal in the + direction for each axis is:
0: Invalid
1: Valid
EDMx In cutting feed, an external deceleration signal in the — direction for each axis is:
0: Invalid
1: Valid

CAUTION
In rapid traverse and manual handle feed, external deceleration is
enabled regardless of the settings of bits 4 (EDPx) and 5 (EDMx) of
parameter No. 1005.
#7
1405

#6

#5
EDR

#4

#3

#2

#1

[Data type] Bit path
EDR As the external deceleration rate for positioning of linear interpolation type:
0: The external deceleration rate for cutting feed is used.
1: The external deceleration rate for the first axis in rapid traverse is used.
— 163 —

#0

11.APPLICATION OF OTHER FUNCTIONS
#7

#6

#5

B-64483EN-2/03
#4

#3

#2

#1
EX3

#0
EX2

#3

#2

#1
EX5

#0
EX4

1406

[Data type] Bit path
EX2 External deceleration function setting 2 is:
0: Invalid
1: Valid
EX3 External deceleration function setting 3 is:
0: Invalid
1: Valid
#7

#6

#5

#4

12750

[Data type] Bit path
EX4 External deceleration function setting 4 is:
0: Invalid
1: Valid
EX5 External deceleration function setting 5 is:
0: Invalid
1: Valid
1426

External deceleration rate setting 1 in cutting feed

1440

External deceleration rate setting 2 in cutting feed

1443

External deceleration rate setting 3 in cutting feed

12751

External deceleration rate setting 4 in cutting feed

12754

External deceleration rate setting 5 in cutting feed

[Data type] Real path
[Unit of data] mm/min, inch/min, degree/min (machine unit)
[Valid data range] For the IS-B setting unit, the valid data range is as shown below. For other setting units,
see the standard parameter setting table (C).
Increment system
Millimeter machine
Rotary axis
Inch machine

Unit of data
1 mm/min
1deg/min
1 inch/min

Valid data range
IS-B
0.000 to +999000.000
0.0000 to +9600.0000

Set the external deceleration rate in cutting feed or linear type positioning (G00).
1427

External deceleration rate setting 1 for each axis in rapid traverse

1441

External deceleration rate setting 2 for each axis in rapid traverse

1444

External deceleration rate setting 3 for each axis in rapid traverse

12752

External deceleration rate setting 4 for each axis in rapid traverse

12755

External deceleration rate setting 5 for each axis in rapid traverse

[Data type] Real axis
[Unit of data] mm/min, inch/min, degree/min (machine unit)
— 164 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

[Valid data range] For the IS-B setting unit, the valid data range is as shown below. For other setting units,
see the standard parameter setting table (C).
Increment system
Millimeter machine
Rotary axis
Inch machine

Valid data range
IS-B

Unit of data
1 mm/min
1deg/min
1 inch/min

0.000 to +999000.000
0.0000 to +9600.0000

Set external deceleration rate for each axis in rapid traverse.
1434

Maximum manual handle feedrate setting 1 for each axis

1442

Maximum manual handle feedrate setting 2 for each axis

1445

Maximum manual handle feedrate setting 3 for each axis

12753

Maximum manual handle feedrate setting 4 for each axis

12756

Maximum manual handle feedrate setting 5 for each axis

[Data type] Real axis
[Unit of data] mm/min, inch/min, degree/min (machine unit)
[Valid data range] For the IS-B setting unit, the valid data range is as shown below. For other setting units,
see the standard parameter setting table (C).
Increment system
Millimeter machine
Rotary axis
Inch machine

Valid data range
IS-B

Unit of data
1 mm/min
1deg/min
1 inch/min

0.000 to +999000.000
0.0000 to +9600.0000

Set a maximum manual handle feedrate for each axis.

11.3

SPINDLE OUTPUT CONTROL BY THE PMC

11.3.1

Overview

The dual check safety function uses the CNC CPU and spindle DSP to separately monitor the spindle
speed (safe reduced speed check function). When the safe speed is exceeded by some axes with the guard
closed after a guard open request is input (RSPs = “0”), the protective door needs to be locked by the
ladder program to prevent it from opening. When the safe speed is exceeded by some axes with the guard
open (*VLDPs = “0”), spindle alarm 757 or 9069 occurs to stop the spindle (in the free running or
controlled stop state).
Spindle output control by PMC is a function of controlling the speed and polarity of spindle motor
rotation of each spindle by using the PMC.
The dual check safety function and spindle output control by PMC can be used to construct a machine
that operates as shown below.

Automatically reduces the speed of the spindle motor to the safe speed or lower after a guard open
request is input to allow the guard to open.

Prevents an alarm by the safe speed limit monitoring function from occurring by limiting the speed
of the spindle motor to the safe speed limit or less with the guard open.
For speed control of the feed axis, see Section 11.2, «EXTERNAL DECELERATION.»
— 165 —

11.APPLICATION OF OTHER FUNCTIONS

11.3.2

B-64483EN-2/03

Specifications

Switching control
Spindle output control function by the PMC can be used to specify the following:

Spindle motor speed (speed of rotations)

Output polarity for each spindle motor (direction of rotation)
Usually, the CNC is used to control the speed and polarity of the first spindle motor. If a multi-spindle
control function is added, the CNC can also control the second to fourth spindle motors.
Spindle output control by the PMC can be used to specify that either the CNC or the PMC is used to set
each of the spindle motor speed and output polarity.
If TYPE-A is specified (bit 2(MSI) of parameter No. 3709 is 0) when multi-spindle control is used,
signals for the second to fourth spindles cannot be used.

Specifying the spindle motor speed
The PMC can be used to specify the spindle motor speed upon executing the following:

Switching the controller from the CNC or PMC, by issuing SINDx signal

Setting the spindle motor speed data, calculated by the PMC, in spindle control signals R01Ix to
R12Ix
When controlled by the PMC, the spindle motor speed is not affected by any signal (for example, the
spindle speed override signal) or parameter settings (for example, the maximum speed clamp parameter)
related to the spindle speed command of the CNC spindle control function. However, the individual
spindle stop signals (*SSTPx <Gn027.3,4,5,Gn026.6>) during use of multi-spindle control are enabled.
The spindle motor speed data is obtained from the following expression. Its value can range from 0 to
4095:
Spindle motor speed data = (Spindle motor speed/Maximum spindle motor speed)×4095
Normally, the speed of the spindle is actually controlled. If a gear train is used to connect the spindle to
the spindle motor, first obtain the maximum spindle speed at the maximum spindle motor speed.
Spindle motor speed data = (Spindle speed/Maximum spindle speed)×4095
By using this expression, the spindle motor speed data can easily be obtained.

Specifying the output polarity for the spindle motor
The PMC can specify the spindle motor output polarity when the following are executed:

Switching the controller from the CNC or PMC, by issuing an SSINx signal

Specifying the output polarity to the SGNx signal

11.3.3

Signals

11.3.3.1 Details on signals
Spindle motor speed command selection signal
SIND <Gn033.7> (for 1st spindle)
SIND2 <Gn035.7> (for 2ndspindle)
SIND3 <Gn037.7> (for 3rd spindle)
SIND4 <Gn273.7> (for 4th spindle)
[Classification] Input signal
[Function] This signal specifies that either the CNC or PMC is used to control the spindle motor
speed command.
[Operation] When this signal is 0, the spindle motor speed command is controlled by the CNC.
When this signal is 1, the spindle motor speed command is controlled by the PMC.

— 166 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

Spindle motor speed command signals
R01I to R12I <Gn032.0 to Gn033.3> (for 1st spindle)
R01I2 to R12I2 <Gn034.0 to Gn035.3> (for 2ndspindle)
R01I3 to R12I3 <Gn036.0 to Gn037.3> (for 3rd spindle)
R01I4 to R12I4 <Gn272.0 to Gn273.3> (for 4th spindle)
[Classification] Input signal
[Function] When the spindle motor speed command is controlled by the PMC, set the value obtained
from the following expression for this signal in binary.
Spindle motor speed data =(Spindle motor speed/Maximum spindle motor speed)×4095

Spindle motor command polarity selection signals
SSIN <Gn033.6> (for 1st spindle)
SSIN2 <Gn035.6> (for 2ndspindle)
SSIN3 <Gn037.6> (for 3rd spindle)
SSIN4 <Gn273.6> (for 4th spindle)
[Classification] Input signal
[Function] This signal specifies that either the CNC or PMC is used to control the output polarity of
the spindle motor speed command.
[Operation] When this signal is 0, the output polarity of the spindle motor speed command is
controlled by the CNC.
When this signal is 1, the output polarity of the spindle motor speed command is
controlled by the PMC.

Spindle motor command polarity command signals
SGN <Gn033.5> (for 1st spindle)
SGN2 <Gn035.5> (for 2ndspindle)
SGN3 <Gn037.5> (for 3rd spindle)
SGN4 <Gn273.5> (for 4th spindle)
[Classification] Input signal
[Function] This signal sets the output polarity of the spindle motor speed command.
[Operation] When this signal is 0, the output polarity of spindle is the positive direction. When this
signal is 1, the output polarity of spindle is the negative direction.

11.3.3.2 Signal address
#7

#6

#5

#4

#3

#2

#1

#0

Gn032

R08I

R07I

R06I

R05I

R04I

R03I

R02I

R01I

Gn033

SIND

SSIN

SGN

R12I

R11I

R10I

R09I

#7

#6

#5

#4

#3

#2

#1

#0

Gn034

R08I2

R07I2

R06I2

R05I2

R04I2

R03I2

R02I2

R01I2

Gn035

SIND2

SSIN2

SGN2

R12I2

R11I2

R10I2

R09I2

#7

#6

#5

#4

#3

#2

#1

#0

Gn036

R08I3

R07I3

R06I3

R05I3

R04I3

R03I3

R02I3

R01I3

Gn037

SIND3

SSIN3

SGN3

R12I3

R11I3

R10I3

R09I3

#7

#6

#5

#4

#3

#2

#1

#0

Gn272

R08I4

R07I4

R06I4

R05I4

R04I4

R03I4

R02I4

R01I4

Gn273

SIND4

SSIN4

SGN4

R12I4

R11I4

R10I4

R09I4

— 167 —

11.APPLICATION OF OTHER FUNCTIONS

11.3.4

B-64483EN-2/03

Parameters
#7

#6

#5

#4

3709

#3

#2
MSI

#1

#0

[Data type] Bit
MSI In multi-spindle control, the SIND signal is valid
0: Only when the first spindle is valid (The SIND signals for the second, third, and
fourth spindles are invalid.)
1: For each spindle irrespective of whether the spindle is selected (Each spindle has its
own SIND signal).

11.4

SPINDLE POSITIONING

11.4.1

Overview

The dual check safety function uses the CNC CPU and spindle DSP to separately monitor the spindle
speed (safe reduced speed check function). When monitoring the stop state of the spindle with the safe
reduced speed check function, set the safe speed parameter to a non-zero value by considering a margin
according to the machine. This is because the actual speed cannot be assumed to be 0. In this case, the
spindle may rotate at a speed less than the set safe speed, so it is necessary to position the spindle by
forming a position control loop at the same time.
The spindle positioning function positions the spindle with the spindle motor and position coder or the
like.
The spindle positioning function is optional, which cannot be used together with the Cs contour control
function. When options of both functions are specified, the spindle positioning function is given a higher
priority.

11.4.2

Specifications

Spindle positioning
Spindle positioning is performed as follows.

Cancel the spindle rotation mode, which is used for turning with the spindle rotating, and enter the
spindle positioning mode.

Position the spindle in the spindle positioning mode.

Cancel the spindle positioning mode and enter the spindle rotation mode.

Selecting a spindle positioning axis
Any axis address can be set (with parameter No. 1020) as the axis name of an axis to be subject to spindle
positioning. To set the servo axis number of the spindle positioning axis (with parameter No. 1023), use a
negative value (-(the number of a spindle to be subject to spindle positioning)).

Switching to spindle positioning mode
Orientation is required when spindle positioning is performed for the first time after the spindle motor is
used as a normal spindle or when spindle positioning is resumed after the spindle positioning is
suspended.
Orientation is the function for stopping the spindle at a fixed position. The grid shift function can be used
to shift the orientation position from 0 to 360 degrees (parameter No. 4073).
Orientation can be specified by the M code set in parameter No. 4960.
— 168 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

The direction of orientation is set in RETSV (bit 4 of parameter No. 4000).
The position where orientation is completed is assumed as the program zero point. However, the
coordinate system setting (G92 (for T series G-code system B, C and M series) or G50 (for T series
G-code system A)) or automatic coordinate system setting can be used to change the program zero point.

Positioning command
There are two types of spindle positioning: semi-fixed angle positioning and optional angle positioning.

Semi-fixed angle positioning
Semi-fixed angle positioning is specified with an M code. Six values (Mx to M(x + 5)) can be specified
and x needs to be set in parameter No. 4962 in advance. A maximum of 255 (Mx to M(x + (255 — 1)))
values can be specified by setting the number of M codes in parameter No. 4964. The positioning angles
corresponding to the values are shown in the table below. The value of base rotation angle y is set in
parameter No. 4963. The rotation direction is set in bit 1 (IDM) of parameter No. 4950. Incremental
specification is always assumed.
M code

Indexing angle

(Example) y=30deg

Mx
M(x+1)
M(x+2)
M(x+3)
M(x+4)
M(x+5)
:
M(x+n-1)

y
2y
3y
4y
5y
6y
:
ny

30 deg
60 deg
90 deg
120 deg
150 deg
180 deg

Optional angle positioning
Optional angle positioning is specified by an axis angle followed by a signed value. Use the G00 mode to
specify this positioning.
Example) C-1000
The minimum setting unit is 0.001 degrees and the allowable specification range is between -999999.999
degrees and 999999.999 degrees.
A command with a decimal point is also allowed. The position of the decimal point denotes the degree
position.
Example) C35.0 = C35 deg

Feedrate and acceleration/deceleration type
The feedrate used in positioning is the rapid traverse rate set in parameter No. 1420. An override of 100%,
50%, 25%, or F0 (parameter No. 1421) can be applied to the rapid traverse rate. Liner
acceleration/deceleration is used as the acceleration/deceleration type.

Spindle positioning reset
Switching from the spindle positioning mode to the spindle rotation mode is specified by the M code set
in parameter No. 4961.

— 169 —

11.APPLICATION OF OTHER FUNCTIONS

11.4.3

B-64483EN-2/03

Signals

11.4.3.1 Details on signals
Spindle stop complete signal
SPSTPA <Gn028.6> (for 1st spindle)
SPSTPB <Gn402.1> (for 2nd spindle)
SPSTPC <Gn402.2> (for 3rd spindle)
SPSTPD <Gn402.3> (for 4th spindle)
[Classification] Input signal
[Function] When the CNC confirms that this signal is set to 1, it performs spindle orientation or
spindle positioning, or releases the spindle positioning mode.

Spindle unclamp signal
SUCLPA <Fn038.1> (for 1st spindle)
SUCLPB <Fn400.1> (for 2nd spindle)
SUCLPC <Fn400.2> (for 3rd spindle)
SUCLPD <Fn400.3> (for 4th spindle)
[Classification] Output signal
[Function] This signal specifies that spindle mechanical clamping be released in a spindle
positioning sequence.
When this signal is set to 1, perform mechanical spindle unclamping operations
(including releasing the brake and inserting a pin).
[Output condition] For details, refer to the sequence (time chart) in the Connection Manual (Function).

Spindle unclamp completion signal
*SUCPFA <Gn028.4> (for 1st spindle)
*SUCPFB <Gn400.1> (for 2nd spindle)
*SUCPFC <Gn400.2> (for 3rd spindle)
*SUCPFD <Gn400.3> (for 4th spindle)
[Classification] Input signal
[Function] This signal indicates that unclamping the spindle is complete in response to the spindle
unclamp signal SUCLPs.

Spindle clamp signal
SCLPA <Fn038.0> (for 1st spindle)
SCLPB <Fn401.1> (for 2nd spindle)
SCLPC <Fn401.2> (for 3rd spindle)
SCLPD <Fn401.3> (for 4th spindle)
[Classification] Output signal
[Function] This signal specifies that the spindle be clamped mechanically in a spindle positioning
sequence.
When this signal is set to 1, perform mechanical spindle clamping operations (activating
the brake and inserting a pin).
[Output condition] For details, refer to the sequence (time chart) in the Connection Manual (Function).

— 170 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

Spindle clamp completion signal
*SCPFA <Gn028.5> (for 1st spindle)
*SCPFB <Gn401.1> (for 2nd spindle)
*SCPFC <Gn401.2> (for 3rd spindle)
*SCPFD <Gn401.3> (for 4th spindle)
[Classification] Input signal
[Function] This signal indicates that clamping the spindle is complete in response to the spindle
clamp signal SCLPs.

Spindle orientation completion signal
ZPx <Fn094>
[Classification] Output signal
[Function] This signal indicates that spindle orientation of the spindle positioning is completed.
[Output condition] When the orientation of spindle positioning is completed, this signal is 1. When spindle
positioning is performed or released, this signal is 0.

11.4.3.2 Signal address
#7

#3

#2

#1

Gn400

*SUCPFD

*SUCPFC

*SUCPFB

Gn401

*SCPFD

*SCPFC

*SCPFB

Gn402

SPSTPD

SPSTPC

SPSTPB

#3

#2

Gn028

#6

#5

#4

SPSTPA

*SCPFA

*SUCPFA

#7

#6

#5

#4

Fn038
Fn094

ZP7

ZP6

ZP5

#1

#0

SUCLPA

SCLPA
ZP1

ZP4

ZP3

ZP2

Fn400

SUCLPD

SUCLPC

SUCLPB

Fn401

SCLPD

SCLPC

SCLPB

#3
ISEx

#2
ISDx

#1
ISCx

11.4.4

ZP8

#0

Parameters
#7

#6

#5

#4

1013

[Input type] Parameter input
[Data type] Bit axis
For an axis to be subject to spindle positioning, set ISA to ISE to 0.
1020

Program axis name for each axis

[Input type] Parameter input
[Data type] Byte axis
[Valid data range] 65 to 67, 85 to 90
Set the axis name of an axis to be subject to spindle positioning.
1023

Number of the servo axis for each axis

[Input type] Parameter input
[Data type] Byte axis
— 171 —

#0
ISAx

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

This parameter sets the relationships between the individual axes and the servo axis
numbers.
For an axis to be subject to spindle positioning, set the number of the spindle to be subject
to spindle positioning preceded by a minus sign.
1260

Amount of movement for one turn of the rotation axis

[Input type]
[Data type]
[Unit of data]
[Min. unit of data]
[Valid data range]

Parameter input
Real axis
Degree
Depend on the increment system of the applied axis
0 or positive 9 digit of minimum unit of data (refer to the standard parameter setting table
(B))
For the rotation axis, set the amount of movement for one turn.
For the spindle positioning axis, set 360.0.

1820

Command multiplier for each axis (CMR)

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Byte axis
[Valid data range] 1 to 96
Set a value of 2 targeted for spindle positioning.
1821

Reference counter size for each axis

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]
3720

Parameter input
2-word axis
Detection unit
0 to 999999999
Set a value of 10000 targeted for spindle positioning.
Number of position coder pulses

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
2-word spindle
Detection unit
1 to 32767
Set the number of position coder pulses.
For spindle positioning, set 4096.

— 172 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03
3721

Number of gear teeth on the position coder side

[Input type] Parameter input
[Data type] Word spindle
[Valid data range] 0 to 9999
Set the number of gear teeth on the position coder side in speed control (such as feed per
revolution and threading).
For spindle positioning, set 2n (where n is an integer greater than or equal to 0).
3722

Number of gear teeth on the spindle side

[Input type] Parameter input
[Data type] Word spindle
[Valid data range] 0 to 9999
Set the number of gear teeth on the spindle side in speed control (such as feed per
revolution and threading).
For spindle positioning, set 1.
#7
4000

#6

#5

#4
RETSV

#3

#2

#1

[Input type] Parameter input
[Data type] Bit spindle
RETSV Reference position return direction of spindle.
0: CCW (Counter clockwise)
1: CW (Clockwise)
4044

Proportional gain of the velocity loop in servo mode (HIGH gear)

4045

Proportional gain of the velocity loop in servo mode (LOW gear)

[Data type] Word spindle
[Unit of data]
[Valid data range] 0 to 32767
Set a proportional gain for the velocity loop on spindle positioning.
4052

Integral gain of the velocity loop in the servo mode (HIGH gear)

4053

Integral gain of the velocity loop in the servo mode (LOW gear)

[Data type] Word spindle
[Unit of data]
[Valid data range] 0 to 32767
Set an integral gain of the velocity loop on spindle positioning.
4056

Gear ratio (HIGH gear)

4057

Gear ratio (MEDIUM HIGH gear)

4058

Gear ratio (MEDIUM LOW gear)

4059

Gear ratio (LOW gear)

[Data type] Word spindle
[Unit of data] Motor speed per spindle rotation × 100
[Valid data range] 0 to 32767
These parameters set the gear ration between the spindle and spindle motor.

— 173 —

#0

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

4065

Position gain in servo mode (HIGH gear)

4066

Position gain in servo mode (MEDIUM HIGH gear)

4067

Position gain in servo mode (MEDIUM LOW gear)

4068

Position gain in servo mode (LOW gear)

[Data type] Word spindle
[Unit of data] 0.01 sec-1
[Valid data range] 0 to 32767
These parameters set a servo loop gain on spindle positioning.
4073

Grid shift amount on servo mode

[Data type] Word spindle
[Unit of data] 1 pulse (=360deg/4096)
[Valid data range] 0 to 4095
The reference position is shifted counterclockwise by the set number of pulses.
4085

Motor voltage in the servo mode

[Data type] Word spindle
[Unit of data] 1%
[Valid data range] 0 to 100
Set the motor voltage in the servo mode.
4950

#7

#6

#5

IMBs

ESIs

TRVs

#4

#3

#2

#1

#0

ISZs

IDMs

IORs

[Input type] Parameter input
[Data type] Bit spindle
#0

IORs Resetting the system in the spindle positioning mode
0: Does not release the mode.
1: Releases the mode

#1

IDMs The direction of spindle positioning (half-fixed angle positioning based on M codes) is:
0: Plus direction.
1: Minus direction.

#2

#5

ISZs When an M code for switching to the spindle positioning mode is specified for spindle
positioning:
0: The spindle is switched to the spindle positioning mode, and spindle orientation
operation is performed.
1: Only the switching of the spindle to the spindle positioning mode is performed.
(Spindle orientation operation is not performed.)
TRVs The rotation direction for spindle positioning is:
0: Same as the specified sign.
1: Opposite to the specified sign.

NOTE
When a serial spindle is used, this parameter is invalid for the
specification of a rotation direction for the orientation command.
— 174 —

B-64483EN-2/03

#6

#7

4960

11.APPLICATION OF OTHER FUNCTIONS

ESIs The unit of rapid traverse rate on the spindle positioning axis is:
0: Not increased by a factor of 10.
1: Increased by a factor of 10.
IMBs When the spindle positioning function is used, half-fixed angle positioning based on M
codes uses:
0: Specification A
1: Specification B
In the case of half-fixed angle positioning based on M codes, three types of spindle
positioning operations can occur:
(1) The spindle rotation mode is cleared, then the mode is switched to the spindle
positioning mode. (After switching to the spindle positioning mode, spindle
orientation operation is also performed.)
(2) Spindle positioning is performed in the spindle positioning mode.
(3) The spindle positioning mode is cleared, then the mode is switched to the spindle
rotation mode.

In the case of specification A:
Operations (1) to (3) are specified using separate M codes.
(1) Specified using an M code for switching to the spindle positioning mode.
(See parameter No. 4960)
(2) Specified using M codes for specifying a spindle positioning angle.
(See parameter No. 4962)
(3) Specified using M codes for clearing spindle positioning operation.
(See parameter No. 4961.)

In the case of specification B:
When M codes for specifying a spindle positioning angle are specified, operations
(1) to (3) are performed successively. (See parameter No. 4962.) (However, spindle
orientation operation of (1) is not performed.)
M code for specifying orientation

[Input type] Parameter input
[Data type] 2-word spindle
[Valid data range] 6 to 97
Set the M code for shifting from the spindle rotation mode to the spindle positioning
mode. Orientation is performed by this M code.
4961

M code releasing the spindle positioning

[Input type] Parameter input
[Data type] 2-word spindle
[Valid data range] 6 to 97
Set the M code for releasing the spindle positioning mode and then shifting to the spindle
rotation mode.
4962

M code for specifying a spindle positioning angle

[Input type] Parameter input
[Data type] 2-word spindle
[Valid data range] 6 to 9999999
Set the first M code of the semi-fixed angle spindle positioning command.

— 175 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

When this parameter is set to x, six M codes from Mx to M(x+5) are used. If the number
of M codes is specified by parameter No. 4964, as many M codes starting from Mx as the
number specified in that parameter are used. When the basic rotation angle (parameter No.
4963) is y, the number of M codes (parameter No. 4964) is n, the relationship between
the M code and the positioning angle is shown in the table below.
M code

Positioning angle

(Example) y=30deg

Mx
M(x+1)
M(x+2)
M(x+3)
M(x+4)
M(x+5)
:
M(x+n-1)

y
2y
3y
4y
5y
6y
:
ny

30 deg
60 deg
90 deg
120 deg
150 deg
180 deg

CAUTION
Set this parameter even when the semi-fixed angle spindle
positioning command is not executed. Otherwise, the M codes from
M00 to M05 do not function normally.
4963

Basic angle for half-fixed angle positioning

[Input type]
[Data type]
[Unit of data]
[Min. unit of data]
[Valid data range]

Parameter input
Real spindle
Degree
Depend on the increment system of the applied axis
0 to 60
This parameter sets a basic angular displacement used for half-fixed angle positioning
using M codes.

4964

Number of M codes for specifying a spindle positioning angle

[Input type] Parameter input
[Data type] 2-word spindle
[Valid data range] 0, 1 to 255
Set the number of M codes of the semi-fixed angle spindle positioning command.

CAUTION
1 Make sure that the M code used for the semi-fixed angle spindle
positioning command does not duplicate any other M codes.
2 When the setting of this parameter is 0, a setting of 6 is assumed.

— 176 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

11.5

Cs CONTOUR CONTROL

11.5.1

Overview

The dual check safety function uses the CNC CPU and spindle DSP to separately monitor the spindle
motor speed (safe reduced speed check function). When the stop status of the spindle is monitored by the
safe reduced speed check function, set the safe speed parameter to a value including a margin appropriate
for the machine instead of 0 because the actual speed cannot be assumed to be 0. Since the spindle may
rotate at a speed less than the set safe speed in this case, it is necessary to position the spindle with a
position control loop formed at the same time.
The Cs contour control function makes spindle positioning control (spindle contour control).
When Cs contour control is performed, the configuration of the spindle detector is restricted. For details,
refer to the FANUC AC SPINDLE MOTOR αi series Parameter Manual (B-65280EN) or other
documents.
The Cs contour control function is optional, which cannot be used together with the spindle positioning
function. When options of both functions are specified, the spindle positioning function is given a higher
priority.

11.5.2

Specifications

Cs contour control mode
The Cs contour control change signal is used to switch between spindle rotation control (method of
controlling the rotation of the spindle with the velocity command) and spindle contour control (method of
controlling the rotation of the spindle with the move command). The mode for spindle contour control is
called the Cs contour control mode. The manual and automatic operation of the spindle in the Cs contour
control mode can be performed as with normal servo axes.
Although interpolation is enabled for the spindle and servo axis in the Cs contour control mode, this
subsection describes only spindle positioning, not interpolation of the spindle and servo axis.

Setting the Cs contour control axis
The axis targeted for Cs contour control is placed as one axis of CNC control axes. Any of the control
axes can be selected as the Cs contour control axis, but one of -1 to -n (-n: The n-th logical spindle is used
as the Cs axis.) must be set for specifying the servo axis number (parameter No. 1023).
The Cs contour control axis must be set as a rotation axis (bit 0 (ROTx) of parameter No. 1006 is 1 and
parameter No. 1022 is 0).
The axis name (parameter No. 1020) of the Cs contour control axis can be arbitrarily selected.
When the second to fourth spindles are selected as Cs axes, bit 7 (CSS) of parameter No. 3704 must be
set to 1.

Shifting to Cs contour control
To shift from the spindle rotation control mode to the Cs contour control mode, set the Cs contour control
change signal CON (or CONS1 to CONS4) to 1. This immediately stops the spindle and then executes
mode switching.

Shifting to spindle rotation control
To shift from the Cs contour control mode to the spindle rotation control mode, set the Cs contour control
change signal CON (or CONS1 to CONS4) to 0.

— 177 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

Before switching, make sure that the move command for the spindle during automatic or manual
operation is fully completed. If the switching is made while the spindle is rotating, the interlock state is
entered or an alarm indicating a too large positional deviation occurs.

11.5.3

Signals

11.5.3.1 Details on signals
Cs contour control change signal
CON <Gn027.7>
[Classification] Input signal
[Function] This signal specifies for the first spindle to switch between the spindle rotation control
mode and the Cs contour control mode in the Cs contour control function.
When this signal is set to 1, the spindle is switched from the spindle rotation mode to the
Cs contour control mode. When this signal is set to 1 while the spindle is rotating, the
spindle stops immediately and then enters the Cs contour control mode.
When this signal is set to 0, the spindle is switched from the Cs contour control mode to
the spindle rotation mode.

CAUTION
This signal is enabled only when bit 7 (CSS) of parameter No. 3704
is 0.
When bit 7 (CSS) of parameter No. 3704 is 1 (when Cs-axis
contour control by the individual spindles is used), use the Cs
contour change signals CONS1 to CONS4 <Gn274.0 to Gn274.3>
of the individual spindles.

Cs contour control change completion signal
FSCSL <Fn044.1>
[Classification] Output signal
[Function] This signal indicates that the Cs contour control mode is entered.
[Output condition] In the spindle rotation control mode, this signal is 0.
In the Cs contour control mode, this signal is 1.

CAUTION
This signal is enabled only when bit 7 (CSS) of parameter No. 3704
is 0.
When bit 7 (CSS) of parameter No. 3704 is 1 (when Cs-axis
contour control by the individual spindles is used), use the Cs
contour change completion signals FCCS1 to FCCS4 < Fn274.0 to
Fn274.3> of the individual spindles.

Cs contour control change signals in each axis
CONS1 to CONS4 <Gn274.0 to Gn274.3>
[Classification] Input signal
[Function] This signal specifies the switching of the first to fourth spindles between the spindle
rotation control mode and the Cs contour control mode in the Cs contour control function.
When this signal is set to 1, the spindles are switched from the spindle rotation mode to
the Cs contour control mode. When this signal is set to 1 while the spindles are rotating,
the spindles stop immediately and then enter the Cs contour control mode.
— 178 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

When these signals are set to 0, the spindles are switched from the Cs contour control
mode to the spindle rotation mode.

CAUTION
These signals are enabled only when bit 7 (CSS) of parameter No.
3704 is 1 (when Cs-axis contour control by the individual spindles
is used).
When bit 7 (CSS) of parameter No. 3704 is 0, use the Cs contour
change signal CON<Gn027.7>.

Cs contour control change completion signals in each axis
FCSS1 to FCSS4 <Fn274.0 to Fn274.3>
[Classification] Output signal
[Function] These signals indicate that the first to fourth spindles are switched to the Cs contour
control mode.
[Output condition] In the spindle rotation control mode, these signals are 0.
In the Cs contour control mode, these signals are 1.

CAUTION
These signals are enabled only when bit 7 (CSS) of parameter No.
3704 is 1 (when Cs-axis contour control by the individual spindles
is used).
When bit 7 (CSS) of parameter No. 3704 is 0, use the Cs contour
change completion signal FSCSL<Fn044.1>.

11.5.3.2 Signal address
#7
Gn027

#6

#5

#4

#3

#2

#1

#0

CONS4

CONS3

CONS2

CONS1

#3

#2

#1

#0

CON

Gn274
#7

#6

#5

#4

Fn044

FSCSL

Fn274

11.5.4

FCSS4

FCSS3

FCSS2

FCSS1

#3
DIAx

#2

#1

#0
ROTx

Parameters
#7

#6

#5

#4

1006

[Input type] Parameter input
[Data type] Bit axis

NOTE
When at least one of these parameters is set, the power must be
turned off before operation is continued.
#0

ROTx Controlled axis is:
0: Linear axis.
1: Rotation axis.
Set 1 for the Cs contour control axis.
— 179 —

11.APPLICATION OF OTHER FUNCTIONS
#3

B-64483EN-2/03

DIAx The move command for each axis is based on:
0: Radius specification
1: Diameter specification
Set 0 for the Cs contour control axis.

1022

Setting of each axis in the basic coordinate system

[Input type] Parameter input
[Data type] Byte axis
[Valid data range] 0 to 7
Specify whether each axis is one of the three basic axes (X, Y, Z) or one of their parallel
axes.
Set 0 for the Cs contour control axis.
1023

Number of the servo axis for each axis

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Byte axis
[Valid data range] 0 to 80
Set relationships between the individual axes and the servo axis numbers.
Set one of -1 to -n (n: logical spindle number) for the Cs contour control axis.
(Setting value)
-1
: Cs contour control axis by the first logical spindle
-2
: Cs contour control axis by the second logical spindle
-3
: Cs contour control axis by the third logical spindle
-4
: Cs contour control axis by the fourth logical spindle

CAUTION
1 When Cs contour control is performed by the second to fourth
spindles, bit 7 (CSS) of parameter No. 3704 must be set to 1.
2 One spindle cannot be set as multiple Cs contour control axes.
3 In multipath control, the spindle of another path cannot be
assigned.
1260

Amount of a shift per one rotation of a rotation axis

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Min. unit of data]
[Valid data range]

Parameter input
Real axis
Degree
Depend on the increment system of the applied axis
0 or positive 9 digit of minimum unit of data (refer to the standard parameter setting table
(B))
(When the increment system is IS-B, 0.0 to +999999.999)
Set the amount of a shift per one rotation of a rotation axis.
Set 360.0 for the Cs contour control axis.
— 180 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

1820

Command multiplier for each axis (CMR)

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type]
[Data type]
[Unit of data]
[Valid data range]

3704

Parameter input
Byte axis
0.5 times
1 to 96
Set 2 for the Cs contour control axis.
#7
CSS

#6

#5

#4

#3

#2

#1

#0

[Input type] Parameter input
[Data type] Bit path

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
#7

CSS On the each spindle, Cs contour control is:
0: Not performed.
1: Performed.
Set 1 when Cs contour control is performed by the second to fourth spindles.
#7

#6

#5

#4

4000

#3
RETRN

#2

#1

[Input type] Parameter input
[Data type] Bit spindle
RETRN The reference position return direction of the spindle is:
0: CCW (counterclockwise)
1: CW (clockwise)
4046

Speed loop proportional gain in Cs contour control (HIGH gear)

4047

Speed loop proportional gain in Cs contour control (LOW gear)

[Data type] Word spindle
[Unit of data]
[Valid data range] 0 to 32767
Set the speed loop proportional gain in Cs contour control.
4054

Speed loop integral gain in Cs contour control (HIGH gear)

4055

Speed loop integral gain in Cs contour control (LOW gear)

[Data type] Word spindle
[Unit of data]
[Valid data range] 0 to 32767
Set the speed loop integral gain in Cs contour control.

— 181 —

#0

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

4056

Gear ratio (HIGH gear)

4057

Gear ratio (MEDIUM HIGH gear)

4058

Gear ratio (MEDIUM LOW gear)

4059

Gear ratio (LOW gear)

[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
Word spindle
Motor speed per spindle rotation × 1/100
0 to 32767
These parameters set the gear ration between the spindle and spindle motor.

4069

Position gain in Cs contour control (HIGH gear)

4070

Position gain in Cs contour control (MEDIUM HIGH gear)

4071

Position gain in Cs contour control (MEDIUM LOW gear)

4072

Position gain in Cs contour control (LOW gear)

[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
Word spindle
0.01 sec-1
0 to 32767
Set the servo loop gain in Cs contour control.

4086

Motor voltage in Cs contour control

[Data type] Word spindle
[Unit of data] 1%
[Valid data range] 0 to 100
Set the motor voltage in Cs contour control.
4135

Amount of grid shift in Cs contour control

[Input type]
[Data type]
[Unit of data]
[Valid data range]

Parameter input
2-word spindle
1 pulse (=0.001deg)
-3600000 to +360000
The reference position of the spindle shifts counterclockwise by the specified number of
pluses.

11.6

SPINDLE ORIENTATION

11.6.1

Overview

The dual check safety function uses the CNC CPU and spindle DSP to separately monitor the spindle
motor speed (safe reduced speed check function). When the stop status of the spindle is monitored by the
safe reduced speed check function, set the safe speed parameter to a value including a margin appropriate
for the machine instead of 0 because the actual speed cannot be assumed to be 0. Since the spindle may
rotate at a speed less than the set safe speed in this case, it is necessary to position the spindle with a
position control loop formed at the same time.
The spindle orientation function stops the spindle at a fixed position using the position coder mounted on
the spindle. For details, refer to the FANUC AC SPINDLE MOTOR αi series Parameter Manual
(B-65280EN) or other documents.
— 182 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

The spindle orientation function is optional.

11.6.2

Specifications

Orientation
The orientation command (ORCMx) can be used to stop the spindle at a fixed position.
When the orientation command is entered while the spindle is rotating, the spindle decelerates
immediately and stops at the fixed position.

Switching to the orientation mode
When the orientation command signal ORCMx is set to 1, spindle rotation control (method of controlling
the rotation of the spindle with the velocity command) is switched to the orientation mode.

Switching to spindle rotation control
When the orientation command signal ORCMx is set to 0, the orientation mode is switched to the spindle
rotation control mode.
As soon as the orientation command signal is set to 0, the velocity command for spindle rotation control
becomes valid and the spindle rotates. For safety, set the forward/reverse spindle rotation commands
(SFRx/SRVx) and the velocity command to 0.

11.6.3

Signals

11.6.3.1 Details on signals
Spindle orientation command signal
ORCMA <Gn070.6> (for 1st spindle)
ORCMB <Gn074.6> (for 2nd spindle)
ORCMC <Gn204.6> (for 3rd spindle)
ORCMD <Gn266.6> (for 4th spindle)
[Classification] Input signal
[Function] This signal specifies spindle orientation.
When this signal is set to 1, the spindle immediately decelerates during rotation and stops
at a fixed position.
Be sure to set the signal to 0 before power-on.

Emergency stop signal
*ESPA <Gn071.1> (for 1st spindle)
*ESPB <Gn075.1> (for 2nd spindle)
*ESPC <Gn205.1> (for 3rd spindle)
*ESPD <Gn267.1> (for 4th spindle)
[Classification] Input signal

— 183 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

[Function] This signal specifies an emergency stop.
When the signal is set to 1, the spindle motor and spindle amplifier become ready to
operate.
When the signal is set to 0, the spindle motor immediately decelerates and then stops.
By monitoring the orientation completion signal (ORARx), set the signal to 0 if there is a
deviation from the stop position.
Since the spindle motor becomes ready to rotate when the signal is set to 1, the spindle
motor immediately rotates upon receiving the rotation command. Therefore, immediately
after setting this signal to 0, reset the command signals (velocity command, forward
command, and reverse command) for the spindle amplifier.

Power interruption signal
MPOFA <Gn073.2> (for 1st spindle)
MPOFB <Gn077.2> (for 2nd spindle)
MPOFC <Gn207.2> (for 3rd spindle)
MPOFD <Gn269.2> (for 4th spindle)
[Classification] Input signal
[Function] This signal turns off the excitation of the motor.
By setting the signal to 1, the excitation of the spindle motor can be turned off to enable
free running.
By monitoring the orientation completion signal (ORARx), set the signal to 1 if there is a
deviation from the stop position.
The excitation of the motor can be turned on again after the motor stops (zero speed
signal SSTx = 1). Even if this signal is set to 0, excitation cannot be turned on while the
motor is rotating (SSTx = 0).
After turning off the excitation of the motor, reset the command signals (velocity
command, forward command, and reverse command) for the spindle amplifier.

Orientation completion signal
ORARA <Fn045.7> (for 1st spindle)
ORARB <Fn049.7> (for 2nd spindle)
ORARC <Fn168.7> (for 3rd spindle)
ORARD <Fn266.7> (for 4th spindle)
[Classification] Output signal
[Function] This signal is set to 1 when the orientation command is entered and the spindle stops near
the specified fixed position.
[Output condition] This signal is set to 1 when all conditions below are satisfied.

ORCMx (orientation command) = 1

Zero speed detection signal SSTx = 1

The spindle is present near the fixed position.
The conditions of proximity to the fixed position are set by the parameter (orientation
completion signal detection level: No. 4075).
This signal is set to 0 when the spindle deviates from the fixed position due to application
of an external force or other causes. To monitor the stop status of the spindle by setting a
spindle positioning loop with the spindle orientation function, set a sequence that
interrupts the power of the spindle motor if there is deviation from the stop position by
monitoring the signal.

— 184 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

Zero speed detection signal
SSTA <Fn045.1> (for 1st spindle)
SSTB <Fn049.1> (for 2nd spindle)
SSTC <Fn168.1> (for 3rd spindle)
SSTD <Fn266.1> (for 4th spindle)
[Classification] Output signal
[Function] This signal is set to 1 when the rotation speed of the actual spindle motor becomes equal
to or less than the zero speed detection level.

11.6.3.2 Signal address
Gn070

#7

#6

#5

#4

MRDYA

ORCMA

SFRA

SRVA

#3

#2

Gn071
MPOFA
MRDYB

ORCMB

SFRB

SRVB

Gn075

*ESPB

Gn077
Gn204

MPOFB
MRDYC

ORCMC

SFRC

SRVC

Gn205

*ESPC

Gn207
Gn266

MPOFC
MRDYD

ORCMD

SFRD

SRVD

Gn267

*ESPD

Gn269

MPOFD
#7

#6

#5

#4

#3

#2

#1

Fn045

ORARA

SSTA

Fn049

ORARB

SSTB

Fn168

ORARC

SSTC

Fn266

ORARD

SSTD

11.6.4

#0

*ESPA

Gn073
Gn074

#1

#0

Parameters
#7

#6

#5

#4

4003

#3
DIRCT2

#2
DIRCT1

#1

#0

[Data type] Bit spindle
DIRCT2, DIRCT1 Setting of rotation direction at spindle orientation
DIRCT2

DIRCT1

Rotation direction at spindle orientation

0
0
1
1

0
1
0
1

By rotation direction immediately before (It is CCW at the power on.)
By rotation direction immediately before (It is CW at the power on.)
CCW (counterclockwise) direction looking from shaft of motor
CW (clockwise) direction looking from shaft of motor

4031

Position coder method orientation stop position

[Data type] Word spindle
— 185 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

[Unit of data] 1 pulse unit (360°/4096)
[Valid data range] 0 to 4096
Set the position coder method orientation stop position.
4038

Spindle orientation speed

[Data type] Word spindle
[Unit of data] 1min-1
[Valid data range] 0 to 32767
This parameter sets the orientation speed at the end of the spindle.
4042

Velocity loop proportional gain on orientation (HIGH gear)

4043

Velocity loop proportional gain on orientation (LOW gear)

[Data type] Word spindle
[Unit of data]
[Valid data range] 0 to 32767
This parameter sets the velocity loop proportional gain for spindle orientation.
4050

Velocity loop integral gain on orientation (HIGH gear)

4051

Velocity loop integral gain on orientation (LOW gear)

[Data type] Word spindle
[Unit of data]
[Valid data range] 0 to 32767
This parameter sets the velocity loop integral gain for spindle orientation.
4056

Gear ratio (HIGH gear)

4057

Gear ratio (MEDIUM HIGH gear)

4058

Gear ratio (MEDIUM LOW gear)

4059

Gear ratio (LOW gear)

[Data type] Word spindle
[Unit of data] Motor speed per spindle rotation × 1/100
[Valid data range] 0 to 32767
These parameters set the gear ration between the spindle and spindle motor.
4060

Position gain on orientation (HIGH gear)

4061

Position gain on orientation (MEDIUM HIGH gear)

4062

Position gain on orientation (MEDIUM LOW gear)

4063

Position gain on orientation (LOW gear)

[Data type] Word spindle
[Unit of data] 0.01 sec-1
[Valid data range] 0 to 32767
These parameters set the position gain for orientation.
4064

Modification rate of position gain on orientation completion

[Data type] Word spindle
[Unit of data] 1%
[Valid data range] 0 to 1000
— 186 —

B-64483EN-2/03

11.APPLICATION OF OTHER FUNCTIONS
This data is used to set the modification rate of position gain on spindle orientation
completion.

4075

Orientation completion signal detection level (limits of in-position)

[Data type] Word spindle
[Unit of data] 1 pulse unit (360°/4096)
[Valid data range] 0 to 100
This data is used to set the detecting level of orientation completion signal (ORARx).
When the spindle position is located within the setting data on orientation completion, the
bit of orientation completion signal (ORARx) in the spindle control signals is set to «1».
4076

Motor speed limit ratio on orientation

[Data type] Word spindle
[Unit of data] 1%
[Valid data range] 0 to 100
This data is used to set motor speed limit ratio on orientation.
4077

Orientation stop position shift value

[Data type] Word spindle
[Unit of data] 1 pulse unit (360°/4096)
[Valid data range] -4095 to 4095
In the position coder method orientation, set this data to shift stop position.
4084

Motor voltage setting on orientation

[Data type] Word spindle
[Unit of data] 1%
[Valid data range] 0 to 100
This parameter sets the motor voltage for orientation.

— 187 —

11.APPLICATION OF OTHER FUNCTIONS

11.6.5

B-64483EN-2/03

Sequence

The following is a sample sequence in which orientation is specified during rotation of the spindle and
work is conducted with the spindle stopped.
M otor speed

ORCMA

Speed com m and

SFRA
(S RVA )

ORARA

S afe speed
Level sw itching

D oor

O pen
C lose

To monitor the stop status of the spindle, use a sequence as shown below.
By monitoring the orientation completion signal (ORARA), interrupt the power of the spindle motor with
the power interruption signal (MPOFA) and emergency stop signal (*ESPA) if there is a deviation from
the stop position.
ORCMA

ORARA

M P O FA

*E S PA

CAUTION
This sequence uses the spindle orientation function to monitor the stop status of
the spindle. If there is a deviation from the stop position since an excessive load
is applied to the spindle, a large reaction force is generated. When the deviation
is greater than or equal to the orientation completion level, excitation is turned off
and the output torque is immediately reduced to zero.

— 188 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

11.7

CONTROLLED AXIS DETACH

11.7.1

Overview

To detach a controlled axis during safety monitoring of the Dual Check Safety function, use a signal
sequence as shown below on the PMC and DCS PMC.
With this sequence, after the Controlled Axis Detach signal DTCHx <Gn124> is set to “1”, the speed and
machine position are also monitored until the detector is actually detached.
To configure the sequence, the machine tool builder should provide dual signals and perform an I/O
cross-check.
The controlled axis detach function is optional.
To replace a spindle head, use a similar signal sequence. See Subsection 11.7.4, “Replacing a Spindle
Head”, and following subsections.

11.7.2

Signal Sequence

PMC and DCS PMC sequences for detaching a controlled axis are shown below.

PMC
Controlled Axis Detach Start
signal X(1)

(MCN -> CNC)

Servo off signal SVFx
Power off Ready

(CNC -> MCN)
t1

Power off (1)

(MCN -> CNC)

Controlled axis detach signals
DTCHx

t4

Safety Check Pause signal IVLVx
The detector is detached.
Connected

t2 Not connected t3 Connected

DCSPMC
Controlled Axis Detach Start
signal X(2)

(MCN -> CNC)

Power off (2)

(MCN -> CNC)

Safety Check Pause signal IVLVx
t5

Explanation
(1) Input the Controlled Axis Detach Start signal (dual signal).
(2) Set the Servo off signal SVFx to “1” so that current does not flow in the servo motor.
— 189 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

(3)
(4)
(5)
(6)

After time t1, output Power off Ready to the machine side.
After the completion of power-off for the axis, input Power off (dual signal).
Set the Controlled Axis Detach signal DTCHx to “1”.
Immediately before detaching the detector, set the Safety Check Pause signal IVLVx (dual signal) to
“1”. This causes the monitoring of the speed and machine position to pause.
(7) After time t2, detach the detector.
Releasing the controlled axis detach mode
(8) Turn the Controlled Axis Detach Start signal (dual signal) off.
(9) Attach the detector.
(10) After time t3, set the Controlled Axis Detach signal DTCHx and Safety Check Pause signal IVLVx
(dual signal) to “0”. This causes the monitoring of the speed to restart. The machine position is not
monitored.
(11) After time t4, turn Power off Ready off.
(12) After releasing the power-off mode for the axis, turn Power off (dual signal) off.
(13) Set the Servo off signal SVFx to “0” to make current to flow in the servo motor.
In the above sequence, the machine tool builder should provide the following signals:
1. Controlled Axis Detach Start signal (PMC and DCSPMC)
This signal notifies the PMC or DCS PMC of the start or end of detaching a controlled axis.
2. Power off (PMC and DCSPMC)
This signal monitors the power to the target axis of the controlled axis detach function to see
whether it is shut off.
3. Power-off Ready (PMC)
This signal notifies the PMC of the completion of preparations for shutting off the power to the
target axis of the controlled axis detach function.
Input signals 1 and 2 independently to the PMC and DCS PMC. Set Programmable Safety I/O signals so
that these signals are monitored in redundant mode. As a result of dual monitoring, if an I/O cross check
error is detected, the MCC is immediately turned off.
Controlled Axis Detach Start
signal X (1)
(general purpose I/O)

PMC
Power off (1)
(general purpose I/O)

IVLVx
DTCHx

I/O cross check

Controlled axis
detach feature

I/O cross check

DCSPMC
IVLVx

Power off (2)
(general purpose I/O)

Controlled Axis Detach Start
signal X (2)
(general purpose I/O)

NOTE
1 Times t1 to t5 in the sequence are required to wait for response from the
machine. Set appropriate waiting times using a ladder program.
2 For details of the Controlled Axis Detach signal DTCHx <Gn124> and Servo off
signal SVFx <Gn126>, refer to Subsections 1.2.5 and 1.2.9 in the Connection
Manual (Function).

— 190 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

11.7.3

Specification

Safety monitoring in the controlled axis detach mode
The specifications of the safety monitoring and Monitoring Result signal RSVx <PMC: Fn750>
<DCSPMC: F(002+m)> are determined depending on the status of the Controlled Axis Detach signal
DTCHx <Gn124> and Safety Check Pause signal IVLVx <PMC: Gn758> <DCSPMC: G(010+m)> as
listed below.




Status

DTCHx

IVLVx

Speed monitoring

Machine position monitoring

RSVx

1
2
3
4

0
1
1
0

0
0
1
0

Performed
Performed
Not performed
Performed

Performed
Performed
Not performed
Not performed

0/1 according to the result
0/1 according to the result
Always 1 (safety state)
0/1 according to the result

In status 1, ordinary safety monitoring is performed.
Safety monitoring alarms detected in status 2 are SV1075 to SV1078 according to the result, unlike
ordinary alarms.
In status 4, the reference point is lost and the Position Information Effect signal POSEx <PMC:
Fn766> <DCSPMC: F(018+m)> is set to “0”. This indicates that machine position monitoring is
disabled.
After that, when reference position return is performed, POSEx is set to “1” and the machine
position is monitored.

WARNING
1 When the signal IVLVx is set to 1, the servo and CNC do not monitor the speed
or machine position.
The Monitoring Result signal RSVx is always 1 (safety state).
2 After the controlled axis detach mode is canceled (the signal DTCHx is set to 0),
the machine position is not monitored until the completion of reference position
return. Only the speed is monitored.
3 When the signal IVLVx is set to 1, the monitoring of the speed and machine
position is disabled regardless of whether the Safety Check Request signal
*VLDVx is set to 0 or 1. Operation in this section contains remaining risks.
NOTE
1 To use the signal IVLVx, set bit 3 (IVEx) of parameter No. 13806 to 1.
2 The signal IVLVx is a dual signal and I/O cross check is performed for the signal.

11.7.4

Replacing a Spindle Head

When replacing a spindle head, also use a signal sequence as shown below on the PMC and DCS PMC.
In the same way as for detaching a controlled axis, use the Safety Check Pause signal for the spindle to
make the monitoring of the speed to pause during the replacement of a spindle head.

— 191 —

11.APPLICATION OF OTHER FUNCTIONS

11.7.5

B-64483EN-2/03

Signal Sequence

PMC and DCS PMC sequences for replacing a spindle head are shown below.

PMC
Spindle Head Detach Start signal
X(1)

(MCN -> CNC)

Spindle Emergency Stop signal *ESPs

Forward/Reverse Spindle Rotation
Commands SFRs,SRVs
Orientation Command ORCMs
Motor Excitation off State signal EXOFs
Zero Speed Detection signal SSTs
Safety Check Pause signal (1) IVLPs
Disconnection Detection
Disable signal DSCNs
The detector is detached.
Connected

Not connected

Connected

DCSPMC
Spindle Head Detach Start signal (MCN -> CNC)
X(2)
Motor Excitation off State EXOF2

(MCN -> CNC)

Safety Check Pause signal (2) IVLPs

Explanation
(1) Set the Spindle Head Detach Start signal (dual signal) to 1.
(2) Set the Spindle Emergency Stop signal *ESPs, Forward/Reverse Spindle Rotation Command
SFRs/SRVs, and Orientation Command ORCMs to 0 to stop the spindle motor.
(3) When the following two conditions are satisfied, set the Safety Check Pause signal IVLPs (dual
signal) to “1”: The spindle motor stops (the Zero Speed Detection signal SSTs is set to “1”) and the
excitation of the spindle motor is turned off (the Motor Excitation off State signal EXOFs is set to
“1”). This causes the monitoring of the speed of the spindle motor to pause.
(4) Set the Disconnection Detection Disable signal DSCNs to “1” to disable the detection of
disconnection of a sensor or thermistor.
(5) Detach the detector and remove the spindle head.
* Releasing the spindle head detach mode
(6) Mount the spindle head and connect the detector.
(7) Set the Spindle Head Detach Start signal (dual signal) to “0”.
(8) Set the Disconnection Detection Disable signal DSCNs to “0” to enable the detection of
disconnection of a sensor or thermistor.
— 192 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

(9) Set the Safety Check Pause signal IVLPs (dual signal) to “0”. This causes the monitoring of the
speed to restart.
In the above sequence, the machine tool builder should provide the following signal:
1. Spindle Head Detach Start signal (PMC and DCSPMC)
This signal notifies the PMC or DCS PMC of the start or end of detaching a spindle head.
Input signal 1 independently to the PMC and DCS PMC. Set Programmable Safety I/O signals so that this
signal is monitored in redundant mode. As a result of dual monitoring, if an I/O cross check error is
detected, the MCC is immediately turned off.

11.7.6

Specification

Safety monitoring in the spindle head detach mode
The specifications of the safety monitoring and Monitoring Result signal RSPs <PMC: Fn751.0 to
Fn751.3> <DCSPMC: F(003+m).0 to F(003+m).3> are determined depending on the status of the Safety
Check Pause signal IVLPs <PMC: Gn759.0 to Gn759.3> <DCSPMC: G(011+m).0 to G(011+m).3> as
listed below.
IVLPs

Speed monitoring

RSPs

0
1

Performed
Not performed

0/1 according to the result
Always 1 (safety state)

WARNING
1 When the signal IVLPs is set to 1, the spindle and CNC do not monitor the
speed.
The Monitoring Result signal RSPs is always 1 (safety state).
2 When the signal IVLPs is set to 1, the monitoring of the speed is disabled
regardless of whether the Safety Check Request signal *VLDPs is set to 0 or 1.
Operation in this section contains remaining risks.
NOTE
1 To use the signal IVLPs, set bit 0 (IVEs) of parameter No. 4545 to 1.
2 The signal IVLPs is a dual signal and I/O cross check is performed for the signal.

11.7.7

Signal

11.7.7.1 Details of signals
Safety Check Pause signal
IVLVx < PMC : Gn758 >< DCSPMC : G(010+m) > (for feed axis)
IVLPs < PMC : Gn759.0 to Gn759.3 >< DCSPMC : G(011+m).0 to G(011+m).3 >
(for spindle)
[Classification] Input signal (Dual signal)
[Function] This signal notifies the CNC that safety monitoring of the Dual Check Safety function
pauses.
0: Safety monitoring is enabled.
1: Safety monitoring pauses.
[Operation] Each CPU pauses monitoring the safety speed and safety machine position for the servo
axis or spindle selected by this signal.
— 193 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

WARNING
1 When the signal IVLVx is set to 1, the servo and CNC do not
monitor the speed or machine position. The Monitoring Result
signal RSVx is always 1 (safety state).
2 When the signal IVLPs is set to 1, the spindle and CNC do not
monitor the speed.
The Monitoring Result signal RSPs is always 1 (safety state).

11.7.7.2 Signal address
PMC
#7
Gn758

IVLV8
#7

#6
IVLV7
#6

#5
IVLV6
#5

#4

#3

#2

#1

#0

IVLV5

IVLV4

IVLV3

IVLV2

IVLV1

#4

Gn759

#3

#2

#1

#0

IVLP4

IVLP3

IVLP2

IVLP1

DCSPMC
#7
G(010+m)

IVLV8
#7

#6
IVLV7
#6

#5
IVLV6
#5

#4

#3

#2

#1

#0

IVLV5

IVLV4

IVLV3

IVLV2

IVLV1

#4

#3

#2

#1

#0

IVLP4

IVLP3

IVLP2

IVLP1

#3

#2

#1

#0
IVEs

G(011+m)

11.7.8

Parameter
#7

#6

#5

#4

4545

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Bit spindle
IVEs The Safety Check Pause signal IVLPs <PMC: Gn759.0 to Gn759.3> <DCSPMC:
G(011+m).0 to G(011+m).3> is:
0: Disabled.
1: Enabled.
#7

#6

#5

#4

13806

#3
IVEx

#2

#1

#0

NOTE
When this parameter is set, the power must be turned off before
operation is continued.
[Input type] Parameter input
[Data type] Bit axis
IVEs The Safety Check Pause signal IVLVx <PMC: Gn758> <DCSPMC: G(010+m)> is:
0: Disabled.
1: Enabled.
— 194 —

11.APPLICATION OF OTHER FUNCTIONS

B-64483EN-2/03

11.7.9

Alarm message

Servo alarm (SV alarm)
Number

Message

SV1075 ILLEGAL SPEED
CMD.(DETACH:CNC)

SV1076 ILLEGAL SPEED
CMD.(DETACH:SV )

SV1077 ILLEGAL MACHINE
POS.(DETACH:CNC)

SV1078 ILLEGAL MACHINE
POS.(DETACH:SV)

Description
In the detached axis, the CNC detected that the speed exceeded
the safety speed (parameter No. 13821 to 13824 in case of position
control, No. 13826 to 13829 in case of velocity control) during safety
monitoring (the safety check request signal(*VLDVx) is 0).
The operation is done within the safety speed.
In the detached axis, the Servo detected that the speed exceeded
the safety speed (parameter No. 13821 to 13824 in case of position
control, No. 13826 to 13829 in case of velocity control) during safety
monitoring (the safety check request signal(*VLDVx) is 0).
The operation is done within the safety speed.
n the detached axis, the CNC detected that the machine position is
not in the safety area (parameter No.13831 to 13838) during safety
monitoring (the safety check request signal(*VLDVx) is 0).
The operation is done in the safety area.
The safe machine position monitoring is done for the axis whose
machine reference position is established.
In the detached axis, the Servo detected that the machine position is
not in the safety area (parameter No.13831 to 13838) during safety
monitoring (the safety check request signal(*VLDVx) is 0).
The operation is done in the safety area.
The safe machine position monitoring is done for the axis whose
machine reference position is established.

— 195 —

12.COMPONENTS LIST

B-64483EN-2/03

12

COMPONENTS LIST

12.1

HARDWARE COMPONENTS

12.1.1

Hardware Components for Series 30i/31i/32i/35i-MODEL B, Series
31i-MODEL B5, Power Motion i-MODEL A

CNC Control unit
No.

Description

1

Main board

2

CPU card

3

Axis control card

Specification Number
A20B-8200-0720
A20B-8200-0721
A20B-8200-0722
A20B-8200-0723
A20B-8200-0724
A20B-8200-0726
A20B-8200-0727
A20B-8200-0700
A20B-8200-0701
A20B-8200-0702
A20B-8200-0703
A20B-8200-0704
A20B-8200-0705
A20B-8200-0706
A20B-8200-0707
A20B-8200-0708
A20B-8200-0709
A20B-8200-0710
A20B-8200-0711
A20B-8200-0712
A20B-8200-0713
A20B-8200-0714
A20B-8200-0715
A20B-8200-0716
A20B-8200-0717
A20B-8200-0718
A20B-8200-0719
A16B-3200-0710
A16B-3200-0711
A16B-3200-0713
A20B-3300-0650
A20B-3300-0651
A20B-3300-0652
A20B-3300-0653
A20B-3300-0654
A20B-3300-0655
A20B-3300-0660
A20B-3300-0661
A20B-3300-0662
A20B-3300-0663
A20B-3300-0664

— 196 —

Remarks

12.COMPONENTS LIST

B-64483EN-2/03

No.

Description

4

FROM/SRAM module

5

Back Panel with Power supply

6

Back Panel

7
8
9

Power supply unit
Additional axis board
PROFIBUS-DP Master board

12.1.2

Specification Number

Remarks

A20B-3900-0250
A20B-3900-0251
A20B-3900-0252
A20B-3900-0260
A20B-3900-0261
A20B-8200-0650
A20B-8200-0670
A20B-8200-0680
A20B-2003-0650
A20B-2003-0580
A20B-8101-0011
A20B-8101-0740
A20B-8101-0050

Hardware Components List for Other Units

Other unit for CNC
No.

Description

Specification Number

1
2
3

Separate detector I/F unit (Basic 4 axis)
Separate detector I/F unit (Additional 4 axis)
I/O module

4

I/O module

5

I/O module for connector panel (Basic module)

6

I/O module for connector panel (Extension
module)

7

2A DO output module

8

Analog input module

9

I/O module type-2 for connector panel
(Basic module)

10

I/O module type-2 for connector panel
(Extension module)
Machine operator’s panel main panel
I/O card

11
12

13
14
15
16
17
18
19

Terminal Type I/O module (Basic module)
Terminal Type I/O module (Extension module A)
Terminal Type I/O module (Extension module B)
Terminal Type I/O module (Extension module C)
Safety IO unit
I/O module for operator’s panel supporting safety
function
10 slots base Horizontal ABU10A

A02B-0323-C205
A02B-0323-C204
A03B-0824-K200
A03B-0815-K200
A03B-0824-K202
A03B-0824-K203
A03B-0815-K202
A03B-0815-K203
A03B-0824-C001
A03B-0815-C001
A03B-0824-C002
A03B-0824-C003
A03B-0815-C002
A03B-0815-C003
A03B-0824-C004
A03B-0815-C004
A03B-0824-C005
A03B-0815-C005
A03B-0824-C040
A03B-0824-C041
A03B-0815-C040
A03B-0815-C041
A03B-0824-C042
A03B-0815-C042
A02B-0323-C231
A16B-2202-0730
A16B-2202-0731
A16B-2204-0260
A16B-2204-0261
A03B-0823-C011
A03B-0823-C012
A03B-0823-C013
A03B-0823-C014
A03B-0821-C002
A20B-2200-0470
A20B-2200-0471
A03B-0819-C001

— 197 —

Remarks

12.COMPONENTS LIST
No.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

B-64483EN-2/03

Description
5 slots base Horizontal ABU05A
5 slots base Vertical ABU05B
10 slots base Vertical ABU10B
Interface module AIF01A
Interface module AIF01B
Interface module AIF01A2
Interface module AIF01D
DC digital input module AID32A1
DC digital input module AID32B1
DC digital input module AID16D
DC digital input module AID16L
DC digital input module AID32E1
DC digital input module AID32F1
AC digital input module AIA16G
DC digital input module AID32F2
DC digital input module AID32E2
DC digital input module AID32H1
DC digital input module AID16DM
DC digital output module AOD08D
DC digital output module AOD16D
DC digital output module AOD32D1
AC digital output module AOA05E
AC digital output module AOA08E
AC digital output module AOA12F
Relay output module AOR08G
Relay output module AOR16G
Relay output module AOR16H2
DC digital output module AOD32D2
DC digital output module AOD16D2
DC digital output module AOD16DP
DC digital output module AOD08DP
DC digital output module AOD16DM
Relay output module AOR16G2

Specification Number
A03B-0819-C002
A03B-0819-C003
A03B-0819-C004
A03B-0819-C011
A03B-0819-C012
A03B-0819-C014
A03B-0819-C015
A03B-0819-C101
A03B-0819-C102
A03B-0819-C104
A03B-0819-C114
A03B-0819-C105
A03B-0819-C106
A03B-0819-C107
A03B-0819-C109
A03B-0819-C110
A03B-0819-C111
A03B-0819-C116
A03B-0819-C152
A03B-0819-C154
A03B-0819-C156
A03B-0819-C157
A03B-0819-C158
A03B-0819-C159
A03B-0819-C160
A03B-0819-C161
A03B-0819-C165
A03B-0819-C167
A03B-0819-C171
A03B-0819-C182
A03B-0819-C183
A03B-0819-C186
A03B-0819-C184

— 198 —

Remarks

12.COMPONENTS LIST

B-64483EN-2/03

12.2

SOFTWARE COMPONENTS

CNC CPU Software
Revision
(Series/Version)
FS30i-B

FS31i-B

FS31i-B5
FS32i-B
FS35i-B
FS30i-LB
FS31i-LB
FS30i-PB
FS31i-PB
FS31i-WB
Power Motion i-A

Remarks

G301 / 01 or later
G311 / 01 or later
G321 / 01 or later
G401 / 01 or later
G411 / 01 or later
G441 / 01 or later
G421 / 01 or later
G431 / 01 or later
G501 / 01 or later
G541 / 01 or later
G601 / 01 or later
G611 / 05 or later
G3C1 / 01 or later
G3D1 / 01 or later
G4C1 / 01 or later
G3E1 / 01 or later
G3F1 / 01 or later
G4E1 / 01 or later
G4A1 / 01 or later
88H0 / 01 or later

PMC CPU Software
Revision
(Series/Version)
FS30i-B
FS31i-B
FS32i-B
FS35i-B
FS30i-LB
FS31i-LB
FS30i-PB
FS31i-PB
Power Motion i-A

Remarks

40A5 / 01 or later

Servo Software
Revision
(Series/Version)
Servo DSP
Servo DSP

Remarks

90G0/01 or later
90G3/01 or later

Spindle Software
Revision
(Series/Version)
Spindle Software
Spindle Software
Spindle Software
Spindle Software
Spindle Software
Spindle Software

9D70/A4 or later
9D7A/01 or later
9D80/01 or later
9D8A/01 or later
9D90/01 or later
9DA0/01 or later

— 199 —

Remarks

12.COMPONENTS LIST

12.3

B-64483EN-2/03

SERVO AMPLIFIER

SERVO AMPLIFIER αi series (200V)
— Common power supply
Series Name
αi PS series

αi PSR series
(Resistance
regeneration type

Model Name
αi PS 5.5
αi PS 11
αi PS 15
αi PS 26
αi PS 30
αi PS 37
αi PS 55
αi PSR 3
αi PSR 5.5

Type Designation

Remarks

A06B-6140-H006
A06B-6140-H011
A06B-6140-H015
A06B-6140-H026
A06B-6140-H030
A06B-6140-H037
A06B-6140-H055
A06B-6115-H003
A06B-6115-H006

— Common power supply for 30i-B series
Series Name
αi PS series

Model Name
αi PS 7.5
αi PS 11
αi PS 15
αi PS 26
αi PS 30
αi PS 37

A06B-6200-H008
A06B-6200-H011
A06B-6200-H015
A06B-6200-H026
A06B-6200-H030
A06B-6200-H037

Type Designation

Model Name
αi SP 2.2 TYPE A
αi SP 5.5 TYPE A
αi SP 11 TYPE A
αi SP 15 TYPE A
αi SP 22 TYPE A
αi SP 26 TYPE A
αi SP 30 TYPE A
αi SP 37 TYPE A
αi SP 45 TYPE A
αi SP 55 TYPE A
αi SP 2.2 TYPE B
αi SP 5.5 TYPE B
αi SP 11 TYPE B
αi SP 15 TYPE B
αi SP 22 TYPE B
αi SP 26 TYPE B
αi SP 30 TYPE B
αi SP 37 TYPE B
αi SP 45 TYPE B
αi SP 55 TYPE B
αi SP 2.2 TYPE B
αi SP 5.5 TYPE B
αi SP 11 TYPE B
αi SP 15 TYPE B
αi SP 22 TYPE B

A06B-6141-H002#H580
A06B-6141-H006#H580
A06B-6141-H011#H580
A06B-6141-H015#H580
A06B-6141-H022#H580
A06B-6141-H026#H580
A06B-6141-H030#H580
A06B-6141-H037#H580
A06B-6141-H045#H580
A06B-6141-H055#H580
A06B-6142-H002#H580
A06B-6142-H006#H580
A06B-6142-H011#H580
A06B-6142-H015#H580
A06B-6142-H022#H580
A06B-6142-H026#H580
A06B-6142-H030#H580
A06B-6142-H037#H580
A06B-6142-H045#H580
A06B-6142-H055#H580
A06B-6144-H002#H590
A06B-6144-H006#H590
A06B-6144-H011#H590
A06B-6144-H015#H590
A06B-6144-H022#H590

Remarks

— Spindle Amplifier
Series Name
αi SP series

Type Designation

— 200 —

Remarks

12.COMPONENTS LIST

B-64483EN-2/03

Series Name
αi SP series

Model Name
αi SP 26 TYPE B
αi SP 30 TYPE B
αi SP 37 TYPE B
αi SP 45 TYPE B
αi SP 55 TYPE B

Type Designation

Remarks

A06B-6144-H026#H590
A06B-6144-H030#H590
A06B-6144-H037#H590
A06B-6144-H045#H590
A06B-6144-H055#H590

— Spindle Amplifier for 30i-B series
Series Name
αi SP series

Model Name
αi SP 2.2
αi SP 5.5
αi SP 11
αi SP 15
αi SP 22
αi SP 26
αi SP 30
αi SP 37

Type Designation

Remarks

A06B-6220-H002#H600
A06B-6220-H006#H600
A06B-6220-H011#H600
A06B-6220-H015#H600
A06B-6220-H022#H600
A06B-6220-H026#H600
A06B-6220-H030#H600
A06B-6220-H037#H600

— Servo/Spindle multi-axis Amplifier for 30i-B series
Series Name
αi SVP series

Model Name
αi SVP20/20/20-5.5

A06B-6230-H001#H600

Type Designation

Model Name
αi SV 4
αi SV 20
αi SV 20L
αi SV 40
αi SV 40L
αi SV 80
αi SV 80L
αi SV 160
αi SV 160L
αi SV 360
αi SV 4/4
αi SV 4/20
αi SV 20/20
αi SV 20/20L
αi SV 20/40
αi SV 20/40L
αi SV 40/40
αi SV 40/40L
αi SV 40/80
αi SV 40/80L
αi SV 80/80
αi SV 80/80L
αi SV 80/160
αi SV 160/160
αi SV 4/4/4
αi SV 20/20/20
αi SV 20/20/40
αi SV 40S/40S/40

A06B-6117-H101
A06B-6117-H103
A06B-6117-H153
A06B-6117-H104
A06B-6117-H154
A06B-6117-H105
A06B-6117-H155
A06B-6117-H106
A06B-6114-H156
A06B-6117-H109
A06B-6117-H201
A06B-6117-H203
A06B-6117-H205
A06B-6117-H255
A06B-6117-H206
A06B-6117-H256
A06B-6117-H207
A06B-6117-H257
A06B-6117-H208
A06B-6117-H258
A06B-6117-H209
A06B-6117-H259
A06B-6117-H210
A06B-6117-H211
A06B-6117-H301
A06B-6117-H303
A06B-6117-H304
A06B-6117-H306

Remarks

— Servo Amplifier
Series Name
αi SV series

Type Designation

— 201 —

Remarks

12.COMPONENTS LIST

B-64483EN-2/03

— Servo Amplifier for 30i-B series
Series Name
αi SV series

Model Name
αi SV 4
αi SV 20
αi SV 40
αi SV 80
αi SV 160
αi SV 360
αi SV 4/4
αi SV 4/20
αi SV 20/20
αi SV 20/40
αi SV 40/40
αi SV 40/80
αi SV 80/80
αi SV 80/160
αi SV 160/160
αi SV 4/4/4
αi SV 20/20/20
αi SV 20/20/40
αi SV 40/40/40

Type Designation

Remarks

A06B-6240-H101
A06B-6240-H103
A06B-6240-H104
A06B-6240-H105
A06B-6240-H106
A06B-6240-H109
A06B-6240-H201
A06B-6240-H203
A06B-6240-H205
A06B-6240-H206
A06B-6240-H207
A06B-6240-H208
A06B-6240-H209
A06B-6240-H210
A06B-6240-H211
A06B-6240-H301
A06B-6240-H305
A06B-6240-H306
A06B-6240-H308

— Sensor (αi series)
Type
PULSE CODER

Name

αiCZ SENSOR

Remarks

A860-2000-T3x1

x = 0,2

αiA16000

A860-2001-T3x1

x = 0,2

αiI1000
βiA128
βiA64
αA64B
αI64B
Spindle sensor

Type Disignation

αiA1000

A860-2005-T3x1

x = 0,2
x = 0,2,6
x = 0,7

αiMZ SENSOR

A860-2020-T3x1
A860-2024-T3x1
A860-0374-T303
A860-0379-T303
A860-2110-Txyz

αiM SENSOR

A860-2100-Txyz

xyz = 000 – 999

αiBZ SENSOR

A860-2120-Txyz

xyz = 000 – 999

αiCZ SENSOR (serial)

A860-216x-Ty11

x = 1,3
y = 4,5,6

A860-216x-Ty11

— 202 —

xyz = 000 – 999

Supported CNC CPU software(Series/Version)
-G301/11 or later, G311/11 or later, G321/11 or
later, G401/11 or later, G411/11 or later,
G421/11 or later, G431/11 or later, G501/11 or
later,
x = 2,4
y = 4,5,6

12.COMPONENTS LIST

B-64483EN-2/03

— HIGH RESOLUTION SERIAL OUTPUT CIRCUIT
Name

Module Name

HIGH RESOLUTION
512/1ch
SERIAL OUTPUT CIRCUIT 512/2ch
512/1ch
2048/1ch
2048/2ch
2048/1ch
2048/1ch
2048/1ch
2048/1ch

Type Designation

Remarks

A860-0333-T001
A860-0333-T002
A860-0333-T501
A860-0333-T201
A860-0333-T202
A860-0333-T301
A860-0333-T302
A860-0333-T701
A860-0333-T801

— PWM Distribution Module
Name

Type Designation

PWM Distribution Module

Remarks

A06B-6135-H001

SERVO AMPLIFIER αi series (400V)
— Common power supply
Series Name
αi PS series

Model Name
αi PS 11HV
αi PS 18HV
αi PS 30HV
αi PS 45HV
αi PS 75HV
αi PS 100HV

Type Designation

Remarks

A06B-6150-H011
A06B-6150-H018
A06B-6150-H030
A06B-6150-H045
A06B-6150-H075
A06B-6150-H100

— Common power supply for 30i-B series
Series Name
αi PS series

Model Name
αi PS 11HV
αi PS 18HV
αi PS 30HV
αi PS 45HV
αi PS 60HV

Type Designation

Remarks

A06B-6250-H011
A06B-6250-H018
A06B-6250-H030
A06B-6250-H045
A06B-6250-H060

— Spindle Amplifier
Series Name
αi SP series

Model Name
αi SP 5.5HV TYPE A
αi SP 11HV TYPE A
αi SP 15HV TYPE A
αi SP 30HV TYPE A
αi SP 45HV TYPE A
αi SP 75HV TYPE A
αi SP 100HV TYPE A
αi SP 5.5HV TYPE B
αi SP 11HV TYPE B
αi SP 15HV TYPE B
αi SP 30HV TYPE B
αi SP 45HV TYPE B
αi SP 75HV TYPE B
αi SP 100HV TYPE B
αi SP 5.5HV TYPE B
αi SP 11HV TYPE B
αi SP 15HV TYPE B

Type Designation
A06B-6151-H006#H580
A06B-6151-H011#H580
A06B-6151-H015#H580
A06B-6151-H030#H580
A06B-6151-H045#H580
A06B-6151-H075#H580
A06B-6151-H100#H580
A06B-6152-H006#H580
A06B-6152-H011#H580
A06B-6152-H015#H580
A06B-6152-H030#H580
A06B-6152-H045#H580
A06B-6152-H075#H580
A06B-6152-H100#H580
A06B-6154-H006#H590
A06B-6154-H011#H590
A06B-6154-H015#H590

— 203 —

Remarks

12.COMPONENTS LIST
Series Name
αi SP series

Model Name
αi SP 30HV TYPE B
αi SP 45HV TYPE B
αi SP 75HV TYPE B
αi SP 100HV TYPE B

B-64483EN-2/03

Type Designation

Remarks

A06B-6154-H030#H590
A06B-6154-H045#H590
A06B-6154-H075#H590
A06B-6154-H100#H590

— Spindle Amplifier for 30i-B series
Series Name
αi SP series

Model Name
αi SP 5.5HV
αi SP 11HV
αi SP 15HV
αi SP 22HV
αi SP 30HV
αi SP 45HV

Type Designation

Remarks

A06B-6270-H006#H600
A06B-6270-H011#H600
A06B-6270-H015#H600
A06B-6270-H022#H600
A06B-6270-H030#H600
A06B-6270-H045#H600

— Servo/Spindle multi-axis Amplifier for 30i-B series
Series Name
αi SVP series

Model Name
Type Designation
αi SVP 10/10/10-5.5HV A06B-6280-H001#H600

Remarks

Model Name
αi SV 10HV
αi SV 10HVL
αi SV 20HV
αi SV 20HVL
αi SV 40HV
αi SV 40HVL
αi SV 80HV
αi SV 80HVL
αi SV 180HV
αi SV 360HV
αi SV 10/10HV
αi SV 10/10HVL
αi SV 20/20HV
αi SV 20/20HVL
αi SV 20/40HV
αi SV 20/40HVL
αi SV 40/40HV
αi SV 40/40HVL
αi SV 40/80HV
αi SV 80/80HV

Remarks

— Servo Amplifier
Series Name
αi SV series

Type Designation
A06B-6127-H102
A06B-6127-H152
A06B-6127-H103
A06B-6127-H153
A06B-6127-H104
A06B-6127-H154
A06B-6127-H105
A06B-6127-H155
A06B-6127-H106
A06B-6127-H109
A06B-6127-H202
A06B-6127-H252
A06B-6127-H205
A06B-6127-H255
A06B-6127-H206
A06B-6127-H256
A06B-6127-H207
A06B-6127-H257
A06B-6127-H208
A06B-6127-H209

— 204 —

12.COMPONENTS LIST

B-64483EN-2/03

— Servo Amplifier for 30i-B series
Series Name
αi SV series

Model Name
αi SV 10HV
αi SV 20HV
αi SV 40HV
αi SV 80HV
αi SV 180HV
αi SV 10/10HV
αi SV 10/20HV
αi SV 20/20HV
αi SV 20/40HV
αi SV 40/40HV
αi SV 40/80HV
αi SV 80/80HV
αi SV 10/10/10HV
αi SV 10/10/20HV
αi SV 20/20/20HV

Type Designation

Remarks

A06B-6290-H102
A06B-6290-H103
A06B-6290-H104
A06B-6290-H105
A06B-6290-H106
A06B-6290-H202
A06B-6290-H204
A06B-6290-H205
A06B-6290-H206
A06B-6290-H207
A06B-6290-H208
A06B-6290-H209
A06B-6290-H302
A06B-6290-H303
A06B-6290-H305

SERVO AMPLIFIER βi series
— Servo Amplifier
Series Name
βi SV series

Model Name
βi SV 4
βi SV 20
βi SV 40
βi SV 80

Type Designation

Remarks

A06B-6130-H001
A06B-6130-H002
A06B-6130-H003
A06B-6130-H004

SERVO AMPLIFIER βi series (400V)
— Servo Amplifier
Series Name
βi SV series

Model Name
βi SV 10HV
βi SV 20HV
βi SV 40HV

Type Designation
A06B-6131-H001
A06B-6131-H002
A06B-6131-H003

— 205 —

Remarks

APPENDIX

APPENDIX

B-64483EN-2/03

A.CONNECTION OF TWO MCCS

A

CONNECTION OF TWO MCCS

A.1

OVERVIEW

This appendix explains a configuration in which two MCCs (magnetic contactors for 3-phase AC power
supply input control for the PSM, SVM, and SPM) are used for the 30i series Dual Check Safety function.
With this configuration, it is not necessary to perform an MCC off Test periodically.

NOTE
Usually, one MCC is connected for the Dual Check Safety function. To avoid
degrading the safety function due to built-up failures, it is necessary to perform
an MCC off Test once within the specified time (normally 24 hours) to confirm
that the power shutoff paths for the MCC are normal. The Dual Check Safety
function gets certified according to safety standards under the precondition that
this MCC off Test is performed.
Besides the above configuration, the system configuration described in this
appendix in which two MCCs are connected can also satisfy the requirements of
safety category 3 defined in ISO13849-1.

A.2

CONFIGURATIONS

See the configuration diagrams on the following pages.
The configuration in Fig. A.2 (a) is applied to a system for which continuous operation for a long time is
not supposed and in which machine operation is to enter the stopped state periodically. (Intermittent
operation)
The stopped state means the state in which a failure such as an abnormally closed contact can be detected
with an I/O cross check by turning the MCC circuit off with power-off or emergency stop.
The configuration in Fig. A.2 (b) is applied to a system for which continuous operation for a long time is
supposed and in which machine operation is not to enter the stopped state periodically. (Continuous
operation)
Which configuration is used depends on the machine use conditions and is selected by the machine tool
builder.
(1) Use two MCCs (magnetic contactors) for 3-phase AC power supply input control for servo and
spindle amplifiers (MAIN MCC1 and MAIN MCC2).
(2) Control each MCC using the MCCOFF signal output independently from the PMC and DCS PMC.
(Set the same condition for outputting the MCCOFF signal for the PMC and DCS PMC. The *SMC
signal is used for a cross check in the CNC. If a mismatch occurs, a cross check alarm is issued.)
In Fig. A.2 (b), the MCCOFF signal with the same logic is output from the PMC and DCS PMC in
redundant mode to drive two relays. (Four outputs are used for the PMC and DCS PMC in total.)
(3) Use the *SMC signal as an auxiliary contact for each MCC to check MCC operation and input the
signal independently to the PMC and DCS PMC.
(4) To control the MCC, also connect the PSM (CX3) as shown in the figure. If an error occurs in the
PSM, the MCC is turned off from the PSM.

— 209 —

A.CONNECTION OF TWO MCCS

APPENDIX

B-64483EN-2/03
I/O UNIT
(PMC side)

PMC

CNC
RQT

+24V

OPT_P

OPERATORS PANEL

OPT

ORQ_P

ORQ

ESP

*ESP1
*ESP_X

*ESPG

+24V

DOOR
STATUS

(*SGOPN)

*VLDVx
*VLDPs
*OPIHB
RSVx
RSPs

DOOR
LOCK

*DCALM
*MCF
*MCFVx
*MCFPs

MCC
OFF

(Note 1)

MCC
STATUS

*SMC

I/O UNIT
(DCSPMC
side)

DCS PMC
*ESP2

DOOR
STATUS
MCC
STATUS

*SGOPN
*VLDVx
*VLDPs
*SMC
+24V

*DCALM
*MCF
*MCFVx
*MCFPs

MCC
OFF

(Note 1)

0V
U

Common
Power
Supply
(PSM)
24V

V

Spindle
Amplifier
(SPM)

Servo
Amplifier
(SVM)

200A
200B

U
V
W
LINE CONTACTOR
(MAIN MCC 2)

SPINDLE
Motor

LINE CONTACTOR
(MAIN MCC 1)

Fig. A.2 (a) System with Intermittent operation

— 210 —

Servo
Motor

Servo
Motor

A.CONNECTION OF TWO MCCS

APPENDIX

B-64483EN-2/03

I/O UNIT
(PMC side)

PMC

CNC
RQT

+24V

OPT_P

OPERATORS PANEL

OPT

ORQ_P

ORQ

ESP

*ESP1
*ESP_X

*ESPG

+24V

DOOR
STATUS

(*SGOPN)

*VLDVx
*VLDPs
*OPIHB
RSVx
RSPs

DOOR
LOCK

*DCALM
*MCF
*MCFVx
*MCFPs

MCC
OFF
(Note1)

(Note1)

MCC
OFF

*SMC

MCC
STATUS
I/O UNIT
(DCSPMC
side)

DCS PMC
*ESP2

DOOR
STATUS
MCC
STATUS

*SGOPN
*VLDVx
*VLDPs
*SMC
+24V

(Note1)

*DCALM
*MCF
*MCFVx
*MCFPs

MCC
OFF
MCC
OFF

(Note1)

0V

U
V

Common
Power
Supply
(PSM)
24V

Spindle
Amplifier
(SPM)

Servo
Amplifier
(SVM)

200A
200B

U
V
W
LINE CONTACTOR
(MAIN MCC 2)

SPINDLE
Motor

LINE CONTACTOR
(MAIN MCC 1)

Servo
Motor

Servo
Motor

Fig. A.2 (b) System with continuous operation

NOTE
The MCC shall have the mechanism such as a mirror contact that can monitor the state of the main
contact by mechanically linked auxiliary contacts.

— 211 —

A.CONNECTION OF TWO MCCS

APPENDIX

B-64483EN-2/03

MCCOFF signal output relays
The contacts of each relay (*1 in the figures) operating according to the MCCOFF signal output
independently from the PMC and DCS PMC are used for controlling the MCC. FANUC
recommends that the contacts of the relay be input to the PMC and DCS PMC to always check the
input matches the MCCOFF output with both ladder programs. FANUC also recommends the use of
a relay having forced guided contacts.

A.3

DISABLING MCC OFF TEST

Ladder program
When the Dual Check Safety function is activated, the signal requesting an MCC off Test (RQT: MCC
off Test Execution Request signal) is output from the CNC to the ladder program (PMC) at power-on and
when a certain time elapses after power-on. In a system in which two MCCs are connected for the above
configuration, OPT (Test Mode signal) does not need to be input for this RQT signal to the CNC. (OPT
remains 0.)

Diagnosis screen
When the Dual Check Safety function is activated, the displayed screen is changed to the Dual Check
Safety diagnosis screen to notify the operator that he or she must always execute an MCC off Test at
power-on and 24 hours after an MCC off Test is performed. In a system in which no MCC off Test is to
be performed and the Dual Check Safety diagnosis screen does not need to be displayed, bit 0 (NDW) of
parameter No. 13804 can be set so that the screen is not displayed.
When the MCC test screen is displayed by key operation, however, the screen shows information related
to the MCC off Test.

Parameter
#7

#6

#5

#4

#3

#2

13804

#1

#0
NDW

[Input type] Parameter input
[Data type] Bit machine group
#0

NDW When an MCC off Test warning message is issued, the display is:
0: Changed to the Dual Check Safety diagnosis screen.
1: Not changed to the Dual Check Safety diagnosis screen.

NOTE
In a system in which to perform an MCC off Test, always set this
parameter to 0.

— 212 —

B.Directives, Standards and Technical Conditions for
3rd Party Servo / Spindle Motors & Encoders when
Applying FANUC Dual-check Safety
APPENDIX

B-64483EN-2/03

B
B.1

Directives, Standards and Technical
Conditions for 3rd Party Servo / Spindle
Motors & Encoders when Applying FANUC
Dual-check Safety
GENERAL

Applying 3rd party servo/spindle motors and 3rd party feedback devices with FANUC Dual-check Safety
Function these 3rd party devices must comply with specific mandatory standards and directives, i. e.
regulations regarding
— EMC and LVD
— IP classification
— Electrical safety and environmental testing
Further details regarding standards and directives to comply with are described under chapter 2
“Mandatory Standards and Directives”. Please refer to it.
The components also need to meet the technical requirements as specified in this document.

B.2

MANDATORY STANDARDS AND DIRECTIVES

(1) The standards and directives to be followed in general are listed below.
2006/95/EC
Low voltage directive (LVD)
2004/108/EC
Electromagnetic compatibility (EMC)
2006/42/EC
Machinery directive
IEC 60068
Environmental testing
IEC 60204-1:2006 Safety of machinery — electrical equipment of machines
IEC 60529:2001 Degrees of protection provided by enclosures (IP code), applicable for encoders
(feedback devices)
IEC 60034-1:2004 General requirements for motors, to be considered for spindle/servo motors

(2) The standards and directives the 3rd party spindle/servo motors must comply
with are listed below.
IEC 60034-1:2004 Rotating electrical machines — part 1: rating and performance
IEC 60034-5:2006 Rotating electrical machines — part 5: degrees of protection provided by the integral
design of rotating electrical machines (IP code) – classification, applicable for
motors
IEC 60034-11:2004 Rotating electrical machines — part 11: built-in thermal protection — chapter 1: rules
for protection of rotating electrical machines
EN 61000-6-2:2005 Electromagnetic compatibility (EMC) — generic immunity standard
Part 2: industrial environment
EN 55011-2:2007 Limits and methods of measurement of radio disturbance characteristics of
industrial, scientific and medical (ISM) radio-frequency equipment

(3) The standards and directives the linear motors and 3rd party feedback devices
must comply with are listed below.
IEC 60335-1:2006
Safety of household and similar electrical appliances — part 1:General requirements
IEC 61000-6-2:2005 Electromagnetic compatibility (EMC) — generic immunity standard
Part 2: industrial environment
— 213 —

B. Directives, Standards and Technical Conditions
for 3rd Party Servo / Spindle Motors & Encoders
when Applying FANUC Dual-check Safety
APPENDIX

EN 55011-2:2007

B-64483EN-2/03

Limits and methods of measurement of radio disturbance characteristics of
industrial, scientific and medical (ISM) radio-frequency equipment

(4) The standards and directives the 3rd party feedback devices must comply with
are listed below.
EN 50178:1997
Electronic equipment for use in power installations
IEC 61000-6-2:2006 Electromagnetic compatibility (EMC) — generic immunity standard
Part 2: industrial environment
EN 55011-2:2007
Limits and methods of measurement of radio disturbance characteristics of
industrial, scientific and medical (ISM) radio-frequency equipment

NOTE
1 All products should be considered that the electrical safety of the final products
can be guaranteed.
2 Degrees of protection provided by enclosures should be guaranteed according
mandatory regulations for the machine applications.

B.3

SPINDLES

B.3.1

Spindle Motors – Driven by FANUC Spindle Amplifier







3-phase AC asynchronous motor, compact type or built-in type
Input voltage: 200 V AC or 400 V AC
Winding switching available, e.g. start/delta or 2 different windings like star/star
Number of pole-pairs: 1, 2, 3 or 4
Rated current must be equal or less than rated current of Spindle Amplifier.
Maximum current must be equal or less than maximum current of Spindle Amplifier.
Applicable maximum speed of spindle motors
Ö maximum speed = 60 / pole-pairs * max output freq.

B.3.2

Spindle Encoder – Speed / Position Feedback Sensor
Embedded in Motor

Signal type: A/B-phase sine-wave for speed feedback
Z-phase (one-per-rotation) signal for position feedback
Signal specifications: see Attachment 1

B.4

SERVO

B.4.1

Servo Motors – Driven by FANUC Servo Amplifier








3-phase AC synchronous motor, compact type
Input voltage: 200 V AC or 400 V AC
Number of pole-pairs actually limited to 72
Applicable maximum speed of servomotors = 60/pole-pairs * fmax
(fmax = 266 Hz)
Rated current must be equal or less than rated current of servo amplifier
Maximum current must be equal or less than maximum current of servo amplifier
Maximum peak current of servo amplifier must be less than demagnetization current of motor.
Current at dynamic braking must not exceed the maximum DB current.
Maximum DB current depends on servo amplifier model (DB resistor, relay contacts).
— 214 —

B.Directives, Standards and Technical Conditions for
3rd Party Servo / Spindle Motors & Encoders when
Applying FANUC Dual-check Safety
APPENDIX

B-64483EN-2/03

Regenerated energy at dynamic braking must not exceed the DB resistor capacity.
DB resistor capacity depends on servo amplifier model.

B.4.2

Servo Encoder – Speed / Position Feedback Sensor
Embedded in Motor

B.4.2.1

Encoder with FANUC Serial Interface


Signal type:
Special FANUC serial interface (e.g.: αA1000S,
Number of pulses per revolution: up to 224 ppr

B.4.2.2



RCN723F,

LC191F)

A/B-Phase Sine-wave Interface Connected to FANUC
Interpolation Circuit

Signal type:
sine-wave 1V (peak-to-peak), e.g. Heidenhain ERM 180
Number of pulses per revolution:
up to 32768 ppr (32768 * 512 = 224 ppr)
Signal specification: see Attachment 2
Maximum input frequency: 200 kHz

Attachment 1:

Specification of 3rd Party Spindle Encoders

The Fanuc SPM does not include the terminating resistor (like e.g. Siemens).
Depending on the sensor supply voltage and the sensor output impedance, the signal amplitude varies.
In order to match the sensor output signals with the amplifier input requirement, the terminating resistor
might be necessary. See table on following page for required signal specs.
If the terminating resistor is required, place it outside the SPM.

Party

MA

Rt

*MA
MB

Sensor
Rt

*MB
MZ

Rt

*MZ

— 215 —

JY2 or JY5

3rd

Rt is defined by
the specification of
the 3rd party sensor

B. Directives, Standards and Technical Conditions
for 3rd Party Servo / Spindle Motors & Encoders
when Applying FANUC Dual-check Safety
APPENDIX

B-64483EN-2/03

A/B-Phase Signal

Z-Phase Signal

(Type A)

Z-Phase Signal

(Type B)

A/B-Phase Signals
Symbol
1

Maximum Frequency

2

Signal Amplitude
(MA — *MA)
(MB — *MB)

3
4
5

Signal Offset
Signal Amplitude Difference
(MA — *MA) / (MB — *MB)
Phase Offset
(MA — *MA)
(MB — *MB)

Check Terminal

Fmax
Vpp
Spec A
Vpp
Spec B
Voffs
Vppdef

PA1 and PB1
(from JY2)
PA2 and PB2
(from JY5)

Value
205 kHz in Spec A
256 kHz in Spec B
0.50 Vpp min
1.2 Vpp max (incl. tolerances)
0.60 Vpp min
1.2 Vpp max (incl. tolerances)
± 100 mV max
1.00 ± 0.10 V max
90 ± 3 deg

Vphase

— 216 —

B.Directives, Standards and Technical Conditions for
3rd Party Servo / Spindle Motors & Encoders when
Applying FANUC Dual-check Safety
APPENDIX

B-64483EN-2/03

Z-Phase Signal
Type A
1
2

Pulse Width
(MZ — *MZ)
Signal Amplitude of
Reference Signal
(MZ — *MZ) x 2.4
Type B

1
2
3

Pulse Width
(MZ — *MZ)
Signal Amplitude of
Reference Signal
(MZ — *MZ) x 2.4
Signal Offset
(Z — *Z)

Symbol

Check Terminal

twz
Vppz

4 µsec min
PS1 (from JY2)
PS2 (from JY5)

Vpnz
Symbol

0.25 V min
0.25 V min

Check Terminal

twz
Vpz

Value

— 217 —

SPM type 1 (JY2):
N4005#4 = 0

0.25 V min
3.5 V max
2 V min

Voffz

SPM type 4 (JY5):
N4004#4 = 1

Value
4 µsec min

PS1 (from JY2)
PS2 (from JY5)

SPM type 1 (JY2):
N4005#4 = 1

SPM type 4 (JY5):
N4004#4 = 0

B. Directives, Standards and Technical Conditions
for 3rd Party Servo / Spindle Motors & Encoders
when Applying FANUC Dual-check Safety
APPENDIX

Attachment 2:

Specification of 3rd Party Servo Encoders

— 218 —

B-64483EN-2/03

INDEX

B-64483EN-2/03

INDEX
Example of Connections ………………………………………… 45
Example of Monitoring Excitation Status Signals of
Spindle Amplifier ……………………………………………… 43
Example of user ladder programs ……………………………. 43
EXTERNAL DECELERATION …………………………… 160

<A>
A/B-Phase Sine-wave Interface Connected to FANUC
Interpolation Circuit …………………………………………. 215
About the Execution Item of Acceptance Test …………. 117
About the Parameter, the Alarm, and the Signal that the
Specification Changes ………………………………………. 123
Acceptance Test and Report for Safety Functions ……. 112
Alarm message ……………………………………………………. 195
ALARM MESSAGE ……………………………………………. 126
AMPLIFIER CIRCUIT MONITORING FUNCTION .. 33
APPLICATION OF OTHER FUNCTIONS ……………. 160
APPLICATION RANGE ……………………………………….. 12

<F>
Features of Dual Check Safety …………………………………. 4
FEED LIMIT MONITORING SCREEN ……………….. 144
FLOW MONITORING SCREEN …………………………. 143

<G>
GENERAL ………………………………………………………… 213
General Definition of Terms …………………………………….. 4
GENERAL INFORMATION …………………………………… 9
Guard Open Inhibit Signal (*OPIHB), Monitoring
Result Signal (RSVx,RSPx), Safety check Request
Signal (*VLDVx,*VLDPs) ……………………………….. 155
Guard Open Request Signal (ORQ)……………………….. 154

<B>
BASIC PRINCIPLE OF DUAL CHECK SAFETY……… 4
BEFORE USING THE SAFETY FUNCTION ………….. 13
BRAKE TEST………………………………………………………. 36
BRAKE TEST SCREEN ……………………………………… 143

<C>

<H>

Compliance with the Safety Standard (ISO13849-1,
Category 3, PL d) ………………………………………………… 5
COMPONENTS LIST …………………………………………. 196
CONFIGURATIONS …………………………………………… 209
CONNECTION OF TWO MCCS ………………………….. 209
CONTROLLED AXIS DETACH ………………………….. 189
CPU SELF TEST FUNCTION ……………………………….. 34
CRC CHECK FUNCTION …………………………………….. 35
CROSS CHECK DATA SCREEN ………………………… 136
Cs CONTOUR CONTROL…………………………………… 177

HARDWARE COMPONENTS ……………………………. 196
Hardware Components for Series
30i/31i/32i/35i-MODEL B, Series 31i-MODEL B5,
Power Motion i-MODEL A ………………………………. 196
Hardware Components List for Other Units ……………. 197
How to select a Test Mode …………………………………… 116

<I>
I/O SIGNALS ………………………………………………………. 52
Important Items to Check Before Using the Safety
Function …………………………………………………………… 13
In case of using PROFIBUS-DP on the DCS PMC side 51
In case of using the I/O Link ………………………………….. 49
In case of using the I/O Link i ………………………………… 50
Initial Start-up…………………………………………………….. 113
INSTALLATION …………………………………………………. 48

<D>
DATA TYPE………………………………………………………… 78
DEFINITION OF TERMS ……………………………………….. 4
Definition of Terms Related to the Safety Function……… 4
Details on signals …………………….. 162, 166, 170, 178, 183
DIAGNOSIS ………………………………………………………. 135
DIAGNOSIS SCREEN ………………………………………… 148
DIRECTIVE AND STANDARDS ……………………………. 1
Directives ………………………………………………………………. 1
Directives, Standards and Technical Conditions for 3rd
Party Servo / Spindle Motors & Encoders when
Applying FANUC Dual-check Safety …………………. 213
DISABLING MCC OFF TEST ……………………………… 212

<L>
Latent error detection and cross-check ………………………. 6

<M>
Machine Group And Multi Path Control ………………….. 76
MANDATORY STANDARDS AND DIRECTIVES . 213
MCC Off Signal
(*MCF,*MCFVx,*MCFPs,*DCALM), MCC
Contact State Signal (*SMC) …………………………….. 158
MCC OFF TEST ………………………………………………….. 28
MCC off Test of the Safe Stop Function ………………….. 13
MCC OFF TEST STATUS SCREEN ……………………. 135

<E>
EC Declaration of Conformity ………………………………….. 3
EMERGENCY STOP ……………………………………………. 23
Emergency Stop Signal (*ESP)……………………………… 153
Encoder with FANUC Serial Interface……………………. 215
Error analysis …………………………………………………………. 7
EXAMPLE OF APPLICATION ……………………………. 159
Example of assignment of Programmable Safety I/O
signals ………………………………………………………………. 45

<N>
NOTE ON MULTI PATH CONTROL ……………………. 76

i-1

INDEX

B-64483EN-2/03

SAMPLE CONFIGURATION ……………………………… 151
Sample Configuration for One Machine Group (1) ….. 151
Sample Configuration for One Machine Group (2

<O>
Outline……………………………………………………………….. 116
OVERALL CONNECTION DIAGRAM………………….. 49
Overview ………………………… 160, 165, 168, 177, 182, 189
OVERVIEW …………………………………….. 1, 52, 78, 160, 209

when Multiple MCCs are Used) ……………………… 152
SAMPLE CONNECTIONS …………………………………. 153
SAMPLE SYSTEM CONFIGURATION ………………. 151
Sequence ……………………………………………………………. 188
Series (2nd and Subsequent Machines) Startup ……….. 115
SERVO ……………………………………………………………… 214
SERVO AMPLIFIER ………………………………………….. 200
Servo Encoder – Speed / Position Feedback Sensor
Embedded in Motor …………………………………………. 215
Servo Motors – Driven by FANUC Servo Amplifier .. 214
Signal ………………………………………………………………… 193
Signal address ………………………….163, 167, 171, 179, 185
SIGNAL ADDRESS …………………………………………….. 53
Signal Sequence…………………………………………… 189, 192
Signals …………………………………….162, 166, 170, 178, 183
SIGNALS ……………………………………………………………. 59
SOFTWARE COMPONENTS ……………………………… 199
Specification ……………………………………………….. 191, 193
Specifications …………………………..161, 166, 168, 177, 183
Spindle Encoder – Speed / Position Feedback Sensor
Embedded in Motor …………………………………………. 214
Spindle Motors – Driven by FANUC Spindle Amplifier
……………………………………………………………………… 214
SPINDLE ORIENTATION ………………………………….. 182
SPINDLE OUTPUT CONTROL BY THE PMC …….. 165
SPINDLE POSITIONING ……………………………………. 168
SPINDLES ………………………………………………………… 214
STANDARD PARAMETER SETTING TABLES ……. 80
START-UP ………………………………………………………… 112
START-UP OF THE SAFETY FUNCTION ………….. 113
START-UP OPERATION ……………………………………. 112
STOP ………………………………………………………………….. 14
Stop States …………………………………………………………… 15
Stopping the Servo Motor ………………………………………. 14
Stopping the Spindle Motor ……………………………………. 14
SYSTEM CONFIGURATION ……………………………….. 11

<P>
Parameter …………………………………………………………… 194
PARAMETER LOCK FUNCTION …………………………. 32
Parameters …………………………….. 163, 168, 171, 179, 185
PARAMETERS ………………………………………………. 78, 81
PROFIBUS-DP PARAMETER SETTINGS ……………. 110
PROGRAMMABLE SAFETY I/O SIGNAL…………….. 76

<R>
RAM CHECK FUNCTION ……………………………………. 34
Related Safety Standards………………………………………….. 2
Remaining risks………………………………………………………. 8
Replacing a Spindle Head …………………………………….. 191
REPRESENTATION OF PARAMETERS ……………….. 79
Risk Analysis and Evaluation …………………………………… 2
Rotating the Spindle Manually in the Emergency Stop
State ……………………………………………………………….. 159

<S>
SAFE MACHINE POSITION MONITORING …………. 25
SAFE MACHINE POSITIONING MONITORING
SCREEN…………………………………………………………. 147
SAFE REDUCED SPEED CHECK …………………………. 23
SAFE SPINDLE STOP FUNCTION WITH
PROTECTION DOOR OPEN ……………………………… 41
SAFE STOP MONITORING ………………………………….. 35
SAFETY BRAKE SIGNAL OUTPUT FUNCTION ….. 33
SAFETY FUNCTION BY FL-net …………………………… 10
SAFETY FUNCTIONS …………………………………………. 12
Safety monitoring cycle and cross-check cycle …………… 7
SAFETY POSITION ERROR MONITORING
FUNCTION ………………………………………………………. 32
SAFETY POSITION ERROR MONITORING
SCREEN…………………………………………………………. 147
SAFETY POSITION SWITCH FUNCTION…………….. 30
SAFETY RELATED PARAMETERS CHECK
FUNCTION ………………………………………………………. 32
SAFETY SPEED ZERO MONITORING …………………. 27
Safety Spindle Speed Limit Override Function………….. 24
SAFETY-RELATED I/O SIGNAL MONITORING ….. 15

<T>
TEST MODE FUNCTION FOR ACCEPTANCE
TEST ……………………………………………………………… 116
Test Mode Signal (OPT)………………………………………. 154
Troubleshooting ………………………………………………….. 116

i-2

REVISION RECORD

B-64483EN-2/03

REVISION RECORD
Edition

Date



03

Sep., 2012

02

Apr., 2012

01

Jun., 2010






Contents
Addition of Series 31i-WB
Addition of Safety Precautions
Modification of section and descriptions of SAFE SPINDLE STOP FUNCTION
Addition of descriptions of following items:
— 1.3.2.4 Remaining risks
— 3.13 SAFETY POSITION ERROR MONITORING FUNCTION
— “Interrupting and resuming the brake test” in 3.20 BRAKE TEST
— 7.1.1 Acceptance Test and Report for Safety Functions
— “PW alarm” in 8 ALARM MESSAGE
Modification of descriptions of following items:
— Training in 1.4 GENERAL INFORMATION
— 3.8 MCC OFF TEST
— Alarm of PMC in 3.16 CPU SELF TEST FUNCTION
— Alarm of PMC in 3.17 RAM CHECK FUNCTION
— Alarm of PMC in 3.18 CRC CHECK FUNCTION
— No.1945 and No.13805#1 in 6.5 PARAMETERS
— CAUTION about the MCC
Correction of errors
Addition of Series 35i-B, Series 30i/31i-LB, Series 30i/31i-PB and Power Motion i-A
Renewal of Safety Standard
Addition of Functions
Addition of Chapter 12 “Components list”
Error correction

r-1

  • 2146434962 код ошибки газпромбанк
  • 2144 0001 ошибка switch
  • 2143322101 ошибка как исправить виндовс 10
  • 214 код ошибки на гольфе
  • 214 signal geschwindigkeit ошибка