Анализ ошибок throw exceptions

Обработка исключительных ситуаций. Методы и способы идентификации сбоев и ошибок.

Конструкция try..catch..finally

Иногда при выполнении программы возникают ошибки, которые трудно предусмотреть или предвидеть, а иногда и вовсе невозможно. Например, при передачи файла по сети может неожиданно оборваться сетевое подключение. такие ситуации называются исключениями. Язык C# предоставляет разработчикам возможности для обработки таких ситуаций. Для этого в C# предназначена конструкция try…catch…finally.

try
{
     
}
catch
{
     
}
finally
{
     
}

При использовании блока try…catch..finally вначале пытаются выполниться инструкции в блоке try. Если в этом блоке не возникло исключений, то после его выполнения начинает выполняться блок finally. И затем конструкция try..catch..finally завершает свою работу.

Если же в блоке try вдруг возникает исключение, то обычный порядок выполнения останавливается, и среда CLR (Common Language Runtime) начинает искать блок catch, который может обработать данное исключение. Если нужный блок catch найден, то он выполняется, и после его завершения выполняется блок finally.

Если нужный блок catch не найден, то при возникновении исключения программа аварийно завершает свое выполнение.

Рассмотрим следующий пример:

class Program
{
    static void Main(string[] args)
    {
        int x = 5;
        int y = x / 0;
        Console.WriteLine($"Результат: {y}");
        Console.WriteLine("Конец программы");
        Console.Read();
    }
}

В данном случае происходит деление числа на 0, что приведет к генерации исключения. И при запуске приложения в режиме отладки мы увидим в Visual Studio окошко, которое информирует об исключении:

В этом окошке мы видим, что возникло исключение, которое представляет тип System.DivideByZeroException, то есть попытка деления на ноль. С помощью пункта View Details можно посмотреть более детальную информацию об исключении.

И в этом случае единственное, что нам остается, это завершить выполнение программы.

Чтобы избежать подобного аварийного завершения программы, следует использовать для обработки исключений конструкцию try…catch…finally. Так, перепишем пример следующим образом:

class Program
{
    static void Main(string[] args)
    {
        try
        {
            int x = 5;
            int y = x / 0;
            Console.WriteLine($"Результат: {y}");
        }
        catch
        {
            Console.WriteLine("Возникло исключение!");
        }
        finally
        {
            Console.WriteLine("Блок finally");
        }
        Console.WriteLine("Конец программы");
        Console.Read();
    }
}

В данном случае у нас опять же возникнет исключение в блоке try, так как мы пытаемся разделить на ноль. И дойдя до строки

выполнение программы остановится. CLR найдет блок catch и передаст управление этому блоку.

После блока catch будет выполняться блок finally.

Возникло исключение!
Блок finally
Конец программы

Таким образом, программа по-прежнему не будет выполнять деление на ноль и соответственно не будет выводить результат этого деления, но теперь она не будет аварийно завершаться, а исключение будет обрабатываться в блоке catch.

Следует отметить, что в этой конструкции обязателен блок try. При наличии блока catch мы можем опустить блок finally:

try
{
    int x = 5;
    int y = x / 0;
    Console.WriteLine($"Результат: {y}");
}
catch
{
    Console.WriteLine("Возникло исключение!");
}

И, наоборот, при наличии блока finally мы можем опустить блок catch и не обрабатывать исключение:

try
{
    int x = 5;
    int y = x / 0;
    Console.WriteLine($"Результат: {y}");
}
finally
{
    Console.WriteLine("Блок finally");
}

Однако, хотя с точки зрения синтаксиса C# такая конструкция вполне корректна, тем не менее, поскольку CLR не сможет найти нужный блок catch, то исключение не будет обработано, и программа аварийно завершится.

Обработка исключений и условные конструкции

Ряд исключительных ситуаций может быть предвиден разработчиком. Например, пусть программа предусматривает ввод числа и вывод его квадрата:

static void Main(string[] args)
{
    Console.WriteLine("Введите число");
    int x = Int32.Parse(Console.ReadLine());
 
    x *= x;
    Console.WriteLine("Квадрат числа: " + x);
    Console.Read();
}

Если пользователь введет не число, а строку, какие-то другие символы, то программа выпадет в ошибку. С одной стороны, здесь как раз та ситуация, когда можно применить блок try..catch, чтобы обработать возможную ошибку. Однако гораздо оптимальнее было бы проверить допустимость преобразования:

static void Main(string[] args)
{
    Console.WriteLine("Введите число");
    int x;
    string input = Console.ReadLine();
    if (Int32.TryParse(input, out x))
    {
        x *= x;
        Console.WriteLine("Квадрат числа: " + x);
    }
    else
    {
        Console.WriteLine("Некорректный ввод");
    }
    Console.Read();
}

Метод Int32.TryParse() возвращает true, если преобразование можно осуществить, и false — если нельзя. При допустимости преобразования переменная x будет содержать введенное число. Так, не используя try…catch можно обработать возможную исключительную ситуацию.

С точки зрения производительности использование блоков try..catch более накладно, чем применение условных конструкций. Поэтому по возможности вместо try..catch лучше использовать условные конструкции на проверку исключительных ситуаций.

Блок catch и фильтры исключений

Определение блока catch

За обработку исключения отвечает блок catch, который может иметь следующие формы:

  • Обрабатывает любое исключение, которое возникло в блоке try. Выше уже был продемонстрирован пример подобного блока.

    catch
    {
        // выполняемые инструкции
    }
  • Обрабатывает только те исключения, которые соответствуют типу, указаному в скобках после оператора catch.

    catch (тип_исключения)
    {
        // выполняемые инструкции
    }

    Например, обработаем только исключения типа DivideByZeroException:

    try
    {
        int x = 5;
        int y = x / 0;
        Console.WriteLine($"Результат: {y}");
    }
    catch(DivideByZeroException)
    {
        Console.WriteLine("Возникло исключение DivideByZeroException");
    }

    Однако если в блоке try возникнут исключения каких-то других типов, отличных от DivideByZeroException, то они не будут обработаны.

  • Обрабатывает только те исключения, которые соответствуют типу, указаному в скобках после оператора catch. А вся информация об исключении помещается в переменную данного типа.

    catch (тип_исключения имя_переменной)
    {
        // выполняемые инструкции
    }

    Например:

    try
    {
        int x = 5;
        int y = x / 0;
        Console.WriteLine($"Результат: {y}");
    }
    catch(DivideByZeroException ex)
    {
        Console.WriteLine($"Возникло исключение {ex.Message}");
    }

    Фактически этот случай аналогичен предыдущему за тем исключением, что здесь используется переменная. В данном случае в переменную ex, которая представляет тип DivideByZeroException, помещается информация о возникшем исключени. И с помощью свойства Message мы можем получить сообщение об ошибке.

    Если нам не нужна информация об исключении, то переменную можно не использовать как в предыдущем случае.

Фильтры исключений

Фильтры исключений позволяют обрабатывать исключения в зависимости от определенных условий. Для их применения после выражения catch идет выражение when, после которого в скобках указывается условие:

В этом случае обработка исключения в блоке catch производится только в том случае, если условие в выражении when истинно. Например:

int x = 1;
int y = 0;
 
try
{
    int result = x / y;
}
catch(DivideByZeroException) when (y==0 && x == 0)
{
    Console.WriteLine("y не должен быть равен 0");
}
catch(DivideByZeroException ex)
{
    Console.WriteLine(ex.Message);
}

В данном случае будет выброшено исключение, так как y=0. Здесь два блока catch, и оба они обрабатывают исключения типа DivideByZeroException, то есть по сути все исключения, генерируемые при делении на ноль. Но поскольку для первого блока указано условие y == 0 && x == 0, то оно не будет обрабатывать исключение — условие, указанное после оператора when возвращает false. Поэтому CLR будет дальше искать соответствующие блоки catch далее и для обработки исключения выберет второй блок catch. В итоге если мы уберем второй блок catch, то исключение вобще не будет обрабатываться.

Типы исключений. Класс Exception

Базовым для всех типов исключений является тип Exception. Этот тип определяет ряд свойств, с помощью которых можно получить информацию об исключении.

  • InnerException: хранит информацию об исключении, которое послужило причиной текущего исключения

  • Message: хранит сообщение об исключении, текст ошибки

  • Source: хранит имя объекта или сборки, которое вызвало исключение

  • StackTrace: возвращает строковое представление стека вызывов, которые привели к возникновению исключения

  • TargetSite: возвращает метод, в котором и было вызвано исключение

Например, обработаем исключения типа Exception:

static void Main(string[] args)
{
    try
    {
        int x = 5;
        int y = x / 0;
        Console.WriteLine($"Результат: {y}");
    }
    catch (Exception ex)
    {
        Console.WriteLine($"Исключение: {ex.Message}");
        Console.WriteLine($"Метод: {ex.TargetSite}");
        Console.WriteLine($"Трассировка стека: {ex.StackTrace}");
    }
 
    Console.Read();
}

Однако так как тип Exception является базовым типом для всех исключений, то выражение catch (Exception ex) будет обрабатывать все исключения, которые могут возникнуть.

Но также есть более специализированные типы исключений, которые предназначены для обработки каких-то определенных видов исключений. Их довольно много, я приведу лишь некоторые:

  • DivideByZeroException: представляет исключение, которое генерируется при делении на ноль

  • ArgumentOutOfRangeException: генерируется, если значение аргумента находится вне диапазона допустимых значений

  • ArgumentException: генерируется, если в метод для параметра передается некорректное значение

  • IndexOutOfRangeException: генерируется, если индекс элемента массива или коллекции находится вне диапазона допустимых значений

  • InvalidCastException: генерируется при попытке произвести недопустимые преобразования типов

  • NullReferenceException: генерируется при попытке обращения к объекту, который равен null (то есть по сути неопределен)

И при необходимости мы можем разграничить обработку различных типов исключений, включив дополнительные блоки catch:

static void Main(string[] args)
{
    try
    {
        int[] numbers = new int[4];
        numbers[7] = 9;     // IndexOutOfRangeException
 
        int x = 5;
        int y = x / 0;  // DivideByZeroException
        Console.WriteLine($"Результат: {y}");
    }
    catch (DivideByZeroException)
    {
        Console.WriteLine("Возникло исключение DivideByZeroException");
    }
    catch (IndexOutOfRangeException ex)
    {
        Console.WriteLine(ex.Message);
    }
             
    Console.Read();
}

В данном случае блоки catch обрабатывают исключения типов IndexOutOfRangeException, DivideByZeroException и Exception. Когда в блоке try возникнет исключение, то CLR будет искать нужный блок catch для обработки исключения. Так, в данном случае на строке

происходит обращение к 7-му элементу массива. Однако поскольку в массиве только 4 элемента, то мы получим исключение типа IndexOutOfRangeException. CLR найдет блок catch, который обрабатывает данное исключение, и передаст ему управление.

Следует отметить, что в данном случае в блоке try есть ситуация для генерации второго исключения — деление на ноль. Однако поскольку после генерации IndexOutOfRangeException управление переходит в соответствующий блок catch, то деление на ноль int y = x / 0 в принципе не будет выполняться, поэтому исключение типа DivideByZeroException никогда не будет сгенерировано.

Однако рассмотрим другую ситуацию:

static void Main(string[] args)
{
    try
    {
        object obj = "you";
        int num = (int)obj;     // InvalidCastException
        Console.WriteLine($"Результат: {num}");
    }
    catch (DivideByZeroException)
    {
        Console.WriteLine("Возникло исключение DivideByZeroException");
    }
    catch (IndexOutOfRangeException)
    {
        Console.WriteLine("Возникло исключение IndexOutOfRangeException");
    }
             
    Console.Read();
}

В данном случае в блоке try генерируется исключение типа InvalidCastException, однако соответствующего блока catch для обработки данного исключения нет. Поэтому программа аварийно завершит свое выполнение.

Мы также можем определить для InvalidCastException свой блок catch, однако суть в том, что теоретически в коде могут быть сгенерированы сами различные типы исключений. А определять для всех типов исключений блоки catch, если обработка исключений однотипна, не имеет смысла. И в этом случае мы можем определить блок catch для базового типа Exception:

static void Main(string[] args)
{
    try
    {
        object obj = "you";
        int num = (int)obj;     // InvalidCastException
        Console.WriteLine($"Результат: {num}");
    }
    catch (DivideByZeroException)
    {
        Console.WriteLine("Возникло исключение DivideByZeroException");
    }
    catch (IndexOutOfRangeException)
    {
        Console.WriteLine("Возникло исключение IndexOutOfRangeException");
    }
    catch (Exception ex)
    {
        Console.WriteLine($"Исключение: {ex.Message}");
    }  
    Console.Read();
}

И в данном случае блок catch (Exception ex){} будет обрабатывать все исключения кроме DivideByZeroException и IndexOutOfRangeException. При этом блоки catch для более общих, более базовых исключений следует помещать в конце — после блоков catch для более конкретный, специализированных типов. Так как CLR выбирает для обработки исключения первый блок catch, который соответствует типу сгенерированного исключения. Поэтому в данном случае сначала обрабатывается исключение DivideByZeroException и IndexOutOfRangeException, и только потом Exception (так как DivideByZeroException и IndexOutOfRangeException наследуется от класса Exception).

Создание классов исключений

Если нас не устраивают встроенные типы исключений, то мы можем создать свои типы. Базовым классом для всех исключений является класс Exception, соответственно для создания своих типов мы можем унаследовать данный класс.

Допустим, у нас в программе будет ограничение по возрасту:

class Program
{
    static void Main(string[] args)
    {
        try
        {
            Person p = new Person { Name = "Tom", Age = 17 };
        }
        catch (Exception ex)
        {
            Console.WriteLine($"Ошибка: {ex.Message}");
        }
        Console.Read();
    }
}
class Person
{
    private int age;
    public string Name { get; set; }
    public int Age
    {
        get { return age; }
        set
        {
            if (value < 18)
            {
                throw new Exception("Лицам до 18 регистрация запрещена");
            }
            else
            {
                age = value;
            }
        }
    }
}

В классе Person при установке возраста происходит проверка, и если возраст меньше 18, то выбрасывается исключение. Класс Exception принимает в конструкторе в качестве параметра строку, которое затем передается в его свойство Message.

Но иногда удобнее использовать свои классы исключений. Например, в какой-то ситуации мы хотим обработать определенным образом только те исключения, которые относятся к классу Person. Для этих целей мы можем сделать специальный класс PersonException:

class PersonException : Exception
{
    public PersonException(string message)
        : base(message)
    { }
}

По сути класс кроме пустого конструктора ничего не имеет, и то в конструкторе мы просто обращаемся к конструктору базового класса Exception, передавая в него строку message. Но теперь мы можем изменить класс Person, чтобы он выбрасывал исключение именно этого типа и соответственно в основной программе обрабатывать это исключение:

class Program
{
    static void Main(string[] args)
    {
        try
        {
            Person p = new Person { Name = "Tom", Age = 17 };
        }
        catch (PersonException ex)
        {
            Console.WriteLine("Ошибка: " + ex.Message);
        }
        Console.Read();
    }
}
class Person
{
    private int age;
    public int Age
    {
        get { return age; }
        set
        {
            if (value < 18)
                throw new PersonException("Лицам до 18 регистрация запрещена");
            else
                age = value;
        }
    }
}

Однако необязательно наследовать свой класс исключений именно от типа Exception, можно взять какой-нибудь другой производный тип. Например, в данном случае мы можем взять тип ArgumentException, который представляет исключение, генерируемое в результате передачи аргументу метода некорректного значения:

class PersonException : ArgumentException
{
    public PersonException(string message)
        : base(message)
    { }
}

Каждый тип исключений может определять какие-то свои свойства. Например, в данном случае мы можем определить в классе свойство для хранения устанавливаемого значения:

class PersonException : ArgumentException
{
    public int Value { get;}
    public PersonException(string message, int val)
        : base(message)
    {
        Value = val;
    }
}

В конструкторе класса мы устанавливаем это свойство и при обработке исключения мы его можем получить:

class Person
{
    public string Name { get; set; }
    private int age;
    public int Age
    {
        get { return age; }
        set
        {
            if (value < 18)
                throw new PersonException("Лицам до 18 регистрация запрещена", value);
            else
                age = value;
        }
    }
}
class Program
{
    static void Main(string[] args)
    {
        try
        {
            Person p = new Person { Name = "Tom", Age = 13 };
        }
        catch (PersonException ex)
        {
            Console.WriteLine($"Ошибка: {ex.Message}");
            Console.WriteLine($"Некорректное значение: {ex.Value}");
        }
        Console.Read();
    }
}

Поиск блока catch при обработке исключений

Если код, который вызывает исключение, не размещен в блоке try или помещен в конструкцию try..catch, которая не содержит соответствующего блока catch для обработки возникшего исключения, то система производит поиск соответствующего обработчика исключения в стеке вызовов.

Например, рассмотрим следующую программу:

using System;
 
namespace HelloApp
{
    class Program
    {
        static void Main(string[] args)
        {
            try
            {
                TestClass.Method1();
            }
            catch (DivideByZeroException ex)
            {
                Console.WriteLine($"Catch в Main : {ex.Message}");
            }
            finally
            {
                Console.WriteLine("Блок finally в Main");
            }
            Console.WriteLine("Конец метода Main");
            Console.Read();
        }
    }
    class TestClass
    {
        public static void Method1()
        {
            try
            {
                Method2();
            }
            catch (IndexOutOfRangeException ex)
            {
                Console.WriteLine($"Catch в Method1 : {ex.Message}");
            }
            finally
            {
                Console.WriteLine("Блок finally в Method1");
            }
            Console.WriteLine("Конец метода Method1");
        }
        static void Method2()
        {
            try
            {
                int x = 8;
                int y = x / 0;
            }
            finally
            {
                Console.WriteLine("Блок finally в Method2");
            }
            Console.WriteLine("Конец метода Method2");
        }
    }
}

В данном случае стек вызовов выглядит следующим образом: метод Main вызывает метод Method1, который, в свою очередь, вызывает метод Method2. И в методе Method2 генерируется исключение DivideByZeroException. Визуально стек вызовов можно представить следующим образом:

Внизу стека метод Main, с которого началось выполнение, и на самом верху метод Method2.

Что будет происходить в данном случае при генерации исключения?

  1. Метод Main вызывает метод Method1, а тот вызывает метод Method2, в котором генерируется исключение DivideByZeroException.

  2. Система видит, что код, который вызывал исключение, помещен в конструкцию try..catch

    try
    {
        int x = 8;
        int y = x / 0;
    }
    finally
    {
        Console.WriteLine("Блок finally в Method2");
    }

    Система ищет в этой конструкции блок catch, который обрабатывает исключение DivideByZeroException. Однако такого блока catch нет.

  3. Система опускается в стеке вызовов в метод Method1, который вызывал Method2. Здесь вызов Method2 помещен в конструкцию try..catch

    try
    {
        Method2();
    }
    catch (IndexOutOfRangeException ex)
    {
        Console.WriteLine($"Catch в Method1 : {ex.Message}");
    }
    finally
    {
        Console.WriteLine("Блок finally в Method1");
    }

    Система также ищет в этой конструкции блок catch, который обрабатывает исключение DivideByZeroException. Однако здесь также подобный блок catch отсутствует.

  4. Система далее опускается в стеке вызовов в метод Main, который вызывал Method1. Здесь вызов Method1 помещен в конструкцию try..catch

    try
    {
        TestClass.Method1();
    }
    catch (DivideByZeroException ex)
    {
        Console.WriteLine($"Catch в Main : {ex.Message}");
    }
    finally
    {
        Console.WriteLine("Блок finally в Main");
    }

    Система снова ищет в этой конструкции блок catch, который обрабатывает исключение DivideByZeroException. И в данном случае ткой блок найден.

  5. Система наконец нашла нужный блок catch в методе Main, для обработки исключения, которое возникло в методе Method2 — то есть к начальному методу, где непосредственно возникло исключение. Но пока данный блок catch НЕ выполняется. Система поднимается обратно по стеку вызовов в самый верх в метод Method2 и выполняет в нем блок finally:

    finally
    {
        Console.WriteLine("Блок finally в Method2");
    }
  6. Далее система возвращается по стеку вызовов вниз в метод Method1 и выполняет в нем блок finally:

    finally
    {
        Console.WriteLine("Блок finally в Method1");
    }
  7. Затем система переходит по стеку вызовов вниз в метод Main и выполняет в нем найденный блок catch и последующий блок finally:

    catch (DivideByZeroException ex)
    {
        Console.WriteLine($"Catch в Main : {ex.Message}");
    }
    finally
    {
        Console.WriteLine("Блок finally в Main");
    }
  8. Далее выполняется код, который идет в методе Main после конструкции try..catch:

    Console.WriteLine("Конец метода Main");

    Стоит отметить, что код, который идет после конструкции try…catch в методах Method1 и Method2, не выполняется, потому что обработчик исключения найден именно в методе Main.

Консольный вывод программы:

Блок finally в Method2
Блок finally в Method1
Catch в Main: Попытка деления на нуль.
Блок finally в Main
Конец метода Main

Обычно система сама генерирует исключения при определенных ситуациях, например, при делении числа на ноль. Но язык C# также позволяет генерировать исключения вручную с помощью оператора throw. То есть с помощью этого оператора мы сами можем создать исключение и вызвать его в процессе выполнения.

Например, в нашей программе происходит ввод строки, и мы хотим, чтобы, если длина строки будет больше 6 символов, возникало исключение:

static void Main(string[] args)
{
    try
    {
        Console.Write("Введите строку: ");
        string message = Console.ReadLine();
        if (message.Length > 6)
        {
            throw new Exception("Длина строки больше 6 символов");
        }
    }
    catch (Exception e)
    {
        Console.WriteLine($"Ошибка: {e.Message}");
    }
    Console.Read();
}

После оператора throw указывается объект исключения, через конструктор которого мы можем передать сообщение об ошибке. Естественно вместо типа Exception мы можем использовать объект любого другого типа исключений.

Затем в блоке catch сгенерированное нами исключение будет обработано.

Подобным образом мы можем генерировать исключения в любом месте программы. Но существует также и другая форма использования оператора throw, когда после данного оператора не указывается объект исключения. В подобном виде оператор throw может использоваться только в блоке catch:

try
{
    try
    {
        Console.Write("Введите строку: ");
        string message = Console.ReadLine();
        if (message.Length > 6)
        {
            throw new Exception("Длина строки больше 6 символов");
        }
    }
    catch
    {
        Console.WriteLine("Возникло исключение");
        throw;
    }
}
catch (Exception ex)
{
    Console.WriteLine(ex.Message);
}

В данном случае при вводе строки с длиной больше 6 символов возникнет исключение, которое будет обработано внутренним блоком catch. Однако поскольку в этом блоке используется оператор throw, то исключение будет передано дальше внешнему блоку catch.

Методы поиска ошибок в программах

Международный стандарт ANSI/IEEE-729-83 разделяет все ошибки в разработке программ на следующие типы.

Ошибка (error) — состояние программы, при котором выдаются неправильные результаты, причиной которых являются изъяны (flaw) в операторах программы или в технологическом процессе ее разработки, что приводит к неправильной интерпретации исходной информации, следовательно, и к неверному решению.

Дефект (fault) в программе — следствие ошибок разработчика на любом из этапов разработки, которая может содержаться в исходных или проектных спецификациях, текстах кодов программ, эксплуатационной документация и т.п. В процессе выполнения программы может быть обнаружен дефект или сбой.

Отказ (failure) — это отклонение программы от функционирования или невозможность программы выполнять функции, определенные требованиями и ограничениями, что рассматривается как событие, способствующее переходу программы в неработоспособное состояние из-за ошибок, скрытых в ней дефектов или сбоев в среде функционирования [7.6, 7.11]. Отказ может быть результатом следующих причин:

  • ошибочная спецификация или пропущенное требование, означающее, что спецификация точно не отражает того, что предполагал пользователь;
  • спецификация может содержать требование, которое невозможно выполнить на данной аппаратуре и программном обеспечении;
  • проект программы может содержать ошибки (например, база данных спроектирована без средств защиты от несанкционированного доступа пользователя, а требуется защита);
  • программа может быть неправильной, т.е. она выполняет несвойственный алгоритм или он реализован не полностью.

Таким образом, отказы, как правило, являются результатами одной или более ошибок в программе, а также наличия разного рода дефектов.

Ошибки на этапах процесса тестирования. Приведенные типы ошибок распределяются по этапам ЖЦ и им соответствуют такие источники их возникновения:

  • непреднамеренное отклонение разработчиков от рабочих стандартов или планов реализации;
  • спецификации функциональных и интерфейсных требований выполнены без соблюдения стандартов разработки, что приводит к нарушению функционирования программ;
  • организации процесса разработки — несовершенная или недостаточное управление руководителем проекта ресурсами (человеческими, техническими, программными и т.д.) и вопросами тестирования и интеграции элементов проекта.

Рассмотрим процесс тестирования, исходя из рекомендаций стандарта ISO/IEC 12207, и приведем типы ошибок, которые обнаруживаются на каждом процессе ЖЦ.

Процесс разработки требований. При определении исходной концепции системы и исходных требований к системе возникают ошибки аналитиков при спецификации верхнего уровня системы и построении концептуальной модели предметной области.

Характерными ошибками этого процесса являются:

  • неадекватность спецификации требований конечным пользователям;
  • некорректность спецификации взаимодействия ПО со средой функционирования или с пользователями;
  • несоответствие требований заказчика к отдельным и общим свойствам ПО;
  • некорректность описания функциональных характеристик;
  • необеспеченность инструментальными средствами всех аспектов реализации требований заказчика и др.

Процесс проектирования. Ошибки при проектировании компонентов могут возникать при описании алгоритмов, логики управления, структур данных, интерфейсов, логики моделирования потоков данных, форматов ввода-вывода и др. В основе этих ошибок лежат дефекты спецификаций аналитиков и недоработки проектировщиков. К ним относятся ошибки, связанные:

  • с определением интерфейса пользователя со средой;
  • с описанием функций (неадекватность целей и задач компонентов, которые обнаруживаются при проверке комплекса компонентов);
  • с определением процесса обработки информации и взаимодействия между процессами (результат некорректного определения взаимосвязей компонентов и процессов);
  • с некорректным заданием данных и их структур при описании отдельных компонентов и ПС в целом;
  • с некорректным описанием алгоритмов модулей;
  • с определением условий возникновения возможных ошибок в программе;
  • с нарушением принятых для проекта стандартов и технологий.

Этап кодирования. На данном этапе возникают ошибки, которые являются результатом дефектов проектирования, ошибок программистов и менеджеров в процессе разработки и отладки системы. Причиной ошибок являются:

  • бесконтрольность значений входных параметров, индексов массивов, параметров циклов, выходных результатов, деления на 0 и др.;
  • неправильная обработка нерегулярных ситуаций при анализе кодов возврата от вызываемых подпрограмм, функций и др.;
  • нарушение стандартов кодирования (плохие комментарии, нерациональное выделение модулей и компонент и др.);
  • использование одного имени для обозначения разных объектов или разных имен одного объекта, плохая мнемоника имен;
  • несогласованное внесение изменений в программу разными разработчиками и др.

Процесс тестирования. На этом процессе ошибки допускаются программистами и тестировщиками при выполнении технологии сборки и тестирования, выбора тестовых наборов и сценариев тестирования и др. Отказы в программном обеспечении, вызванные такого рода ошибками, должны выявляться, устраняться и не отражаться на статистике ошибок компонент и программного обеспечения в целом.

Процесс сопровождения. На процессе сопровождения обнаруживаются ошибки, причиной которых являются недоработки и дефекты эксплуатационной документации, недостаточные показатели модифицируемости и удобочитаемости, а также некомпетентность лиц, ответственных за сопровождение и/или усовершенствование ПО. В зависимости от сущности вносимых изменений на этом этапе могут возникать практически любые ошибки, аналогичные ранее перечисленным ошибкам на предыдущих этапах.

Все ошибки, которые возникают в программах, принято подразделять на следующие классы:

  • логические и функциональные ошибки;
  • ошибки вычислений и времени выполнения;
  • ошибки вводавывода и манипулирования данными;
  • ошибки интерфейсов;
  • ошибки объема данных и др.

Логические ошибки являются причиной нарушения логики алгоритма, внутренней несогласованности переменных и операторов, а также правил программирования. Функциональные ошибки — следствие неправильно определенных функций, нарушения порядка их применения или отсутствия полноты их реализации и т.д.

Ошибки вычислений возникают по причине неточности исходных данных и реализованных формул, погрешностей методов, неправильного применения операций вычислений или операндов. Ошибки времени выполнения связаны с необеспечением требуемой скорости обработки запросов или времени восстановления программы.

Ошибки ввода-вывода и манипулирования данными являются следствием некачественной подготовки данных для выполнения программы, сбоев при занесении их в базы данных или при выборке из нее.

Ошибки интерфейса относятся к ошибкам взаимосвязи отдельных элементов друг с другом, что проявляется при передаче данных между ними, а также при взаимодействии со средой функционирования.

Ошибки объема относятся к данным и являются следствием того, что реализованные методы доступа и размеры баз данных не удовлетворяют реальным объемам информации системы или интенсивности их обработки.

Приведенные основные классы ошибок свойственны разным типам компонентов ПО и проявляются они в программах по разному. Так, при работе с БД возникают ошибки представления и манипулирования данными, логические ошибки в задании прикладных процедур обработки данных и др. В программах вычислительного характера преобладают ошибки вычислений, а в программах управления и обработки — логические и функциональные ошибки. В ПО, которое состоит из множества разноплановых программ, реализующих разные функции, могут содержаться ошибки разных типов. Ошибки интерфейсов и нарушение объема характерны для любого типа систем.

Анализ типов ошибок в программах является необходимым условием создания планов тестирования и методов тестирования для обеспечения правильности ПО.

На современном этапе развития средств поддержки разработки ПО (CASE-технологии, объектно-ориентированные методы и средства проектирования моделей и программ) проводится такое проектирование, при котором ПО защищается от наиболее типичных ошибок и тем самым предотвращается появление программных дефектов.

Связь ошибки с отказом. Наличие ошибки в программе, как правило, приводит к отказу ПО при его функционировании. Для анализа причинно-следственных связей «ошибкаотказ» выполняются следующие действия:

  • идентификация изъянов в технологиях проектирования и программирования;
  • взаимосвязь изъянов процесса проектирования и допускаемых человеком ошибок;
  • классификация отказов, изъянов и возможных ошибок, а также дефектов на каждом этапе разработки;
  • сопоставление ошибок человека, допускаемых на определенном процессе разработки, и дефектов в объекте, как следствий ошибок спецификации проекта, моделей программ;
  • проверка и защита от ошибок на всех этапах ЖЦ, а также обнаружение дефектов на каждом этапе разработки;
  • сопоставление дефектов и отказов в ПО для разработки системы взаимосвязей и методики локализации, сбора и анализа информации об отказах и дефектах;
  • разработка подходов к процессам документирования и испытания ПО.

Конечная цель причинно-следственных связей «ошибка-отказ» заключается в определении методов и средств тестирования и обнаружения ошибок определенных классов, а также критериев завершения тестирования на множестве наборов данных; в определении путей совершенствования организации процесса разработки, тестирования и сопровождения ПО.

Приведем следующую классификацию типов отказов:

  • аппаратный, при котором общесистемное ПО не работоспособно;
  • информационный, вызванный ошибками во входных данных и передаче данных по каналам связи, а также при сбое устройств ввода (следствие аппаратных отказов);
  • эргономический, вызванный ошибками оператора при его взаимодействии с машиной (этот отказ — вторичный отказ, может привести к информационному или функциональному отказам);
  • программный, при наличии ошибок в компонентах и др.

Некоторые ошибки могут быть следствием недоработок при определении требований, проекта, генерации выходного кода или документации. С другой стороны, они порождаются в процессе разработки программы или при разработке интерфейсов отдельных элементов программы (нарушение порядка параметров, меньше или больше параметров и т.п.).

Источники ошибок. Ошибки могут быть порождены в процессе разработки проекта, компонентов, кода и документации. Как правило, они обнаруживаются при выполнении или сопровождении программного обеспечения в самых неожиданных и разных ее точках.

Некоторые ошибки в программе могут быть следствием недоработок при определении требований, проекта, генерации кода или документации. С другой стороны, ошибки порождаются в процессе разработки программы или интерфейсов ее элементов (например, при нарушении порядка задания параметров связи — меньше или больше, чем требуется и т.п.).

Причиной появления ошибок — непонимание требований заказчика; неточная спецификация требований в документах проекта и др. Это приводит к тому, что реализуются некоторые функции системы, которые будут работать не так, как предлагает заказчик. В связи с этим проводится совместное обсуждение заказчиком и разработчиком некоторых деталей требований для их уточнения.

Команда разработчиков системы может также изменить синтаксис и семантику описания системы. Однако некоторые ошибки могут быть не обнаружены (например, неправильно заданы индексы или значения переменных этих операторов).

В C++ различают ошибки времени компиляции и ошибки времени выполнения. Ошибки первого типа обнаруживает компилятор до запуска программы. К ним относятся, например, синтаксические ошибки в коде. Ошибки второго типа проявляются при запуске программы. Примеры ошибок времени выполнения: ввод некорректных данных, некорректная работа с памятью, недостаток места на диске и т. д. Часто такие ошибки могут привести к неопределённому поведению программы.

Некоторые ошибки времени выполнения можно обнаружить заранее с помощью проверок в коде. Например, такими могут быть ошибки, нарушающие инвариант класса в конструкторе. Обычно, если ошибка обнаружена, то дальнейшее выполение функции не имеет смысла, и нужно сообщить об ошибке в то место кода, откуда эта функция была вызвана. Для этого предназначен механизм исключений.

Коды возврата и исключения

Рассмотрим функцию, которая считывает со стандартного потока возраст и возвращает его вызывающей стороне. Добавим в функцию проверку корректности возраста: он должен находиться в диапазоне от 0 до 128 лет. Предположим, что повторный ввод возраста в случае ошибки не предусмотрен.

int ReadAge() {
    int age;
    std::cin >> age;
    if (age < 0 || age >= 128) {
        // Что вернуть в этом случае?
    }
    return age;
}

Что вернуть в случае некорректного возраста? Можно было бы, например, договориться, что в этом случае функция возвращает ноль. Но тогда похожая проверка должна быть и в месте вызова функции:

int main() {
    if (int age = ReadAge(); age == 0) {
        // Произошла ошибка
    } else {
        // Работаем с возрастом age
    }
}

Такая проверка неудобна. Более того, нет никакой гарантии, что в вызывающей функции программист вообще её напишет. Фактически мы тут выбрали некоторое значение функции (ноль), обозначающее ошибку. Это пример подхода к обработке ошибок через коды возврата. Другим примером такого подхода является хорошо знакомая нам функция main. Только она должна возвращать ноль при успешном завершении и что-либо ненулевое в случае ошибки.

Другим способом сообщить об обнаруженной ошибке являются исключения. С каждым сгенерированным исключением связан некоторый объект, который как-то описывает ошибку. Таким объектом может быть что угодно — даже целое число или строка. Но обычно для описания ошибки заводят специальный класс и генерируют объект этого класса:

#include <iostream>

struct WrongAgeException {
    int age;
};

int ReadAge() {
    int age;
    std::cin >> age;
    if (age < 0 || age >= 128) {
        throw WrongAgeException(age);
    }
    return age;
}

Здесь в случае ошибки оператор throw генерирует исключение, которое представлено временным объектом типа WrongAgeException. В этом объекте сохранён для контекста текущий неправильный возраст age. Функция досрочно завершает работу: у неё нет возможности обработать эту ошибку, и она должна сообщить о ней наружу. Поток управления возвращается в то место, откуда функция была вызвана. Там исключение может быть перехвачено и обработано.

Перехват исключения

Мы вызывали нашу функцию ReadAge из функции main. Обработать ошибку в месте вызова можно с помощью блока try/catch:

int main() {
    try {
        age = ReadAge();  // может сгенерировать исключение
        // Работаем с возрастом age
    } catch (const WrongAgeException& ex) {  // ловим объект исключения
        std::cerr << "Age is not correct: " << ex.age << "n";
        return 1;  // выходим из функции main с ненулевым кодом возврата
    }
    // ...
}

Мы знаем заранее, что функция ReadAge может сгенерировать исключение типа WrongAgeException. Поэтому мы оборачиваем вызов этой функции в блок try. Если происходит исключение, для него подбирается подходящий catch-обработчик. Таких обработчиков может быть несколько. Можно смотреть на них как на набор перегруженных функций от одного аргумента — объекта исключения. Выбирается первый подходящий по типу обработчик и выполняется его код. Если же ни один обработчик не подходит по типу, то исключение считается необработанным. В этом случае оно пробрасывается дальше по стеку — туда, откуда была вызвана текущая функция. А если обработчик не найдётся даже в функции main, то программа аварийно завершается.

Усложним немного наш пример, чтобы из функции ReadAge могли вылетать исключения разных типов. Сейчас мы проверяем только значение возраста, считая, что на вход поступило число. Но предположим, что поток ввода досрочно оборвался, или на входе была строка вместо числа. В таком случае конструкция std::cin >> age никак не изменит переменную age, а лишь возведёт специальный флаг ошибки в объекте std::cin. Наша переменная age останется непроинициализированной: в ней будет лежать неопределённый мусор. Можно было бы явно проверить этот флаг в объекте std::cin, но мы вместо этого включим режим генерации исключений при таких ошибках ввода:

int ReadAge() {
    std::cin.exceptions(std::istream::failbit);
    int age;
    std::cin >> age;
    if (age < 0 || age >= 128) {
        throw WrongAgeException(age);
    }
    return age;
}

Теперь ошибка чтения в операторе >> у потока ввода будет приводить к исключению типа std::istream::failure. Функция ReadAge его не обрабатывает. Поэтому такое исключение покинет пределы этой функции. Поймаем его в функции main:

int main() {
    try {
        age = ReadAge();  // может сгенерировать исключения разных типов
        // Работаем с возрастом age
    } catch (const WrongAgeException& ex) {
        std::cerr << "Age is not correct: " << ex.age << "n";
        return 1;
    } catch (const std::istream::failure& ex) {
        std::cerr << "Failed to read age: " << ex.what() << "n";
        return 1;
    } catch (...) {
        std::cerr << "Some other exceptionn";
        return 1;
    }
    // ...
}

При обработке мы воспользовались функцией ex.what у исключения типа std::istream::failure. Такие функции есть у всех исключений стандартной библиотеки: они возвращают текстовое описание ошибки.

Обратите внимание на третий catch с многоточием. Такой блок, если он присутствует, будет перехватывать любые исключения, не перехваченные ранее.

Исключения стандартной библиотеки

Функции и классы стандартной библиотеки в некоторых ситуациях генерируют исключения особых типов. Все такие типы выстроены в иерархию наследования от базового класса std::exception. Иерархия классов позволяет писать обработчик catch сразу на группу ошибок, которые представлены базовым классом: std::logic_error, std::runtime_error и т. д.

Вот несколько примеров:

  1. Функция at у контейнеров std::array, std::vector и std::deque генерирует исключение std::out_of_range при некорректном индексе.

  2. Аналогично, функция at у std::map, std::unordered_map и у соответствующих мультиконтейнеров генерирует исключение std::out_of_range при отсутствующем ключе.

  3. Обращение к значению у пустого объекта std::optional приводит к исключению std::bad_optional_access.

  4. Потоки ввода-вывода могут генерировать исключение std::ios_base::failure.

Исключения в конструкторах

В главе 3.1 мы написали класс Time. Этот класс должен был соблюдать инвариант на значение часов, минут и секунд: они должны были быть корректными. Если на вход конструктору класса Time передавались некорректные значения, мы приводили их к корректным, используя деление с остатком.

Более правильным было бы сгенерировать в конструкторе исключение. Таким образом мы бы явно передали сообщение об ошибке во внешнюю функцию, которая пыталась создать объект.

class Time {
private:
    int hours, minutes, seconds;

public:
    // Заведём класс для исключения и поместим его внутрь класса Time как в пространство имён
    class IncorrectTimeException {
    };

    Time::Time(int h, int m, int s) {
        if (s < 0 || s > 59 || m < 0 || m > 59 || h < 0 || h > 23) {
            throw IncorrectTimeException();
        }
        hours = h;
        minutes = m;
        seconds = s;
    }

    // ...
};

Генерировать исключения в конструкторах — совершенно нормальная практика. Однако не следует допускать, чтобы исключения покидали пределы деструкторов. Чтобы понять причины, посмотрим подробнее, что происходит при генерации исключения.

Свёртка стека

Вспомним класс Logger из предыдущей главы. Посмотрим, как он ведёт себя при возникновении исключения. Воспользуемся в этом примере стандартным базовым классом std::exception, чтобы не писать свой класс исключения.

#include <exception>
#include <iostream>

void f() {
    std::cout << "Welcome to f()!n";
    Logger x;
    // ...
    throw std::exception();  // в какой-то момент происходит исключение
}

int main() {
    try {
        Logger y;
        f();
    } catch (const std::exception&) {
        std::cout << "Something happened...n";
        return 1;
    }
}

Мы увидим такой вывод:

Logger(): 1
Welcome to f()!
Logger(): 2
~Logger(): 2
~Logger(): 1
Something happened...

Сначала создаётся объект y в блоке try. Затем мы входим в функцию f. В ней создаётся объект x. После этого происходит исключение. Мы должны досрочно покинуть функцию. В этот момент начинается свёртка стека (stack unwinding): вызываются деструкторы для всех созданных объектов в самой функции и в блоке try, как если бы они вышли из своей области видимости. Поэтому перед обработчиком исключения мы видим вызов деструктора объекта x, а затем — объекта y.

Аналогично, свёртка стека происходит и при генерации исключения в конструкторе. Напишем класс с полем Logger и сгенерируем нарочно исключение в его конструкторе:

#include <exception>
#include <iostream>

class C {
private:
    Logger x;

public:
    C() {
        std::cout << "C()n";
        Logger y;
        // ...
        throw std::exception();
    }

    ~C() {
        std::cout << "~C()n";
    }
};

int main() {
    try {
        C c;
    } catch (const std::exception&) {
        std::cout << "Something happened...n";
    }
}

Вывод программы:

Logger(): 1  // конструктор поля x
C()
Logger(): 2  // конструктор локальной переменной y
~Logger(): 2  // свёртка стека: деструктор y
~Logger(): 1  // свёртка стека: деструктор поля x
Something happened...

Заметим, что деструктор самого класса C не вызывается, так как объект в конструкторе не был создан.

Механизм свёртки стека гарантирует, что деструкторы для всех созданных автоматических объектов или полей класса в любом случае будут вызваны. Однако он полагается на важное свойство: деструкторы самих классов не должны генерировать исключений. Если исключение в деструкторе произойдёт в момент свёртки стека при обработке другого исключения, то программа аварийно завершится.

Пример с динамической памятью

Подчеркнём, что свёртка стека работает только с автоматическими объектами. В этом нет ничего удивительного: ведь за временем жизни объектов, созданных в динамической памяти, программист должен следить самостоятельно. Исключения вносят дополнительные сложности в ручное управление динамическими объектами:

void f() {
    Logger* ptr = new Logger();  // конструируем объект класса Logger в динамической памяти
    // ...
    g();  // вызываем какую-то функцию
    // ...
    delete ptr;  // вызываем деструктор и очищаем динамическую память
}

На первый взгляд кажется, что в этом коде нет ничего опасного: delete вызывается в конце функции. Однако функция g может сгенерировать исключение. Мы не перехватываем его в нашей функции f. Механизм свёртки уберёт со стека лишь сам указатель ptr, который является автоматической переменной примитивного типа. Однако он ничего не сможет сделать с объектом в памяти, на которую ссылается этот указатель. В логе мы увидим только вызов конструктора класса Logger, но не увидим вызова деструктора. Нам придётся обработать исключение вручную:

void f() {
    Logger* ptr = new Logger();
    // ...
    try {
        g();
    } catch (...) {  // ловим любое исключение
        delete ptr;  // вручную удаляем объект
        throw;  // перекидываем объект исключения дальше
    }
    // ...
    delete ptr;

}

Здесь мы перехватываем любое исключение и частично обрабатываем его, удаляя объект в динамической памяти. Затем мы прокидываем текущий объект исключения дальше с помощью оператора throw без аргументов.

Согласитесь, этот код очень далёк от совершенства. При непосредственной работе с объектами в динамической памяти нам приходится оборачивать в try/catch любую конструкцию, из которой может вылететь исключение. Понятно, что такой код чреват ошибками. В главе 3.6 мы узнаем, как с точки зрения C++ следует работать с такими ресурсами, как память.

Гарантии безопасности исключений

Предположим, что мы пишем свой класс-контейнер, похожий на двусвязный список. Наш контейнер позволяет добавлять элементы в хранилище и отдельно хранит количество элементов в некотором поле elementsCount. Один из инвариантов этого класса такой: значение elementsCount равно реальному числу элементов в хранилище.

Не вдаваясь в детали, давайте посмотрим, как могла бы выглядеть функция добавления элемента.

template <typename T>
class List {
private:
    struct Node {  // узел двусвязного списка
        T element;
        Node* prev = nullptr;  // предыдущий узел
        Node* next = nullptr;  // следующий узел
    };

    Node* first = nullptr;  // первый узел списка
    Node* last = nullptr;  // последний узел списка
    int elementsCount = 0;

public:
    // ...

    size_t Size() const {
        return elementsCount;
    }

    void PushBack(const T& elem) {
        ++elementsCount;

        // Конструируем в динамической памяти новой узел списка
        Node* node = new Node(elem, last, nullptr);

        // Связываем новый узел с остальными узлами
        if (last != nullptr) {
            last->next = node;
        } else {
            first = node;
        }
        last = node;
    }
};

Не будем здесь рассматривать другие функции класса — конструкторы, деструктор, оператор присваивания… Рассмотрим функцию PushBack. В ней могут произойти такие исключения:

  1. Выражение new может сгенерировать исключение std::bad_alloc из-за нехватки памяти.

  2. Конструктор копирования класса T может сгенерировать произвольное исключение. Этот конструктор вызывается при инициализации поля element создаваемого узла в конструкторе класса Node. В этом случае new ведёт себя как транзакция: выделенная перед этим динамическая память корректно вернётся системе.

Эти исключения не перехватываются в функции PushBack. Их может перехватить код, из которого PushBack вызывался:

#include <iostream>

class C;  // какой-то класс

int main() {
    List<C> data;
    C element;

    try {
        data.PushBack(element);
    } catch (...) {  // не получилось добавить элемент
        std::cout << data.Size() << "n";  // внезапно 1, а не 0
    }

    // работаем дальше с data
}

Наша функция PushBack сначала увеличивает счётчик элементов, а затем выполняет опасные операции. Если происходит исключение, то в классе List нарушается инвариант: значение счётчика elementsCount перестаёт соответствовать реальности. Можно сказать, что функция PushBack не даёт гарантий безопасности.

Всего выделяют четыре уровня гарантий безопасности исключений (exception safety guarantees):

  1. Гарантия отсутствия сбоев. Функции с такими гарантиями вообще не выбрасывают исключений. Примерами могут служить правильно написанные деструктор и конструктор перемещения, а также константные функции вида Size.

  2. Строгая гарантия безопасности. Исключение может возникнуть, но от этого объект нашего класса не поменяет состояние: количество элементов останется прежним, итераторы и ссылки не будут инвалидированы и т. д.

  3. Базовая гарантия безопасности. При исключении состояние объекта может поменяться, но оно останется внутренне согласованным, то есть, инварианты будут соблюдаться.

  4. Отсутсвие гарантий. Это довольно опасная категория: при возникновении исключений могут нарушаться инварианты.

Всегда стоит разрабатывать классы, обеспечивающие хотя бы базовую гарантию безопасности. При этом не всегда возможно эффективно обеспечить строгую гарантию.

Переместим в нашей функции PushBack изменение счётчика в конец:

    void PushBack(const T& elem) {
        Node* node = new Node(elem, last, nullptr);

        if (last != nullptr) {
            last->next = node;
        } else {
            first = node;
        }
        last = node;

        ++elementsCount;  // выполнится только если раньше не было исключений
    }

Теперь такая функция соответствует строгой гарантии безопасности.

В документации функций из классов стандартной библиотеки обычно указано, какой уровень гарантии они обеспечивают. Рассмотрим, например, гарантии безопасности класса std::vector.

  • Деструктор, функции empty, size, capacity, а также clear предоставляют гарантию отсутствия сбоев.

  • Функции push_back и resize предоставляют строгую гарантию.

  • Функция insert предоставляет лишь базовую гарантию. Можно было бы сделать так, чтобы она предоставляла строгую гарантию, но за это пришлось бы заплатить её эффективностью: при вставке в середину вектора пришлось бы делать реаллокацию.

Функции класса, которые гарантируют отсутсвие сбоев, следует помечать ключевым словом noexcept:

class C {
public:
    void f() noexcept {
        // ...
    }
};

С одной стороны, эта подсказка позволяет компилятору генерировать более эффективный код. С другой — эффективно обрабатывать объекты таких классов в стандартных контейнерах. Например, std::vector<C> при реаллокации будет использовать конструктор перемещения класса C, если он помечен как noexcept. В противном случае будет использован конструктор копирования, который может быть менее эффективен, но зато позволит обеспечить строгую гарантию безопасности при реаллокации.

Содержание

  • 1 Методы обработки ошибок
  • 2 Исключения
  • 3 Классификация исключений
    • 3.1 Проверяемые исключения
    • 3.2 Error
    • 3.3 RuntimeException
  • 4 Обработка исключений
    • 4.1 try-catch-finally
    • 4.2 Обработка исключений, вызвавших завершение потока
    • 4.3 Информация об исключениях
  • 5 Разработка исключений
  • 6 Исключения в Java7
  • 7 Примеры исключений
  • 8 Гарантии безопасности
  • 9 Источники

Методы обработки ошибок

1. Не обрабатывать.

2. Коды возврата. Основная идея — в случае ошибки возвращать специальное значение, которое не может быть корректным. Например, если в методе есть операция деления, то придется проверять делитель на равенство нулю. Также проверим корректность аргументов a и b:

Double f(Double a, Double b) {
    if ((a == null) || (b == null)) {
        return null;
    }
    //...
    if (Math.abs(b) < EPS) {
        return null;    
    } else {
        return a / b;
    }
}

При вызове метода необходимо проверить возвращаемое значение:

Double d = f(a, b); 
if (d != null) {
    //...
} else {
    //...
}

Минусом такого подхода является необходимость проверки возвращаемого значения каждый раз при вызове метода. Кроме того, не всегда возможно определить тип ошибки.

3.Использовать флаг ошибки: при возникновении ошибки устанавливать флаг в соответствующее значение:

boolean error;

Double f(Double a, Double b) {
    if ((a == null) || (b == null)) {
        error = true;
        return null;
    }
    //...
    if (Math.abs(b) < EPS) {
        error = true;
        return b;    
    } else {
        return a / b;
    }
}
error = false;
Double d = f(a, b); 
if (error) {
    //...
} else {
    //...
} 

Минусы такого подхода аналогичны минусам использования кодов возврата.

4.Можно вызвать метод обработки ошибки и возвращать то, что вернет этот метод.

Double f(Double a, Double b) {
     if ((a == null) || (b == null)) {
         return nullPointer();
     }
     //...
     if (Math.abs(b) < EPS) {
         return divisionByZero();    
     } else {
         return a / b;
     }
 }

Но в таком случае не всегда возможно проверить корректность результата вызова основного метода.

5.В случае ошибки просто закрыть программу.

if (Math.abs(b) < EPS) {
    System.exit(0);
    return this;    
}

Это приведет к потере данных, также невозможно понять, в каком месте возникла ошибка.

Исключения

В Java возможна обработка ошибок с помощью исключений:

Double f(Double a, Double b) {
    if ((a == null) || (b == null)) {
        throw new IllegalArgumentException("arguments of f() are null");
    }
    //...
    return a / b;
}

Проверять b на равенство нулю уже нет необходимости, так как при делении на ноль метод бросит непроверяемое исключение ArithmeticException.

Исключения позволяют:

  • разделить обработку ошибок и сам алгоритм;
  • не загромождать код проверками возвращаемых значений;
  • обрабатывать ошибки на верхних уровнях, если на текущем уровне не хватает данных для обработки. Например, при написании универсального метода чтения из файла невозможно заранее предусмотреть реакцию на ошибку, так как эта реакция зависит от использующей метод программы;
  • классифицировать типы ошибок, обрабатывать похожие исключения одинаково, сопоставлять специфичным исключениям определенные обработчики.

Каждый раз, когда при выполнении программы происходит ошибка, создается объект-исключение, содержащий информацию об ошибке, включая её тип и состояние программы на момент возникновения ошибки.
После создания исключения среда выполнения пытается найти в стеке вызовов метод, который содержит код, обрабатывающий это исключение. Поиск начинается с метода, в котором произошла ошибка, и проходит через стек в обратном порядке вызова методов. Если не было найдено ни одного подходящего обработчика, выполнение программы завершается.

Таким образом, механизм обработки исключений содержит следующие операции:

  1. Создание объекта-исключения.
  2. Заполнение stack trace’а этого исключения.
  3. Stack unwinding (раскрутка стека) в поисках нужного обработчика.

Классификация исключений

Класс Java Throwable описывает все, что может быть брошено как исключение. Наследеники ThrowableException и Error — основные типы исключений. Также RuntimeException, унаследованный от Exception, является существенным классом.

Иерархия стандартных исключений

Проверяемые исключения

Наследники класса Exception (кроме наслеников RuntimeException) являются проверяемыми исключениями(checked exception). Как правило, это ошибки, возникшие по вине внешних обстоятельств или пользователя приложения – неправильно указали имя файла, например. Эти исключения должны обрабатываться в ходе работы программы, поэтому компилятор проверяет наличие обработчика или явного описания тех типов исключений, которые могут быть сгенерированы некоторым методом.

Все исключения, кроме классов Error и RuntimeException и их наследников, являются проверяемыми.

Error

Класс Error и его подклассы предназначены для системных ошибок. Свои собственные классы-наследники для Error писать (за очень редкими исключениями) не нужно. Как правило, это действительно фатальные ошибки, пытаться обработать которые довольно бессмысленно (например OutOfMemoryError).

RuntimeException

Эти исключения обычно возникают в результате ошибок программирования, такие как ошибки разработчика или неверное использование интерфейса приложения. Например, в случае выхода за границы массива метод бросит OutOfBoundsException. Такие ошибки могут быть в любом месте программы, поэтому компилятор не требует указывать runtime исключения в объявлении метода. Теоретически приложение может поймать это исключение, но разумнее исправить ошибку.

Обработка исключений

Чтобы сгенерировать исключение используется ключевое слово throw. Как и любой объект в Java, исключения создаются с помощью new.

if (t == null) {
    throw new NullPointerException("t = null");
}

Есть два стандартных конструктора для всех исключений: первый — конструктор по умолчанию, второй принимает строковый аргумент, поэтому можно поместить подходящую информацию в исключение.

Возможна ситуация, когда одно исключение становится причиной другого. Для этого существует механизм exception chaining. Практически у каждого класса исключения есть конструктор, принимающий в качестве параметра Throwable – причину исключительной ситуации. Если же такого конструктора нет, то у Throwable есть метод initCause(Throwable), который можно вызвать один раз, и передать ему исключение-причину.

Как и было сказано раньше, определение метода должно содержать список всех проверяемых исключений, которые метод может бросить. Также можно написать более общий класс, среди наследников которого есть эти исключения.

void f() throws InterruptedException, IOException { //...

try-catch-finally

Код, который может бросить исключения оборачивается в try-блок, после которого идут блоки catch и finally (Один из них может быть опущен).

try {
    // Код, который может сгенерировать исключение
}

Сразу после блока проверки следуют обработчики исключений, которые объявляются ключевым словом catch.

try {
    // Код, который может сгенерировать исключение
} catch(Type1 id1) {
    // Обработка исключения Type1
} catch(Type2 id2) {
    // Обработка исключения Type2
}

Сatch-блоки обрабатывают исключения, указанные в качестве аргумента. Тип аргумента должен быть классом, унаследованного от Throwable, или самим Throwable. Блок catch выполняется, если тип брошенного исключения является наследником типа аргумента и если это исключение не было обработано предыдущими блоками.

Код из блока finally выполнится в любом случае: при нормальном выходе из try, после обработки исключения или при выходе по команде return.

NB: Если JVM выйдет во время выполнения кода из try или catch, то finally-блок может не выполниться. Также, например, если поток выполняющий try или catch код остановлен, то блок finally может не выполниться, даже если приложение продолжает работать.

Блок finally удобен для закрытия файлов и освобождения любых других ресурсов. Код в блоке finally должен быть максимально простым. Если внутри блока finally будет брошено какое-либо исключение или просто встретится оператор return, брошенное в блоке try исключение (если таковое было брошено) будет забыто.

import java.io.IOException;

public class ExceptionTest {
   
    public static void main(String[] args) {
        try {
            try {
                throw new Exception("a");
            } finally {
                throw new IOException("b");
            }
        } catch (IOException ex) {
            System.err.println(ex.getMessage());
        } catch (Exception ex) {
            System.err.println(ex.getMessage());
        }
    }
}

После того, как было брошено первое исключение — new Exception("a") — будет выполнен блок finally, в котором будет брошено исключение new IOException("b"), именно оно будет поймано и обработано. Результатом его выполнения будет вывод в консоль b. Исходное исключение теряется.

Обработка исключений, вызвавших завершение потока

При использовании нескольких потоков бывают ситуации, когда поток завершается из-за исключения. Для того, чтобы определить с каким именно, начиная с версии Java 5 существует интерфейс Thread.UncaughtExceptionHandler. Его реализацию можно установить нужному потоку с помощью метода setUncaughtExceptionHandler. Можно также установить обработчик по умолчанию с помощью статического метода Thread.setDefaultUncaughtExceptionHandler.

Интерфейс Thread.UncaughtExceptionHandler имеет единственный метод uncaughtException(Thread t, Throwable e), в который передается экземпляр потока, завершившегося исключением, и экземпляр самого исключения. Когда поток завершается из-за непойманного исключения, JVM запрашивает у потока UncaughtExceptionHandler, используя метод Thread.getUncaughtExceptionHandler(), и вызвает метод обработчика – uncaughtException(Thread t, Throwable e). Все исключения, брошенные этим методом, игнорируются JVM.

Информация об исключениях

  • getMessage(). Этот метод возвращает строку, которая была первым параметром при создании исключения;
  • getCause() возвращает исключение, которое стало причиной текущего исключения;
  • printStackTrace() печатает stack trace, который содержит информацию, с помощью которой можно определить причину исключения и место, где оно было брошено.
Exception in thread "main" java.lang.IllegalStateException: A book has a null property
        at com.example.myproject.Author.getBookIds(Author.java:38)
        at com.example.myproject.Bootstrap.main(Bootstrap.java:14)
Caused by: java.lang.NullPointerException
        at com.example.myproject.Book.getId(Book.java:22)
        at com.example.myproject.Author.getBookIds(Author.java:35)

Все методы выводятся в обратном порядке вызовов. В примере исключение IllegalStateException было брошено в методе getBookIds, который был вызван в main. «Caused by» означает, что исключение NullPointerException является причиной IllegalStateException.

Разработка исключений

Чтобы определить собственное проверяемое исключение, необходимо создать наследника класса java.lang.Exception. Желательно, чтобы у исключения был конструкор, которому можно передать сообщение:

public class FooException extends Exception {
    public FooException() {
        super();
    }
    public FooException(String message) {
        super(message);
    }
    public FooException(String message, Throwable cause) {
        super(message, cause);
    }
    public FooException(Throwable cause) {
        super(cause);
    }
}

Исключения в Java7

  • обработка нескольких типов исключений в одном catch-блоке:
catch (IOException | SQLException ex) {...}

В таких случаях параметры неявно являются final, поэтому нельзя присвоить им другое значение в блоке catch.

Байт-код, сгенерированный компиляцией такого catch-блока будет короче, чем код нескольких catch-блоков.

  • Try с ресурсами позволяет прямо в try-блоке объявлять необходимые ресурсы, которые по завершению блока будут корректно закрыты (с помощью метода close()). Любой объект реализующий java.lang.AutoCloseable может быть использован как ресурс.
static String readFirstLineFromFile(String path) throws IOException {
    try (BufferedReader br =
                   new BufferedReader(new FileReader(path))) {
        return br.readLine();
    }
}

В приведенном примере в качестве ресурса использутся объект класса BufferedReader, который будет закрыт вне зависимосити от того, как выполнится try-блок.

Можно объявлять несколько ресурсов, разделяя их точкой с запятой:

public static void viewTable(Connection con) throws SQLException {
    
    String query = "select COF_NAME, SUP_ID, PRICE, SALES, TOTAL from COFFEES";
    
    try (Statement stmt = con.createStatement(); ResultSet rs = stmt.executeQuery(query)) {
        //Work with Statement and ResultSet
    } catch (SQLException e) {
        e.printStackTrace;
    }
}

Во время закрытия ресурсов тоже может быть брошено исключение. В try-with-resources добавленна возможность хранения «подавленных» исключений, и брошенное try-блоком исключение имеет больший приоритет, чем исключения получившиеся во время закрытия. Получить последние можно вызовом метода getSuppressed() от исключения брошенного try-блоком.

  • Перебрасывание исключений с улучшенной проверкой соответствия типов.

Компилятор Java SE 7 тщательнее анализирует перебрасываемые исключения. Рассмотрим следующий пример:

 static class FirstException extends Exception { }
 static class SecondException extends Exception { }
 
 public void rethrowException(String exceptionName) throws Exception {
     try {
         if ("First".equals(exceptionName)) {
             throw new FirstException();
         } else {
             throw new SecondException();
         }
     } catch (Exception ex) {
         throw e;
     }
 }

В примере try-блок может бросить либо FirstException, либо SecondException. В версиях до Java SE 7 невозможно указать эти исключения в декларации метода, потому что catch-блок перебрасывает исключение ex, тип которого — Exception.

В Java SE 7 вы можете указать, что метод rethrowException бросает только FirstException и SecondException. Компилятор определит, что исключение Exception ex могло возникнуть только в try-блоке, в котором может быть брошено FirstException или SecondException. Даже если тип параметра catchException, компилятор определит, что это экземпляр либо FirstException, либо SecondException:

 public void rethrowException(String exceptionName) throws FirstException, SecondException {
     try {
         // ...
     } catch (Exception e) {
         throw e;
     }
 }

Если FirstException и SecondException не являются наследниками Exception, то необходимо указать и Exception в объявлении метода.

Примеры исключений

  • любая операция может бросить VirtualMachineError. Как правило это происходит в результате системных сбоев.
  • OutOfMemoryError. Приложение может бросить это исключение, если, например, не хватает места в куче, или не хватает памяти для того, чтобы создать стек нового потока.
  • IllegalArgumentException используется для того, чтобы избежать передачи некорректных значений аргументов. Например:
public void f(Object a) {  
    if (a == null) {  
        throw new IllegalArgumentException("a must not be null");  
    }  
}  
  • IllegalStateException возникает в результате некорректного состояния объекта. Например, использование объекта перед тем как он будет инициализирован.

Гарантии безопасности

При возникновении исключительной ситуации, состояния объектов и программы могут удовлетворять некоторым условиям, которые определяются различными типами гарантий безопасности:

  • Отсутствие гарантий (no exceptional safety). Если было брошено исключение, то не гарантируется, что все ресурсы будут корректно закрыты и что объекты, методы которых бросили исключения, могут в дальнейшем использоваться. Пользователю придется пересоздавать все необходимые объекты и он не может быть уверен в том, что может переиспозовать те же самые ресурсы.
  • Отсутствие утечек (no-leak guarantee). Объект, даже если какой-нибудь его метод бросает исключение, освобождает все ресурсы или предоставляет способ сделать это.
  • Слабые гарантии (weak exceptional safety). Если объект бросил исключение, то он находится в корректном состоянии, и все инварианты сохранены. Рассмотрим пример:
class Interval {
    //invariant: left <= right
    
    double left;
    double right;
    //...
}

Если будет брошено исключение в этом классе, то тогда гарантируется, что ивариант «левая граница интервала меньше правой» сохранится, но значения left и right могли измениться.

  • Сильные гарантии (strong exceptional safety). Если при выполнении операции возникает исключение, то это не должно оказать какого-либо влияния на состояние приложения. Состояние объектов должно быть таким же как и до вызовов методов.
  • Гарантия отсутствия исключений (no throw guarantee). Ни при каких обстоятельствах метод не должен генерировать исключения. В Java это невозможно, например, из-за того, что VirtualMachineError может произойти в любом месте, и это никак не зависит от кода. Кроме того, эту гарантию практически невозможно обеспечить в общем случае.

Источники

  • Обработка ошибок и исключения — Сайт Георгия Корнеева
  • Лекция Георгия Корнеева — Лекториум
  • The Java Tutorials. Lesson: Exceptions
  • Обработка исключений — Википедия
  • Throwable (Java Platform SE 7 ) — Oracle Documentation
  • try/catch/finally и исключения — www.skipy.ru

Это первая часть статьи, посвященной такому языковому механизму Java как исключения (вторая (checked/unchecked) вот). Она имеет вводный характер и рассчитана на начинающих разработчиков или тех, кто только приступает к изучению языка.

Также я веду курс «Scala for Java Developers» на платформе для онлайн-образования udemy.com (аналог Coursera/EdX).

1. Ключевые слова: try, catch, finally, throw, throws
2. Почему используем System.err, а не System.out
3. Компилятор требует вернуть результат (или требует молчать)
4. Нелокальная передача управления (nonlocal control transfer)
5. try + catch (catch — полиморфен)
6. try + catch + catch + …
7. try + finally
8. try + catch + finally
9. Вложенные try + catch + finally

1. Ключевые слова: try, catch, finally, throw, throws

Механизм исключительных ситуаций в Java поддерживается пятью ключевыми словами

  • try
  • catch
  • finally
  • throw
  • throws

«Магия» (т.е. некоторое поведение никак не отраженное в исходном коде и потому неповторяемое пользователем) исключений #1 заключается в том, что catch, throw, throws можно использовать исключительно с java.lang.Throwable или его потомками.

throws:
Годится

public class App {
    public static void main(String[] args) throws Throwable {}
}

Не годится

public class App {
    public static void main(String[] args) throws String {}
}

>> COMPILATION ERROR: Incompatible types: required 'java.lang.Throwable', found: 'java.lang.String'

catch:
Годится

public class App {
    public static void main(String[] args) {
        try {
        } catch (Throwable t) {}
    }
}

Не годится

public class App {
    public static void main(String[] args) {
        try {
        } catch (String s) {}
    }
}

>> COMPILATION ERROR: Incompatible types: required 'java.lang.Throwable', found: 'java.lang.String'

throw:
Годится

public class App {
    public static void main(String[] args) {
        // Error - потомок Throwable
        throw new Error();
    }
}

Не годится

public class App {
    public static void main(String[] args) {
        throw new String("Hello!");
    }
}

>> COMPILATION ERROR: Incompatible types: required 'java.lang.Throwable', found: 'java.lang.String'

Кроме того, throw требуется не-null аргумент, иначе NullPointerException в момент выполнения

public class App {
    public static void main(String[] args) {
        throw null;
    }
}

>> RUNTIME ERROR: Exception in thread "main" java.lang.NullPointerException

throw и new — это две независимых операции. В следующем коде мы независимо создаем объект исключения и «бросаем» его

public class App {
    public static void main(String[] args) {
        Error ref = new Error(); // создаем экземпляр
        throw ref;               // "бросаем" его
    }
}

>> RUNTIME ERROR: Exception in thread "main" java.lang.Error

Однако, попробуйте проанализировать вот это

public class App {
    public static void main(String[] args) {
        f(null);
    }
    public static void f(NullPointerException e) {
        try {
            throw e;
        } catch (NullPointerException npe) {
            f(npe);
        }
    }
}

>> RUNTIME ERROR: Exception in thread "main" java.lang.StackOverflowError

2. Почему используем System.err, а не System.out

System.out — buffered-поток вывода, а System.err — нет. Таким образом вывод может быть как таким

public class App {
    public static void main(String[] args) {
        System.out.println("sout");
        throw new Error();
    }
}
>> RUNTIME ERROR: Exception in thread "main" java.lang.Error
>> sout

Так и вот таким (err обогнало out при выводе в консоль)

public class App {
    public static void main(String[] args) {
        System.out.println("sout");
        throw new Error();
    }
}
>> sout
>> RUNTIME ERROR: Exception in thread "main" java.lang.Error

Давайте это нарисуем

                      буфер сообщений
                    +----------------+
                 +->| msg2 msg1 msg0 | --> out 
                /   +----------------+        
               /                                 +-> +--------+
ВАШЕ ПРИЛОЖЕНИЕ                                      | КОНСОЛЬ|
                                                +-> +--------+
                                               /
                 +------------------------> err
                 нет буфера, сразу печатаем

когда Вы пишете в System.err — ваше сообщение тут же выводится на консоль, но когда пишете в System.out, то оно может на какое-то время быть буферизированно. Stacktrace необработанного исключение выводится через System.err, что позволяет им обгонять «обычные» сообщения.

3. Компилятор требует вернуть результат (или требует молчать)

Если в объявлении метода сказано, что он возвращает НЕ void, то компилятор зорко следит, что бы мы вернули экземпляр требуемого типа или экземпляр типа, который можно неявно привести к требуемому

public class App { 
    public double sqr(double arg) { // надо double
        return arg * arg;           // double * double - это double  
    }
}
public class App { 
    public double sqr(double arg) { // надо double
        int k = 1;                  // есть int
        return k;                   // можно неявно преобразовать int в double
    }
}
// на самом деле, компилятор сгенерирует байт-код для следующих исходников 
public class App { 
    public double sqr(double arg) { // надо double
        int k = 1;                  // есть int
        return (double) k;          // явное преобразование int в double
    }
}

вот так не пройдет (другой тип)

public class App {
    public static double sqr(double arg) {
        return "hello!";
    }
}

>> COMPILATION ERROR: Incompatible types. Required: double. Found: java.lang.String

Вот так не выйдет — нет возврата

public class App {
    public static double sqr(double arg) {
    }
}

>> COMPILATION ERROR: Missing return statement

и вот так не пройдет (компилятор не может удостовериться, что возврат будет)

public class App {
    public static double sqr(double arg) {
        if (System.currentTimeMillis() % 2 == 0) {
            return arg * arg; // если currentTimeMillis() - четное число, то все ОК
        }
        // а если нечетное, что нам возвращать?
    }
}

>> COMPILATION ERROR: Missing return statement

Компилятор отслеживает, что бы мы что-то вернули, так как иначе непонятно, что должна была бы напечатать данная программа

public class App {
    public static void main(String[] args) {
        double d = sqr(10.0); // ну, и чему равно d?
        System.out.println(d);
    }    
    public static double sqr(double arg) {
        // nothing
    }
}

>> COMPILATION ERROR: Missing return statement

Из-забавного, можно ничего не возвращать, а «повесить метод»

public class App {
    public static double sqr(double arg) {
        while (true); // Удивительно, но КОМПИЛИРУЕТСЯ!
    }
}

Тут в d никогда ничего не будет присвоено, так как метод sqr повисает

public class App {
    public static void main(String[] args) {
        double d = sqr(10.0);  // sqr - навсегда "повиснет", и 
        System.out.println(d); // d - НИКОГДА НИЧЕГО НЕ БУДЕТ ПРИСВОЕНО!
    }    
    public static double sqr(double arg) {
        while (true); // Вот тут мы на века "повисли"
    }
}

Компилятор пропустит «вилку» (таки берем в квадрат ИЛИ висим)

public class App {
    public static double sqr(double arg) {
        if (System.currentTimeMillis() % 2 == 0) {
            return arg * arg; // ну ладно, вот твой double
        } else {
            while (true);     // а тут "виснем" навсегда
        }
    }
}

Но механизм исключений позволяет НИЧЕГО НЕ ВОЗВРАЩАТЬ!

public class App {
    public static double sqr(double arg) {
        throw new RuntimeException();
    }
}

Итак, у нас есть ТРИ варианта для компилятора

public class App {
    public static double sqr(double arg) {// согласно объявлению метода ты должен вернуть double
        long time = System.currentTimeMillis();
        if (time % 2 == 0) {
            return arg * arg;             // ок, вот твой double
        } else if (time % 2 == 1) { {
            while (true);                 // не, я решил "повиснуть"
        } else {
            throw new RuntimeException(); // или бросить исключение
        }
    }
}

Но КАКОЙ ЖЕ double вернет функция, бросающая RuntimeException?
А НИКАКОЙ!

public class App {
    public static void main(String[] args) {
        // sqr - "сломается" (из него "выскочит" исключение),  
        double d = sqr(10.0);  // выполнение метода main() прервется в этой строчке и
                               // d - НИКОГДА НИЧЕГО НЕ БУДЕТ ПРИСВОЕНО!
        System.out.println(d); // и печатать нам ничего не придется!
    }    
    public static double sqr(double arg) {
        throw new RuntimeException(); // "бросаем" исключение
    }
}

>> RUNTIME ERROR: Exception in thread "main" java.lang.RuntimeException

Подытожим: бросаемое исключение — это дополнительный возвращаемый тип. Если ваш метод объявил, что возвращает double, но у вас нет double — можете бросить исключение. Если ваш метод объявил, что ничего не возвращает (void), но у вам таки есть что сказать — можете бросить исключение.

Давайте рассмотрим некоторый пример из практики.

Задача: реализовать функцию, вычисляющую площадь прямоугольника

public static int area(int width, int height) {...}

важно, что задание звучит именно так, в терминах предметной области — «вычислить площадь прямоугольника», а не в терминах решения «перемножить два числа»:

public static int area(int width, int height) {
    return width * height; // тут просто перемножаем
}

Вопрос: что делать, если мы обнаружили, что хотя бы один из аргументов — отрицательное число?
Если просто умножить, то мы пропустили ошибочные данные дальше. Что еще хуже, возможно, мы «исправили ситуацию» — сказали что площадь прямоугольника с двумя отрицательными сторонами -10 и -20 = 200.

Мы не можем ничего не вернуть

public static int area(int width, int height) {
    if (width < 0 || height < 0) {
        // у вас плохие аргументы, извините
    } else {
        return width * height;
    }
}

>> COMPILATION ERROR: Missing return statement

Можно, конечно, отписаться в консоль, но кто ее будет читать и как определить где была поломка. При чем, вычисление то продолжится с неправильными данными

public static int area(int width, int height) {
    if (width < 0 || height < 0) {
        System.out.println("Bad ...");
    }
    return width * height;
}

Можно вернуть специальное значение, показывающее, что что-то не так (error code), но кто гарантирует, что его прочитают, а не просто воспользуются им?

public static int area(int width, int height) {
    if (width < 0 || height < 0) {
        return -1; // специальное "неправильное" значение площади
    }
    return width * height;
}

Можем, конечно, целиком остановить виртуальную машину

public static int area(int width, int height) {
    if (width < 0 || height < 0) {
        System.exit(0);
    }
    return width * height;
}

Но «правильный путь» таков: если обнаружили возможное некорректное поведение, то
1. Вычисления остановить, сгенерировать сообщение-поломку, которое трудно игнорировать, предоставить пользователю информацию о причине, предоставить пользователю возможность все починить (загрузить белье назад и повторно нажать кнопку старт)

public static int area(int width, int height) {
    if (width < 0 || height < 0) {
        throw new IllegalArgumentException("Negative sizes: w = " + width + ", h = " + height);
    }
    return width * height;
}

4. Нелокальная передача управления (nonlocal control transfer)

Механизм исключительных ситуация (исключений) — это механизм НЕЛОКАЛЬНОЙ ПЕРЕДАЧИ УПРАВЛЕНИЯ.
Что под этим имеется в виду?
Программа, в ходе своего выполнения (точнее исполнения инструкций в рамках отдельного потока), оперирует стеком («стопкой») фреймов. Передача управления осуществляется либо в рамках одного фрейма

public class App {
    public static void main(String[] args) {
        // Пример: ОПЕРАТОР ПОСЛЕДОВАТЕЛЬНОСТИ
        int x = 42;    // первый шаг
        int y = x * x; // второй шаг
        x = x * y;     // третий шаг
        ...
    }
}
public class App {
    public static void main(String[] args) {
        // Пример: ОПЕРАТОР ВЕТВЛЕНИЯ
        if (args.length > 2) { первый шаг
            // второй шаг или тут
            ...
        } else {
            // или тут
            ...
        }
        // третий шаг
        ...
    }
}
public class App {
    public static void main(String[] args) {
        // Пример: ОПЕРАТОР ЦИКЛА do..while
        int x = 1;      
        do {
            ...
        } while (x++ < 10);
        ...
    }
}

и другие операторы.

Либо передача управления происходит в «стопке» фреймов между СОСЕДНИМИ фреймами

  • вызов метода: создаем новый фрейм, помещаем его на верхушку стека и переходим в него
  • выход из метода: возвращаемся к предыдущему фрейму (через return или просто кончились инструкции в методе)

return — выходим из ОДНОГО фрейма (из фрейма #4(метод h()))

public class App {
    public static void main(String[] args) {
        System.err.println("#1.in");
        f(); // создаем фрейм, помещаем в стек, передаем в него управление
        System.err.println("#1.out"); // вернулись
    } // выходим из текущего фрейма, кончились инструкции

    public static void f() {
        System.err.println(".   #2.in");
        g(); // создаем фрейм, помещаем в стек, передаем в него управление
        System.err.println(".   #2.out");  //вернулись
    } // выходим из текущего фрейма, кончились инструкции

    public static void g() {
        System.err.println(".   .   #3.in");
        h(); // создаем фрейм, помещаем в стек, передаем в него управление
        System.err.println(".   .   #3.out"); // вернулись
    } // выходим из текущего фрейма, кончились инструкции

    public static void h() {
        System.err.println(".   .   .   #4.in");
        if (true) {
            System.err.println(".   .   .   #4.RETURN");
            return; // выходим из текущего фрейма по 'return'
        }
        System.err.println(".   .   .   #4.out"); // ПРОПУСКАЕМ
    }
}

>> #1.in
>> .   #2.in
>> .   .   #3.in
>> .   .   .   #4.in
>> .   .   .   #4.RETURN
>> .   .   #3.out
>> .   #2.out
>> #1.out

throw — выходим из ВСЕХ фреймов

public class App {
    public static void main(String[] args) {
        System.err.println("#1.in");
        f(); // создаем фрейм, помещаем в стек, передаем в него управление
        System.err.println("#1.out"); // ПРОПУСТИЛИ!
    }

    public static void f() {
        System.err.println(".   #2.in");
        g(); // создаем фрейм, помещаем в стек, передаем в него управление
        System.err.println(".   #2.out"); // ПРОПУСТИЛИ!
    }

    public static void g() {
        System.err.println(".   .   #3.in");
        h(); // создаем фрейм, помещаем в стек, передаем в него управление
        System.err.println(".   .   #3.out"); // ПРОПУСТИЛИ!
    }

    public static void h() {
        System.err.println(".   .   .   #4.in");
        if (true) {
            System.err.println(".   .   .   #4.THROW");
            throw new Error(); // выходим со всей пачки фреймов ("раскрутка стека") по 'throw'
        }
        System.err.println(".   .   .   #4.out"); // ПРОПУСТИЛИ!
    }
}

>> #1.in
>> .   #2.in
>> .   .   #3.in
>> .   .   .   #4.in
>> .   .   .   #4.THROW
>> RUNTIME ERROR: Exception in thread "main" java.lang.Error

При помощи catch мы можем остановить летящее исключение (причина, по которой мы автоматически покидаем фреймы).
Останавливаем через 3 фрейма, пролетаем фрейм #4(метод h()) + пролетаем фрейм #3(метод g()) + фрейм #2(метод f())

public class App {
    public static void main(String[] args) {
        System.err.println("#1.in");
        try {
            f(); // создаем фрейм, помещаем в стек, передаем в него управление
        } catch (Error e) { // "перехватили" "летящее" исключение
            System.err.println("#1.CATCH");  // и работаем
        }
        System.err.println("#1.out");  // работаем дальше
    }

    public static void f() {
        System.err.println(".   #2.in");
        g(); // создаем фрейм, помещаем в стек, передаем в него управление
        System.err.println(".   #2.out"); // ПРОПУСТИЛИ!
    }

    public static void g() {
        System.err.println(".   .   #3.in");
        h(); // создаем фрейм, помещаем в стек, передаем в него управление
        System.err.println(".   .   #3.out"); // ПРОПУСТИЛИ!
    }

    public static void h() {
        System.err.println(".   .   .   #4.in");
        if (true) {
            System.err.println(".   .   .   #4.THROW");
            throw new Error(); // выходим со всей пачки фреймов ("раскрутка стека") по 'throw'
        }
        System.err.println(".   .   .   #4.out"); // ПРОПУСТИЛИ!
    }
}

>> #1.in
>> .   #2.in
>> .   .   #3.in
>> .   .   .   #4.in
>> .   .   .   #4.THROW
>> #1.CATCH
>> #1.out

Обратите внимание, стандартный сценарий работы был восстановлен в методе main() (фрейм #1)

Останавливаем через 2 фрейма, пролетаем фрейм #4(метод h()) + пролетаем фрейм #3(метод g())

public class App {
    public static void main(String[] args) {
        System.err.println("#1.in");
        f(); // создаем фрейм, помещаем в стек, передаем в него управление
        System.err.println("#1.out"); // вернулись и работаем
    }

    public static void f() {
        System.err.println(".   #2.in");
        try {
            g(); // создаем фрейм, помещаем в стек, передаем в него управление
        } catch (Error e) { // "перехватили" "летящее" исключение
            System.err.println(".   #2.CATCH");  // и работаем
        }
        System.err.println(".   #2.out");  // работаем дальше
    }

    public static void g() {
        System.err.println(".   .   #3.in");
        h(); // создаем фрейм, помещаем в стек, передаем в него управление
        System.err.println(".   .   #3.out"); // ПРОПУСТИЛИ!
    }

    public static void h() {
        System.err.println(".   .   .   #4.in");
        if (true) {
            System.err.println(".   .   .   #4.THROW");
            throw new Error(); // выходим со всей пачки фреймов ("раскрутка стека") по 'throw'
        }
        System.err.println(".   .   .   #4.out"); // ПРОПУСТИЛИ!
    }
}

>> #1.in
>> .   #2.in
>> .   .   #3.in
>> .   .   .   #4.in
>> .   .   .   #4.THROW
>> .   #2.CATCH
>> .   #2.out
>> #1.out

Останавливаем через 1 фрейм (фактически аналог return, просто покинули фрейм «другим образом»)

public class App {
    public static void main(String[] args) {
        System.err.println("#1.in");
        f(); // создаем фрейм, помещаем в стек, передаем в него управление
        System.err.println("#1.out"); // вернулись и работаем
    }

    public static void f() {
        System.err.println(".   #2.in");
        g(); // создаем фрейм, помещаем в стек, передаем в него управление
        System.err.println(".   #2.out"); // вернулись и работаем
    }

    public static void g() {
        System.err.println(".   .   #3.in");
        try {
            h(); // создаем фрейм, помещаем в стек, передаем в него управление
        } catch (Error e) { // "перехватили" "летящее" исключение
            System.err.println(".   .   #3.CATCH");  // и работаем
        }
        System.err.println(".   .   #3.out");  // работаем дальше
    }

    public static void h() {
        System.err.println(".   .   .   #4.in");
        if (true) {
            System.err.println(".   .   .   #4.THROW");
            throw new Error(); // выходим со всей пачки фреймов ("раскрутка стека") по 'throw'
        }
        System.err.println(".   .   .   #4.out"); // ПРОПУСТИЛИ!
    }
}

>> #1.in
>> .   #2.in
>> .   .   #3.in
>> .   .   .   #4.in
>> .   .   .   #4.THROW
>> .   .   #3.CATCH
>> .   .   #3.out
>> .   #2.out
>> #1.out

Итак, давайте сведем все на одну картинку

// ---Используем RETURN--- // ---Используем THROW---
// Выход из 1-го фрейма    // Выход из ВСЕХ (из 4) фреймов
#1.in                        #1.in
.   #2.in                    .   #2.in
.   .   #3.in                .   .   #3.in
.   .   .   #4.in            .   .   .   #4.in
.   .   .   #4.RETURN        .   .   .   #4.THROW
.   .   #3.out               RUNTIME EXCEPTION: Exception in thread "main" java.lang.Error
.   #2.out                            
#1.out                              

// ---Используем THROW+CATCH---
// Выход из 3-х фреймов      // Выход из 2-х фреймов      // Выход из 1-го фрейма
#1.in                        #1.in                        #1.in
.   #2.in                    .   #2.in                    .   #2.in
.   .   #3.in                .   .   #3.in                .   .   #3.in
.   .   .   #4.in            .   .   .   #4.in            .   .   .   #4.in
.   .   .   #4.THROW         .   .   .   #4.THROW         .   .   .   #4.THROW
#1.CATCH                     .   #2.CATCH                 .   .   #3.CATCH
#1.out                       .   #2.out                   .   .   #3.out
                             #1.out                       . #2.out
                                                          #1.out

5. try + catch (catch — полиморфен)

Напомним иерархию исключений

                    Object
                      |
                  Throwable
                  /      
              Error     Exception
                            |
                    RuntimeException

То, что исключения являются объектами важно для нас в двух моментах
1. Они образуют иерархию с корнем java.lang.Throwable (java.lang.Object — предок java.lang.Throwable, но Object — уже не исключение)
2. Они могут иметь поля и методы (в этой статье это не будем использовать)

По первому пункту: catch — полиморфная конструкция, т.е. catch по типу Parent перехватывает летящие экземпляры любого типа, который является Parent-ом (т.е. экземпляры непосредственно Parent-а или любого потомка Parent-а)

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            if (true) {throw new RuntimeException();}
            System.err.print(" 1");
        } catch (Exception e) { // catch по Exception ПЕРЕХВАТЫВАЕТ RuntimeException
            System.err.print(" 2");
        }
        System.err.println(" 3");
    }
}

>> 0 2 3

Даже так: в блоке catch мы будем иметь ссылку типа Exception на объект типа RuntimeException

public class App {
    public static void main(String[] args) {
        try {
            throw new RuntimeException();
        } catch (Exception e) {
            if (e instanceof RuntimeException) {
                RuntimeException re = (RuntimeException) e;
                System.err.print("Это RuntimeException на самом деле!!!");              
            } else {
                System.err.print("В каком смысле не RuntimeException???");              
            }            
        }
    }
}

>> Это RuntimeException на самом деле!!!

catch по потомку не может поймать предка

public class App {
    public static void main(String[] args) throws Exception { // пока игнорируйте 'throws'
        try {
            System.err.print(" 0");
            if (true) {throw new Exception();}
            System.err.print(" 1");
        } catch (RuntimeException e) {
            System.err.print(" 2");              
        }
        System.err.print(" 3");              
    }
}

>> 0 
>> RUNTIME EXCEPTION: Exception in thread "main" java.lang.Exception

catch по одному «брату» не может поймать другого «брата» (Error и Exception не находятся в отношении предок-потомок, они из параллельных веток наследования от Throwable)

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            if (true) {throw new Error();}
            System.err.print(" 1");
        } catch (Exception e) {
            System.err.print(" 2");              
        }
        System.err.print(" 3");              
    }
}

>> 0 
>> RUNTIME EXCEPTION: Exception in thread "main" java.lang.Error

По предыдущим примерам — надеюсь вы обратили внимание, что если исключение перехвачено, то JVM выполняет операторы идущие ПОСЛЕ последних скобок try+catch.
Но если не перехвачено, то мы
1. не заходим в блок catch
2. покидаем фрейм метода с летящим исключением

А что будет, если мы зашли в catch, и потом бросили исключение ИЗ catch?

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            if (true) {throw new RuntimeException();}
            System.err.print(" 1");
        } catch (RuntimeException e) {     // перехватили RuntimeException
            System.err.print(" 2");
            if (true) {throw new Error();} // но бросили Error
        }
        System.err.println(" 3");          // пропускаем - уже летит Error
    }
}

>> 0 2
>> RUNTIME EXCEPTION: Exception in thread "main" java.lang.Error

В таком случае выполнение метода тоже прерывается (не печатаем «3»). Новое исключение не имеет никакого отношения к try-catch

Мы можем даже кинуть тот объект, что у нас есть «на руках»

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            if (true) {throw new RuntimeException();}
            System.err.print(" 1");
        } catch (RuntimeException e) { // перехватили RuntimeException
            System.err.print(" 2");
            if (true) {throw e;}       // и бросили ВТОРОЙ раз ЕГО ЖЕ
        }
        System.err.println(" 3");      // пропускаем - опять летит RuntimeException
    }
}

>> 0 2
>> RUNTIME EXCEPTION: Exception in thread "main" java.lang.RuntimeException

И мы не попадем в другие секции catch, если они есть

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            if (true) {throw new RuntimeException();}
            System.err.print(" 1");
        } catch (RuntimeException e) {     // перехватили RuntimeException
            System.err.print(" 2");
            if (true) {throw new Error();} // и бросили новый Error
        } catch (Error e) { // хотя есть cath по Error "ниже", но мы в него не попадаем
            System.err.print(" 3");
        }
        System.err.println(" 4");
    }
}

>> 0 2
>> RUNTIME EXCEPTION: Exception in thread "main" java.lang.Error 

Обратите внимание, мы не напечатали «3», хотя у нас летит Error а «ниже» расположен catch по Error. Но важный момент в том, что catch имеет отношение исключительно к try-секции, но не к другим catch-секциям.

Как покажем ниже — можно строить вложенные конструкции, но вот пример, «исправляющий» эту ситуацию

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            if (true) {throw new RuntimeException();}
            System.err.print(" 1");
        } catch (RuntimeException e) { // перехватили RuntimeException
            System.err.print(" 2.1");
            try {
                System.err.print(" 2.2");
                if (true) {throw new Error();} // и бросили новый Error
                System.err.print(" 2.3");
            } catch (Throwable t) {            // перехватили Error
                System.err.print(" 2.4");                 
            }
            System.err.print(" 2.5");
        } catch (Error e) { // хотя есть cath по Error "ниже", но мы в него не попадаем
            System.err.print(" 3");
        }
        System.err.println(" 4");
    }
}

>> 0 2.1 2.2 2.4 2.5 4

6. try + catch + catch + …

Как вы видели, мы можем расположить несколько catch после одного try.

Но есть такое правило — нельзя ставить потомка после предка! (RuntimeException после Exception)

public class App {
    public static void main(String[] args) {
        try {
        } catch (Exception e) {
        } catch (RuntimeException e) {
        }
    }
}

>> COMPILATION ERROR: Exception 'java.lang.RuntimeException' has alredy been caught

Ставить брата после брата — можно (RuntimeException после Error)

public class App {
    public static void main(String[] args) {
        try {
        } catch (Error e) {
        } catch (RuntimeException e) {
        }
    }
}

Как происходит выбор «правильного» catch? Да очень просто — JVM идет сверху-вниз до тех пор, пока не найдет такой catch что в нем указано ваше исключение или его предок — туда и заходит. Ниже — не идет.

public class App {
    public static void main(String[] args) {
        try {
            throw new Exception();
        } catch (RuntimeException e) {
            System.err.println("catch RuntimeException");
        } catch (Exception e) {
            System.err.println("catch Exception");
        } catch (Throwable e) {
            System.err.println("catch Throwable");
        }
        System.err.println("next statement");
    }
}

>> catch Exception
>> next statement

Выбор catch осуществляется в runtime (а не в compile-time), значит учитывается не тип ССЫЛКИ (Throwable), а тип ССЫЛАЕМОГО (Exception)

public class App {
    public static void main(String[] args) {
        try {
            Throwable t = new Exception(); // ссылка типа Throwable указывает на объект типа Exception
            throw t;
        } catch (RuntimeException e) {
            System.err.println("catch RuntimeException");
        } catch (Exception e) {
            System.err.println("catch Exception");
        } catch (Throwable e) {
            System.err.println("catch Throwable");
        }
        System.err.println("next statement");
    }
}

>> catch Exception
>> next statement

7. try + finally

finally-секция получает управление, если try-блок завершился успешно

public class App {
    public static void main(String[] args) {
        try {
            System.err.println("try");
        } finally {
            System.err.println("finally");
        }
    }
}

>> try
>> finally

finally-секция получает управление, даже если try-блок завершился исключением

public class App {
    public static void main(String[] args) {
        try {
            throw new RuntimeException();
        } finally {
            System.err.println("finally");
        }
    }
}

>> finally
>> Exception in thread "main" java.lang.RuntimeException

finally-секция получает управление, даже если try-блок завершился директивой выхода из метода

public class App {
    public static void main(String[] args) {
        try {
            return;
        } finally {
            System.err.println("finally");
        }
    }
}

>> finally

finally-секция НЕ вызывается только если мы «прибили» JVM

public class App {
    public static void main(String[] args) {
        try {
            System.exit(42);
        } finally {
            System.err.println("finally");
        }
    }
}

>> Process finished with exit code 42

System.exit(42) и Runtime.getRuntime().exit(42) — это синонимы

public class App {
    public static void main(String[] args) {
        try {
            Runtime.getRuntime().exit(42);
        } finally {
            System.err.println("finally");
        }
    }
}

>> Process finished with exit code 42

И при Runtime.getRuntime().halt(42) — тоже не успевает зайти в finally

public class App {
    public static void main(String[] args) {
        try {
            Runtime.getRuntime().halt(42);
        } finally {
            System.err.println("finally");
        }
    }
}

>> Process finished with exit code 42

exit() vs halt()
javadoc: java.lang.Runtime#halt(int status)
… Unlike the exit method, this method does not cause shutdown hooks to be started and does not run uninvoked finalizers if finalization-on-exit has been enabled. If the shutdown sequence has already been initiated then this method does not wait for any running shutdown hooks or finalizers to finish their work.

Однако finally-секция не может «починить» try-блок завершившийся исключение (заметьте, «more» — не выводится в консоль)

public class App {
    public static void main(String[] args) {
        try {
            System.err.println("try");
            if (true) {throw new RuntimeException();}
        } finally {
            System.err.println("finally");
        }
        System.err.println("more");
    }
}

>> try
>> finally
>> Exception in thread "main" java.lang.RuntimeException

Трюк с «if (true) {…}» требуется, так как иначе компилятор обнаруживает недостижимый код (последняя строка) и отказывается его компилировать

public class App {
    public static void main(String[] args) {
        try {
            System.err.println("try");
            throw new RuntimeException();
        } finally {
            System.err.println("finally");
        }
        System.err.println("more");
    }
}

>> COMPILER ERROR: Unrechable statement 

И finally-секция не может «предотвратить» выход из метода, если try-блок вызвал return («more» — не выводится в консоль)

public class App {
    public static void main(String[] args) {
        try {
            System.err.println("try");
            if (true) {return;}
        } finally {
            System.err.println("finally");
        }
        System.err.println("more");
    }
}

>> try
>> finally

Однако finally-секция может «перебить» throw/return при помощи другого throw/return

public class App {
    public static void main(String[] args) {
        System.err.println(f());
    }
    public static int f() {
        try {
            return 0;
        } finally {
            return 1;
        }
    }
}

>> 1
public class App {
    public static void main(String[] args) {
        System.err.println(f());
    }
    public static int f() {
        try {
            throw new RuntimeException();
        } finally {
            return 1;
        }
    }
}

>> 1
public class App {
    public static void main(String[] args) {
        System.err.println(f());
    }
    public static int f() {
        try {
            return 0;
        } finally {
            throw new RuntimeException();
        }
    }
}

>> Exception in thread "main" java.lang.RuntimeException
public class App {
    public static void main(String[] args) {
        System.err.println(f());
    }
    public static int f() {
        try {
            throw new Error();
        } finally {
            throw new RuntimeException();
        }
    }
}

>> Exception in thread "main" java.lang.RuntimeException

finally-секция может быть использована для завершающего действия, которое гарантированно будет вызвано (даже если было брошено исключение или автор использовал return) по окончании работы

// open some resource
try {
    // use resource
} finally {
    // close resource
}

Например для освобождения захваченной блокировки

Lock lock = new ReentrantLock();
...
lock.lock();
try {
    // some code
} finally {
    lock.unlock();
}

Или для закрытия открытого файлового потока

InputStream input = new FileInputStream("...");
try {
    // some code
} finally {
    input.close();
}

Специально для этих целей в Java 7 появилась конструкция try-with-resources, ее мы изучим позже.

Вообще говоря, в finally-секция нельзя стандартно узнать было ли исключение.
Конечно, можно постараться написать свой «велосипед»

public class App {
    public static void main(String[] args) {
        System.err.println(f());
    }
    public static int f() {
        long rnd = System.currenttimeMillis();
        boolean finished = false;
        try {
            if (rnd % 3 == 0) {
                throw new Error();
            } else if (rnd % 3 == 1) {
                throw new RuntimeException();
            } else {
                // nothing
            }
            finished = true;
        } finally {
            if (finished) {
                // не было исключений
            } else {
                // было исключение, но какое?
            }
        }
    }
}

Не рекомендуемые практики
— return из finally-секции (можем затереть исключение из try-блока)
— действия в finally-секции, которые могут бросить исключение (можем затереть исключение из try-блока)

8. try + catch + finally

Нет исключения

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            // nothing
            System.err.print(" 1");
        } catch(Error e) {
            System.err.print(" 2");
        } finally {
            System.err.print(" 3");
        }
        System.err.print(" 4");
    }
}

>> 0 1 3 4

Не заходим в catch, заходим в finally, продолжаем после оператора

Есть исключение и есть подходящий catch

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            if (true) {throw new Error();}
            System.err.print(" 1");
        } catch(Error e) {
            System.err.print(" 2");
        } finally {
            System.err.print(" 3");
        }
        System.err.print(" 4");
    }
}

>> 0 2 3 4

Заходим в catch, заходим в finally, продолжаем после оператора

Есть исключение но нет подходящего catch

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            if (true) {throw new RuntimeException();}
            System.err.print(" 1");
        } catch(Error e) {
            System.err.print(" 2");
        } finally {
            System.err.print(" 3");
        }
        System.err.print(" 4");
    }
}

>> 0 3
>> RUNTIME ERROR: Exception in thread "main" java.lang.RuntimeException

Не заходим в catch, заходим в finally, не продолжаем после оператора — вылетаем с неперехваченным исключением

9. Вложенные try + catch + finally

Операторы обычно допускают неограниченное вложение.
Пример с if

public class App {
    public static void main(String[] args) {
        if (args.length > 1) {
            if (args.length > 2) {
                if (args.length > 3) {
                    ...
                }
            }
        }
    }
}

Пример с for

public class App {
    public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
            for (int j = 0; j < 10; i++) {
                for (int k = 0; k < 10; k++) {
                    ...
                }
            }
        }
    }
}

Суть в том, что try-cacth-finally тоже допускает неограниченное вложение.
Например вот так

public class App {
    public static void main(String[] args) {
        try {
            try {
                try {
                    ...
                } catch (Exception e) {
                } finally {}
            } catch (Exception e) {
            } finally {}
        } catch (Exception e) {
        } finally {}
    }
}

Или даже вот так

public class App {
    public static void main(String[] args) {
        try {
            try {
                ...
            } catch (Exception e) {
                ...
            } finally {
                ...
            }
        } catch (Exception e) {
            try {
                ...
            } catch (Exception e) {
                ...
            } finally {
                ...
            }
        } finally {
            try {
                ...
            } catch (Exception e) {
                ...
            } finally {
                ...
            }
        }
    }
}

Ну что же, давайте исследуем как это работает.

Вложенный try-catch-finally без исключения

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            try {
                System.err.print(" 1");
                // НИЧЕГО
                System.err.print(" 2");
            } catch (RuntimeException e) {
                System.err.print(" 3"); // НЕ заходим - нет исключения
            } finally {                 
                System.err.print(" 4"); // заходим всегда
            }
            System.err.print(" 5");     // заходим - выполнение в норме
        } catch (Exception e) {
            System.err.print(" 6");     // НЕ заходим - нет исключения
        } finally {
            System.err.print(" 7");     // заходим всегда
        }
        System.err.print(" 8");         // заходим - выполнение в норме
    }
}

>> 0 1 2 4 5 7 8

Мы НЕ заходим в обе catch-секции (нет исключения), заходим в обе finally-секции и выполняем обе строки ПОСЛЕ finally.

Вложенный try-catch-finally с исключением, которое ПЕРЕХВАТИТ ВНУТРЕННИЙ catch

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            try {
                System.err.print(" 1");
                if (true) {throw new RuntimeException();}
                System.err.print(" 2");
            } catch (RuntimeException e) {
                System.err.print(" 3"); // ЗАХОДИМ - есть исключение
            } finally {                 
                System.err.print(" 4"); // заходим всегда
            }
            System.err.print(" 5");     // заходим - выполнение УЖЕ в норме
        } catch (Exception e) {
            System.err.print(" 6");     // не заходим - нет исключения, УЖЕ перехвачено
        } finally {
            System.err.print(" 7");     // заходим всегда
        }
        System.err.print(" 8");         // заходим - выполнение УЖЕ в норме
    }
}

>> 0 1 3 4 5 7 8

Мы заходим в ПЕРВУЮ catch-секцию (печатаем «3»), но НЕ заходим во ВТОРУЮ catch-секцию (НЕ печатаем «6», так как исключение УЖЕ перехвачено первым catch), заходим в обе finally-секции (печатаем «4» и «7»), в обоих случаях выполняем код после finally (печатаем «5»и «8», так как исключение остановлено еще первым catch).

Вложенный try-catch-finally с исключением, которое ПЕРЕХВАТИТ ВНЕШНИЙ catch

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            try {
                System.err.print(" 1");
                if (true) {throw new Exception();}
                System.err.print(" 2");
            } catch (RuntimeException e) {
                System.err.print(" 3"); // НЕ заходим - есть исключение, но НЕПОДХОДЯЩЕГО ТИПА
            } finally {                 
                System.err.print(" 4"); // заходим всегда
            }
            System.err.print(" 5");     // не заходим - выполнение НЕ в норме
        } catch (Exception e) {
            System.err.print(" 6");     // ЗАХОДИМ - есть подходящее исключение
        } finally {
            System.err.print(" 7");     // заходим всегда
        }
        System.err.print(" 8");         // заходим - выполнение УЖЕ в норме
    }
}

>> 0 1 4 6 7 8

Мы НЕ заходим в ПЕРВУЮ catch-секцию (не печатаем «3»), но заходим в ВТОРУЮ catch-секцию (печатаем «6»), заходим в обе finally-секции (печатаем «4» и «7»), в ПЕРВОМ случае НЕ выполняем код ПОСЛЕ finally (не печатаем «5», так как исключение НЕ остановлено), во ВТОРОМ случае выполняем код после finally (печатаем «8», так как исключение остановлено).

Вложенный try-catch-finally с исключением, которое НИКТО НЕ ПЕРЕХВАТИТ

public class App {
    public static void main(String[] args) {
        try {
            System.err.print(" 0");
            try {
                System.err.print(" 1");
                if (true) {throw new Error();}
                System.err.print(" 2");
            } catch (RuntimeException e) {
                System.err.print(" 3"); // НЕ заходим - есть исключение, но НЕПОДХОДЯЩЕГО ТИПА
            } finally {                 
                System.err.print(" 4"); // заходим всегда
            }
            System.err.print(" 5");     // НЕ заходим - выполнение НЕ в норме
        } catch (Exception e) {
            System.err.print(" 6");     // не заходим - есть исключение, но НЕПОДХОДЯЩЕГО ТИПА
        } finally {
            System.err.print(" 7");     // заходим всегда
        }
        System.err.print(" 8");         // не заходим - выполнение НЕ в норме
    }
}

>> 0 1 4 7
>> RUNTIME EXCEPTION: Exception in thread "main" java.lang.Error

Мы НЕ заходим в ОБЕ catch-секции (не печатаем «3» и «6»), заходим в обе finally-секции (печатаем «4» и «7») и в обоих случаях НЕ выполняем код ПОСЛЕ finally (не печатаем «5» и «8», так как исключение НЕ остановлено), выполнение метода прерывается по исключению.

Контакты

Я занимаюсь онлайн обучением Java (вот курсы программирования) и публикую часть учебных материалов в рамках переработки курса Java Core. Видеозаписи лекций в аудитории Вы можете увидеть на youtube-канале, возможно, видео канала лучше систематизировано в этой статье.

Мой метод обучения состоит в том, что я

  1. показываю различные варианты применения
  2. строю усложняющуюся последовательность примеров по каждому варианту
  3. объясняю логику двигавшую авторами (по мере возможности)
  4. даю большое количество тестов (50-100) всесторонне проверяющее понимание и демонстрирующих различные комбинации
  5. даю лабораторные для самостоятельной работы

Данная статье следует пунктам #1 (различные варианты) и #2(последовательность примеров по каждому варианту).

skype: GolovachCourses
email: GolovachCourses@gmail.com

При выполнении кода на C++ могут возникать разные ошибки, которые не позволяют программе выполнять свою работу. Для работы с ошибками или исключениями в C++ используются ключевые слова try , catch и throw.

Помогаем

Unrecognizable

Содержание статьи:

1. Вступление: виды исключений и знакомство с try, catch и throw в C++

2. Генерируем исключения в C++

3. Ищем ошибки в коде

analiz

4. Обрабатываем ошибки с try и catch in С++

5. Как работают throw, try и catch в C++: примеры

6. Еще немного о порядке обработке ошибок в C++

7. Подводим итоги

Вступление: виды исключений и знакомство с try, catch и throw в C++

Есть два вида исключений, с которыми вы можете столкнуться в процессе:

  1. Синхронные исключения. Этот тип ошибок программа может контролировать сама. Например, ошибки в коде, допущенные программистом или неправильные параметры ввода.
  2. Асинхронные исключения. Этот тип ошибок не связан напрямую с кодом и программа не может их контролировать. Например, это может быть сбой диска, ошибка при открытии файла, сокета, выделения блока памяти.

Когда происходит какое-то событие, прерывающее нормальное функционирование программы, C ++ обычно останавливается и выдает сообщение об ошибке. Когда это происходит, говорят, что C++ выбрасывает ошибку —  throw an exception. Мы уже упоминали, что для работы с ошибками или исключениями в C++ используются определенные ключевые слова, давайте познакомимся с ними поближе:

  • try: позволяет определить блок кода, который будет проверяться на наличие ошибок во время его выполнения;
  • throw: нужен для создания и отображения исключений и используется для перечисления ошибок, которые генерирует функция, но не может самостоятельно обрабатывать исключения;
  • catchблок кода, который выполняется при возникновении определенного исключения в блоке try.

Давайте посмотрим, как выглядит пример кода в С++ с использованием try catch и throw:

try {
  int age = 15;
  if (age >= 18) {
    cout << "Access granted - you are old enough.";
  } else {
    throw (age);
  }
}
catch (int myNum) {
  cout << "Access denied - You must be at least 18 years old.n";
  cout << "Age is: " << myNum;
}

Вкратце объясним, как работают операторы try и catch в С++ на примере этого блока. Мы используем блок try для тестирования определенных строк кода: если переменная age меньше 18, мы генерируем исключение и обрабатываем его в блоке catch.

С помощью catch мы перехватываем ошибку и прописываем способ ее обработки. Оператор принимает параметр: в примере используется переменная типа int myNum для вывода значения возраста. 

Если все данные соответствуют установленным параметрам, то ошибки не возникает. Например, если указанный возраст будет больше 18, а не 15, как указано в примере, то блок catch просто пропускается.

Если ошибка присутствует, то оператор throw выбросит ошибку. В throw можно прописать любое значение и оператор может выдать текст с пояснением, например: 

Access denied - You must be at least 18 years old.
Age is: 15

Или установить числовое значение, например, то код ошибки будет выглядеть следующим образом:

Access denied - You must be at least 18 years old.
Error number: 505

После такой большой вводной части подробно рассмотрим генерацию исключений и как их обрабатывать, примеры использования try и catch в С++, подробно расскажем про задачи операторов.

Генерируем исключения в C++

Исключения могут быть выброшены в любом месте кода. Для этого в блоке нужно прописать throw.

Этот оператор определяет тип исключения и может быть любым выражением. Также throw сигнализирует об ошибке в коде и выводит исключение в консоль. 

Помимо использования оператора throw, есть еще один способ мониторить ошибки в коде. Он более традиционный, но давайте рассмотрим и его, чтобы лучше понять механику обработки ошибок с помощью операторов. 

Обычно мы разбиваем программу на несколько функций или подпрограмм, чтобы сделать ее читабельной и простой для понимания. Получается, что программа будет иметь связанные вызовы функций. То есть одна функция использует ту информацию, которую ей предоставляет другая функция. 

Здесь возникают основные проблемы с обработкой ошибок при использовании оператора if:

  • Все задействованные функции должны возвращать одни и те же типы данных, например, целые числа. Из-за этого код становится длинным и громоздким, потому что приходится  возвращать один и тот же вид данных.
  • Глобальную переменную нужно проверить сразу же после вызова функции в обработчике или кэшировать. Потому что она может обновиться, если в дальнейшем произойдет другая ошибка.
  • Обработка ошибки зависит от вызывающей стороны. Если исключение не обработать, оно может вызвать сбой в программе позже или программа продолжит работу неправильно.

Вот так выглядит обработка ошибок в коде при использовании оператора if:

unsigned int error_type = 0;

int add(int a, int b)
{
    if (a > 100 || b > 100)
    {
        error_type = 1;
        return -1;
    }
    else if (a < 0 || b < 0)
    {
        error_type = 2;
        return -1;
    }

    return a + b;
}

int add_wrapper(int a, int b)
{
    return add(a, b);
}

int main(int, char**) 
{
    if (add_wrapper(-1, 8) < 0)
    {
        if (error_type == 1)
        {
            std::cout << "add operation failed. parameters must be <= 100" << "n";
        }
        else
        {
            std::cout << "add operation failed. parameters must be >= 0" << "n";
        }
    }
    else
    {
        std::cout << "add operation succeeded" << "n";
    }

    return 0;
}

А вот так будет выглядеть код с использованием try и catch в С++ (example):

#include <iostream>
using namespace std;
 
class Test {
public:
    Test() { cout << "Constructor of Test " << endl; }
    ~Test() { cout << "Destructor of Test " << endl; }
};
 
int main()
{
    try {
        Test t1;
        throw 10;
    }
    catch (int i) {
        cout << "Caught " << i << endl;
    }
}

По сравнению с несколькими строками кода в случае try и catch в С++, предыдущий блок выглядит очень перегруженным и длинным. В целом при использовании оператора if обработка ошибок и программный код тесно взаимосвязаны. Из-за этого код становится беспорядочным, и трудно гарантировать, что все ошибки будут обработаны и программа будет работать нормально.

Метод try/catch, в свою очередь, обеспечивает четкое разделение между кодом, который знает об ошибке, и кодом, который знает, как обрабатывать ошибку. Таким образом, код, который находятся между этими операторами, может безопасно игнорировать ошибку. 

Поэтому, запуская код в С++ Builder, лучше искать исключения с помощью try, catch и throw. Это сделает ваш код проще, чище и с меньшей вероятностью вы допустите ошибки в программе. 

Ищем ошибки в коде

Для того чтобы проверить блок кода на ошибки и аномалии, используется оператор try.  Так мы можем быть уверены, что если появится исключение в этой части кода, то try его заметит. Главная особенность оператора в том, что в отличие от  if / else, которые смешиваются с обычным потоком данных, try отделяет обработку ошибок от обычного течения программы. 

Блок try помещается вокруг кода, который может генерировать исключение, и закрывается другим оператором этой пары — catch. Код в блоке try / catch называется защищенным кодом, а синтаксис для использования связки этих операторов выглядит следующим образом:

try {
   // protected code
} catch( ExceptionName e1 ) {
   // catch block
} catch( ExceptionName e2 ) {
   // catch block
} catch( ExceptionName eN ) {
   // catch block
}

С помощью метода try / catch можно перечислить и поймать сразу несколько видов исключений, если блок try вызывает несколько типов ошибок в разных ситуациях. Несмотря на то, что функция может генерировать множество исключений, вы можете обрабатывать не все, а только некоторые из них.

Обрабатываем ошибки с try и catch in С++

Блок catch, идущий в паре с оператором try, ловит и обрабатывает исключения. Чтобы указать, какой тип исключения вы хотите поймать и обработать, нужно прописать это в скобках после ключевого слова catch:

try {
   // protected code
} catch( ExceptionName e ) {
  // code to handle ExceptionName exception
}

Приведенный выше код перехватит только исключение типа ExceptionName. Если вы хотите указать, что блок catch должен обрабатывать любой тип ошибок, который находит оператор try, просто поместите многоточие ... между скобками:

try {
   // protected code
} catch(...) {
  // code to handle any exception
}

Рассмотрим пример кода, в котором генерируется исключение деления на ноль:

#include <iostream>
using namespace std;

double division(int a, int b) {
   if( b == 0 ) {
      throw "Division by zero condition!";
   }
   return (a/b);
}

int main () {
   int x = 50;
   int y = 0;
   double z = 0;
 
   try {
      z = division(x, y);
      cout << z << endl;
   } catch (const char* msg) {
     cerr << msg << endl;
   }

   return 0;
}

Так как программа вызывает тип исключения const char *, в блоке catch необходимо указать const char *, чтобы ошибку можно было определить и обработать. Если скомпилировать и запустить этот блок кода, то в результате получим условие прописанное в throw:

Division by zero condition!

Как работают throw, try и catch в C++: примеры

Рассмотрим на примерах, как между собой взаимодействуют операторы throw, try и catch в С++. В блоке кода ниже приведен простой пример, демонстрирующий обработку исключений. Результат программы наглядно покажет, в какой последовательности происходит выполнение операторов:

#include <iostream>
using namespace std;
 
int main()
{
   int x = -1;
 
   // Some code
   cout << "Before try n";
   try {
      cout << "Inside try n";
      if (x < 0)
      {
         throw x;
         cout << "After throw (Never executed) n";
      }
   }
   catch (int x ) {
      cout << "Exception Caught n";
   }
 
   cout << "After catch (Will be executed) n";
   return 0;
}

В результате получается следующая последовательность:

Before try
Inside try
Exception Caught
After catch (Will be executed)

Нужно не забывать прописывать одинаковые типы исключений в try / catch. Если исключение одного типа будет выброшено, а catch не сможет его поймать и обработать, то программа завершается ненормально:

#include <iostream>
using namespace std;
 
int main()
{
    try  {
       throw 'a';
    }
    catch (int x)  {
        cout << "Caught ";
    }
    return 0;
}

В этом примере кода исключение является символом, но блок catch для захвата символа отсутствует. В результате блок вернет нам не исключение, а вот такое предупреждение:

terminate called after throwing an instance of 'char'
 
This application has requested the Runtime to terminate it in an 
unusual way. Please contact the application's support team for 
more information.

С помощью try / catch можно указывать кастомные типы исключений, наследуя и переопределяя функциональность класса исключений. В примере ниже приведем код, который покажет, как вы можете использовать класс std :: exception для генерации собственной ошибки стандартным способом:

#include <iostream>
#include <exception>
using namespace std;

struct MyException : public exception {
   const char * what () const throw () {
      return "C++ Exception";
   }
};
 
int main() {
   try {
      throw MyException();
   } catch(MyException& e) {
      std::cout << "MyException caught" << std::endl;
      std::cout << e.what() << std::endl;
   } catch(std::exception& e) {
      //Other errors
   }
}

Результат выполнения кода выглядит так: 

MyException caught
C++ Exception

Еще немного о порядке обработке ошибок в C++

Когда мы прописываем операторы try / catch в коде, то исключение выбрасывается только при исполнении определенных условий. Рассмотрим как работают try, catch и throw в С++ на примере:

#include <cmath> // for sqrt() function
#include <iostream>

int main()
{
    std::cout << "Enter a number: ";
    double x {};
    std::cin >> x;

    try // Ищет исключения в блоке и направляет их к обработчику catch 
    {
        // этот блок сработает, если пользователь ввел отрицательное число
        if (x < 0.0)
            throw "Can not take sqrt of negative number"; // throw выбрасывает исключение типа const char*

        // Если пользователь ввел число больше 0, то выполняется этот блок кода
        std::cout << "The sqrt of " << x << " is " << std::sqrt(x) << 'n';
    }
    catch (const char* exception) // обработчик исключений типа const char*
    {
        std::cerr << "Error: " << exception << 'n';
    }
}

Пользователь может ввести число больше нуля, как и задумано. Тогда программа просто продолжит работать в нормальном режиме и пропустит блок с оператором catch. Допустим, пользователь ввел число 49. Тогда результат выполнения кода будет следующим:

Enter a number: 49
The sqrt of 49 is 7

Но пользователи не всегда действуют так, как задумывал разработчик. Поэтому оператор catch нужен нам для того, чтобы программа не сломалась от непредвиденных значений, а могла нормально функционировать и дальше. Поэтому если пользователь введет число меньше нуля, то после того, как try обнаружит непредусмотренное значение, заработают операторы catch и throw, и программа выдаст такое значение:

Enter a number: -4
Error: Can not take sqrt of negative number

Таким образом, строки кода с catch и throw выполняются только тогда, когда try обнаруживает исключение в коде. Если все данные удовлетворяют условиям кода, то блок с исключениями просто пропускается программой.

Подводим итоги

Как использовать try, catch и throw в С++, мы разобрались. Теперь кратко напомним, зачем все это нужно:

  • В первую очередь, код с try / catch занимает меньше строк и легче читается. Блоков с операторами if / else может быть очень много и они будут повторяться, тогда как try / catch содержит только два блока. 
  • Исключения C++ заставляют код определять условия ошибки и обрабатывать исключения. Это позволяет не останавливать выполнение программы.
  • После обнаружения исключения код на C++ перестает считывать объекты в блоке кода, сокращая использование программных ресурсов.
  • Получение понятного сообщения об ошибке сильно упрощает процесс исправления бага. Особенно это полезно в случае, если исключение выбрасывается не из-за написанного кода, а, к примеру, из-за использованной библиотеки. 
  • Типы ошибок в C++ можно группировать вместе, что позволяет создавать иерархию объектов исключений, группировать их по именам, классам и категоризировать по виду.

Видео: С++ try catch. Обработка исключений С++. Try catch: что это. Изучение С++ для начинающих

Java_Deep_7.4-5020-83cb21.png

JavaSpec_Welcome_970x90-1801-439a19.png

В нашей жизни нередко возникают ситуации, которые мы не планировали. К примеру, пошли вы утром умываться и с досадой обнаружили, что отключили воду. Вышли на улицу, сели в машину, а она не заводится. Позвонили другу, а он недоступен. И так далее и тому подобное… В большинстве случаев человек без труда справится с подобными проблемами. А вот как с непредвиденными ситуациями справляется Java, мы сейчас и поговорим.

Что называют исключением. Исключения в мире программирования

В программировании исключением называют возникновение ошибки (ошибок) и различных непредвиденных ситуаций в процессе выполнения программы. Исключения могут появляться как в итоге неправильных действий юзера, так и из-за потери сетевого соединения с сервером, отсутствии нужного ресурса на диске и т. п. Также среди причин исключений — ошибки программирования либо неверное использование API.

При этом в отличие от «человеческого мира», программное приложение должно чётко понимать, как поступать в подобной ситуации. И вот как раз для этого в Java и существует механизм исключений (exception).

Используемые ключевые слова

При обработке исключений в Java применяются следующие ключевые слова:
try – служит для определения блока кода, в котором может произойти исключение;
catch – необходим для определения блока кода, где происходит обработка исключения;
finally – применяется для определения блока кода, являющегося необязательным, однако при его наличии он выполняется в любом случае вне зависимости от результата выполнения блока try.

Вышеперечисленные ключевые слова необходимы для создания в коде ряда специальных обрабатывающих конструкций: try{}finally{}, try{}catch, try{}catch{}finally.

Кроме того:
1. Для возбуждения исключения используем throw.
2. Для предупреждения в сигнатуре методов о том, что метод может выбросить исключение, применяем throws.

Давайте на примере посмотрим, как используются ключевые слова в Java-программе:

//метод считывает строку с клавиатуры

public String input() throws MyException {//предупреждаем с помощью throws,
// что метод может выбросить исключение MyException
      BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
    String s = null;
//в блок try заключаем код, в котором может произойти исключение, в данном
// случае компилятор нам подсказывает, что метод readLine() класса
// BufferedReader может выбросить исключение ввода/вывода
    try {
        s = reader.readLine();
// в блок  catch заключаем код по обработке исключения IOException
    } catch (IOException e) {
        System.out.println(e.getMessage());
// в блоке finally закрываем поток чтения
    } finally {
// при закрытии потока тоже возможно исключение, например, если он не был открыт, поэтому “оборачиваем” код в блок try
        try {
            reader.close();
// пишем обработку исключения при закрытии потока чтения
        } catch (IOException e) {
            System.out.println(e.getMessage());
        }
    }

    if (s.equals("")) {
// мы решили, что пустая строка может нарушить в дальнейшем работу нашей программы, например, на результате этого метода нам надо вызывать метод substring(1,2), поэтому мы вынуждены прервать выполнение программы с генерацией своего типа исключения MyException с помощью throw
        throw new MyException("String can not be empty!");
    }
    return s;
}

Зачем нам механизм исключений?

Для понимания опять приведём пример из обычного мира. Представьте, что на какой-нибудь автодороге имеется участок с аварийным мостом, на котором ограничена грузоподъёмность. И если по такому мосту проедет грузовик со слишком большой массой, мост разрушится, а в момент этого ЧП ситуация для шофёра станет, мягко говоря, исключительной. И вот, дабы такого не произошло, дорожные службы заранее устанавливают на дороге соответствующие предупреждающие знаки. И тогда водитель, посмотрев на знак, сравнит массу своего авто со значением разрешённой грузоподъёмности и примет соответствующее решение, например, поедет по другой дороге.

То есть мы видим, что из-за правильных действий дорожной службы шоферы крупногабаритных транспортных средств:
1) получили возможность заранее изменить свой путь;
2) были предупреждены об опасности;
3) были предупреждены о невозможности проезжать по мосту при определённых условиях.

Вот как наш жизненный пример соотносится с применением исключения на Java:

1-20219-9bd18c.jpg

Исходя из вышесказанного, мы можем назвать одну из причин применения исключений в Java. Заключается она в возможности предупреждения исключительной ситуации для её последующего разрешения и продолжения работы программы. То есть механизм исключений позволит защитить написанный код от неверного применения пользователем путём валидации входящих данных.

Что же, давайте ещё раз побудем дорожной службой. Чтобы установить знак, мы ведь должны знать места, где водителей ТС могут ждать различные неприятности. Это первое. Далее, нам ведь надо заготовить и установить знаки. Это второе. И, наконец, надо предусмотреть маршруты объезда, позволяющие избежать опасности.

В общем, механизм исключений в Java работает схожим образом. На стадии разработки программы мы выполняем «ограждение» опасных участков кода в отношении наших исключений, используя блок try{}. Чтобы предусмотреть запасные пути, применяем блок catch{}. Код, выполняемый в программе при любом исходе, пишем в блоке finally{}.

Иногда бывает, что мы не можем предусмотреть «запасной аэродром» либо специально желаем предоставить право его выбора юзеру. Но всё равно мы должны как минимум предупредить пользователя об опасности. Иначе он превратится в разъярённого шофёра, который ехал долго, не встретил ни одного предупреждающего знака и в итоге добрался до аварийного моста, проехать по которому не представляется возможным.

Что касается программирования на Java, то мы, когда пишем свои классы и методы, далеко не всегда можем предвидеть контекст их применения другими программистами в своих программах, а значит, не можем со стопроцентной вероятностью предвидеть правильный путь для разрешения исключительных ситуаций. Но предупредить коллег о возможной исключительной ситуации мы всё-таки должны, и это не что иное, как правило хорошего тона.

Выполнить это правило в Java нам как раз и помогает механизм исключений с помощью throws. Выбрасывая исключение, мы, по сути, объявляем общее поведение нашего метода и предоставляем пользователю метода право написания кода по обработке исключения.

Предупреждаем о неприятностях

Если мы не планируем обрабатывать исключение в собственном методе, но желаем предупредить пользователей метода о возможной исключительной ситуации, мы используем, как это уже было упомянуто, ключевое слово throws. В сигнатуре метода оно означает, что при некоторых обстоятельствах метод может выбросить исключение. Это предупреждение становится частью интерфейса метода и даёт право пользователю на создание своего варианта реализации обработчика исключения.

После упоминания ключевого слова throws мы указываем тип исключения. Как правило, речь идёт о наследниках класса Exception Java. Но так как Java — это объектно-ориентированный язык программирования, все исключения представляют собой объекты.

2-20219-ee1e82.jpg

Иерархия исключений в Java

Когда возникают ошибки при выполнении программы, исполняющая среда Java Virtual Machine обеспечивает создание объекта нужного типа, используя иерархию исключений Java — речь идёт о множестве возможных исключительных ситуаций, которые унаследованы от класса Throwable — общего предка. При этом исключительные ситуации, которые возникают в программе, делят на 2 группы:
1. Ситуации, при которых восстановление нормальной дальнейшей работы невозможно.
2. Ситуации с возможностью восстановления.

К первой группе можно отнести случаи, при которых возникают исключения, которые унаследованы из класса Error. Это ошибки, возникающие во время выполнения программы при сбое работы Java Virtual Machine, переполнении памяти либо сбое системы. Как правило, такие ошибки говорят о серьёзных проблемах, устранение которых программными средствами невозможно. Данный вид исключений в Java относят к неконтролируемым исключениям на стадии компиляции (unchecked). К этой же группе относятся и исключения-наследники класса Exception, генерируемые Java Virtual Machine в процессе выполнения программы — RuntimeException. Данные исключения тоже считаются unchecked на стадии компиляции, а значит, написание кода по их обработке необязательно.

Что касается второй группы, то к ней относят ситуации, которые можно предвидеть ещё на стадии написания приложения, поэтому для них код обработки должен быть написан. Это контролируемые исключения (checked). И в большинстве случаев Java-разработчики работают именно с этими исключениями, выполняя их обработку.

Создание исключения

В процессе исполнения программы исключение генерируется Java Virtual Machine либо вручную посредством оператора throw. В таком случае в памяти происходит создание объекта исключения, выполнение основного кода прерывается, а встроенный в JVM обработчик исключений пробует найти способ обработать это самое исключение.

Обработка исключения

Обработка исключений в Java подразумевает создание блоков кода и производится в программе посредством конструкций try{}finally{}, try{}catch, try{}catch{}finally.

3-20219-4ec690.jpg

В процессе возбуждения исключения в try обработчик исключения ищется в блоке catch, который следует за try. При этом если в catch присутствует обработчик данного вида исключения, происходит передача управления ему. Если же нет, JVM осуществляет поиск обработчика данного типа исключения, используя для этого цепочку вызова методов. И так происходит до тех пор, пока не находится подходящий catch. После того, как блок catch выполнится, управление переходит в необязательный блок finally. Если подходящий блок catch найден не будет, Java Virtual Machine остановит выполнение программы, выведя стек вызовов методов под названием stack trace. Причём перед этим выполнится код блока finally при наличии такового.

Рассмотрим практический пример обработки исключений:

public class Print {

     void print(String s) {
        if (s == null) {
            throw new NullPointerException("Exception: s is null!");
        }
        System.out.println("Inside method print: " + s);
    }

    public static void main(String[] args) {
        Print print = new Print();
        List list= Arrays.asList("first step", null, "second step");

        for (String s:list) {
            try {
                print.print(s);
            }
            catch (NullPointerException e) {
                System.out.println(e.getMessage());
                System.out.println("Exception was processed. Program continues");
            }
            finally {
                System.out.println("Inside bloсk finally");
            }
            System.out.println("Go program....");
            System.out.println("-----------------");
        }

    }
    }

А теперь глянем на результаты работы метода main:

Inside method print: first step
Inside bloсk finally
Go program....
-----------------
Exception: s is null!
Exception was processed. Program continues
Inside bloсk finally
Go program....
-----------------
Inside method print: second step
Inside bloсk finally
Go program....
-----------------

Блок finally чаще всего используют, чтобы закрыть открытые в try потоки либо освободить ресурсы. Но при написании программы уследить за закрытием всех ресурсов возможно не всегда. Чтобы облегчить жизнь разработчикам Java, была предложена конструкция try-with-resources, автоматически закрывающая ресурсы, открытые в try. Используя try-with-resources, мы можем переписать наш первый пример следующим образом:

public String input() throws MyException {
    String s = null;
    try(BufferedReader reader = new BufferedReader(new InputStreamReader(System.in))){
        s = reader.readLine();
   } catch (IOException e) {
       System.out.println(e.getMessage());
   }
    if (s.equals("")){
        throw new MyException ("String can not be empty!");
    }
    return s;
}

А благодаря появившимся возможностям Java начиная с седьмой версии, мы можем ещё и объединять в одном блоке перехват разнотипных исключений, делая код компактнее и читабельнее:

public String input() {
    String s = null;
    try (BufferedReader reader = new BufferedReader(new InputStreamReader(System.in))) {
        s = reader.readLine();
        if (s.equals("")) {
            throw new MyException("String can not be empty!");
        }
    } catch (IOException | MyException e) {
        System.out.println(e.getMessage());
    }
    return s;
}

Итоги

Итак, применение исключений в Java повышает отказоустойчивость программы благодаря использованию запасных путей. Кроме того, появляется возможность отделить код обработки исключительных ситуаций от логики основного кода за счёт блоков catch и переложить обработку исключений на пользователя кода посредством throws.

Основные вопросы об исключениях в Java

1.Что такое проверяемые и непроверяемые исключения?
Если говорить коротко, то первые должны быть явно пойманы в теле метода либо объявлены в секции throws метода. Вторые вызываются проблемами, которые не могут быть решены. Например, это нулевой указатель или деление на ноль. Проверяемые исключения очень важны, ведь от других программистов, использующих ваш API, вы ожидаете, что они знают, как обращаться с исключениями. К примеру, наиболее часто встречаемое проверяемое исключение — IOException, непроверяемое — RuntimeException.
2.Почему переменные, определённые в try, нельзя использовать в catch либо finally?
Давайте посмотрим на нижеследующий код. Обратите внимание, что строку s, которая объявлена в блоке try, нельзя применять в блоке catch. То есть данный код не скомпилируется.

try {
    File file = new File("path");
    FileInputStream fis = new FileInputStream(file);
    String s = "inside";
} catch (FileNotFoundException e) {
    e.printStackTrace();
    System.out.println(s);
}

А всё потому, что неизвестно, где конкретно в try могло быть вызвано исключение. Вполне вероятно, что оно было вызвано до объявления объекта.
3.Почему Integer.parseInt(null) и Double.parseDouble(null) вызывают разные исключения?
Это проблема JDK. Так как они были разработаны разными людьми, то заморачиваться вам над этим не стоит:

Integer.parseInt(null);
// вызывает java.lang.NumberFormatException: null

Double.parseDouble(null);
// вызывает java.lang.NullPointerException

4.Каковы основные runtime exceptions в Java?
Вот лишь некоторые из них:

IllegalArgumentException
ArrayIndexOutOfBoundsException

Их можно задействовать в операторе if, если условие не выполняется:

if (obj == null) {
   throw new IllegalArgumentException("obj не может быть равно null");

5.Возможно ли поймать в одном блоке catch несколько исключений?
Вполне. Пока классы данных исключений можно отследить вверх по иерархии наследования классов до одного и того же суперкласса, возможно применение только этого суперкласса.
6.Способен ли конструктор вызывать исключения?
Способен, ведь конструктор — это лишь особый вид метода.

class FileReader{
    public FileInputStream fis = null;

    public FileReader() throws IOException{
        File dir = new File(".");//get current directory
        File fin = new File(dir.getCanonicalPath() + File.separator + "not-existing-file.txt");
        fis = new FileInputStream(fin);
    }
}

7.Возможен ли вызов исключений в final?
В принципе, можете сделать таким образом:

public static void main(String[] args) {
    File file1 = new File("path1");
    File file2 = new File("path2");
    try {

        FileInputStream fis = new FileInputStream(file1);
    } catch (FileNotFoundException e) {
        e.printStackTrace();
    } finally {
        try {
            FileInputStream fis = new FileInputStream(file2);
        } catch (FileNotFoundException e) {
            e.printStackTrace();
        }
    }
}

Но если желаете сохранить читабельность, объявите вложенный блок try-catch в качестве нового метода и вставьте вызов данного метода в блок finally.

finally. 
public static void main(String[] args) {
    File file1 = new File("path1");
    File file2 = new File("path2");
    try {

        FileInputStream fis = new FileInputStream(file1);
    } catch (FileNotFoundException e) {
        e.printStackTrace();
    } finally {
        methodThrowException();
    }
}

JavaSpec_Welcome_970x90-1801-439a19.png

Афоризм

Я не навижу власть и деньги когда они в чужих руках.

Поддержка проекта

Если Вам сайт понравился и помог, то будем признательны за Ваш «посильный» вклад в его поддержку и развитие

 • Yandex.Деньги
  410013796724260

 • Webmoney
  R335386147728
  Z369087728698

Исключения, try … catch

В данной статье рассматривается используемый в Java механизм обработки исключений. Исключение в Java —
это объект, который описывает исключительное состояние, возникшее в каком-либо участке программного кода.
Когда возникает исключительное состояние, создается объект класса Exception. Этот объект пересылается
в метод, обрабатывающий данный тип исключительной ситуации. Исключения могут возбуждаться и для того, чтобы
сообщить о некоторых нештатных ситуациях.

Ключевые слова исключений try, catch, throw, throws, finally

Механизм исключительных ситуаций в Java поддерживается пятью ключевыми словами:

  • try,
  • catch,
  • throw,
  • throws,
  • finally.

Ниже приведена общая форма блока обработки исключений.

try { 
    // блок кода 
} catch (<ExceptionType1> е)  { 
    // обработчик исключений типа ExceptionType1
} catch (<ExceptionType2> е) { 
    // обработчик исключений типа ExceptionType2 
} finally {
    // ...  
}

Типы исключений

В вершине иерархии исключений стоит класс Throwable, который наследуется от Object.
Каждый из типов исключений является подклассом Throwable. Два непосредственных наследника класса Throwable
делят иерархию подклассов исключений на две различные ветви. Иерархия классов представлена на рисунке.

Иерархия исключений

Класс Ехception используется для описания исключительных ситуации, которые должны
перехватываться программным кодом пользователя. Класс Error предназначен для описания
исключительных ситуаций, которые при обычных условиях не должны перехватываться в пользовательской
программе.

Неперехваченные исключения

Объекты-исключения автоматически создаются исполняющей средой Java в результате возникновения
определенных исключительных ситуаций. Пример программы, в которой создаем исключительную ситуацию
при делении на нуль.

package samples;

class TestException
{ 
    public static void main(String args[])
    { 
        int d = 0; 
        int a = 42 / d; 
        System.out.println ("a = " + a);
    }
} 

В консоль будет выведено следующее сообщение.

Exception in thread "main" java.lang.ArithmeticException: / by zero
    at samples.TestException.main(TestException.java:8)
 

Следует обратить внимание на тот факт, что типом возбужденного исключения был не Exception
и не Throwable. Это подкласс класса Exception, а именно: ArithmeticException,
поясняющий, какая ошибка возникла при выполнении программы.

Изменим класс добавлением статического метода subroutine, в котором создадим такую же
исключительную ситуацию.

package samples;

public class TestException
{
   static void subroutine()
    { 
        int d = 0; 
        int a = 10 / d; 
        System.out.println ("a = " + a);
    } 

    public static void main(String[] args)
    {
        TestException.subroutine();
    }
}

Сообщение выполнения программы показывает, как обработчик исключений исполняющей системы Java выводит
содержимое всего стека вызовов.

Exception in thread "main" 
             java.lang.ArithmeticException: / by zero
    at samples.TestException.subroutine(TestException.java:8)
    at samples.TestException.main(TestException.java:14)
 

Перехват исключений try/catch

Для защиты программного кода от исключений необходимо использовать связанные блоки с ключевыми
словами try catch; catch помещается сразу же после try-блока. В блоке catch задается тип исключения,
которое необходимо обработать.

class TestException
{ 
    public static void main(String args[])
    { 
        try { 
            int d = 0; 
            int a = 42 / d; 
        } catch (ArithmeticException e) { 
            System.out.println("division by zero");
        } 
    }
} 

Целью большинства хорошо сконструированных catch-разделов должна быть обработка возникшей исключительной
ситуации и приведение переменных программы в некоторое разумное состояние — такое, чтобы программу можно было продолжить
так, будто никакой ошибки и не было (в нашем примере выводится предупреждение — division by zero).

Несколько разделов catch

В отдельных случаях блок программного кода может вызвать исключения различных типов. Для того, чтобы локализовать
обработку подобных ситуаций, можно использовать несколько catch-разделов для одного try-блока. Блоки наиболее
специализированных классов исключений должны идти первыми, поскольку ни один подкласс не будет достигнут, если поставить его
после суперкласса.

В следующем примере перехватывается два различных типа исключений, причем за этими двумя специализированными обработчиками
следует раздел catch общего назначения, перехватывающий все подклассы класса Throwable.

class MultiCatch
{ 
    static int c[] = { 1 }; 
    public static void main(String args[])
    { 
        try { 
            int a = args.length; 
            System.out.println("a = " + String.valueOf(a));
            int b = 23 / a; 
            c[4] = 33; 
        }  catch (ArithmeticException e) { 
              System.out.println("ArithmeticException : " +
                                           e.getMessage()); 
        } catch(ArrayIndexOutOfBoundsException e) { 
              System.out.println(
                        "ArrayIndexOutOfBoundsException : "
                                         + e.getMessage()); 
        } 
    }
} 

Данный пример, запущенный без параметров, вызывает возбуждение исключительной ситуации деления на нуль.
Если в командной строке будет определен один или несколько параметров, тем самым установив ‘а’ в значение больше нуля,
то будет возбуждено исключение выхода индекса за границы массива ArrayIndexOutOfBounds. Ниже приведены результаты
работы этой программы, запущенной и тем и другим способом.

а = 0 
div by 0: java.lang.ArithmeticException: / by zero 

a = 1 
array index oob: java.lang.ArrayIndexOutOfBoundsException:33
  

Вложенные операторы try

Операторы try можно вкладывать друг в друга. Если у оператора try низкого уровня нет раздела catch,
соответствующего возбужденному исключению, стек будет развернут на одну ступень выше, и в поисках подходящего обработчика
будут проверены разделы catch внешнего оператора try. Пример вложения двух операторов try catch друг в друга
посредством вызова метода.

class MultiNest
{ 
    static int c[] = { 1 }; 
    static void checkArray()
    { 
        try { 
            c[4] = 33; 
        } catch(ArrayIndexOutOfBoundsException e) { 
            System.out.println
                        "ArrayIndexOutOfBoundsException : "
                                         + e.getMessage()); 
        }
    } 
	public static void main(String args[])
    { 
        try { 
            int a = args.length(); 
            System.out.println("a = " + a); 
            int b = 23 / a; 
            checkArray(); 
        } catch (ArithmeticException e) { 
            System.out.println("ArithmeticException : " + 
                                         e.getMessage()); 
        } 
    }
} 

Возбуждение исключений throw

Программа может явно вызывать исключение, используя оператор throw. После выполнения оператора throw процесс
выполнения программы приостанавливается и последующие операторы не выполняются. JVM просматривает ближайший блоки
try … catch, соответствующий типу исключения, для «передачи управления». Если подходящий блок не будет найден, то
обработчик исключений остановит программу и «распечатает» при этом состояние стека вызовов.

Пример исключения, в котором сначала создается объект-исключение, затем оператор throw возбуждает исключительную ситуацию,
после чего то же исключение возбуждается повторно — на этот раз уже кодом перехватившего его в первый раз раздела catch.

class TestThrow
{ 
    static void method() 
    { 
        try { 
          throw new NullPointerException("Exception in method"); 
        } catch (NullPointerException e) { 
            System.out.println(e.getMessage());
            throw e; 
        }
    } 
    public static void main(String args[])
    { 
        try { 
            method(); 
        } catch(NullPointerException e) { 
            System.out.println("Catch inside main : " + 
                                       e.getMessage()); 
        } 
    }
}

Результат выполнения программы приведен ниже.

Exception in method
Catch inside main : Exception in method
 

Объявление об исключении throws

Если метод может возбуждать исключения, которые сам не обрабатывает, то он должен объявить об этом, чтобы вызывающие его другие
методы могли защитить себя от этих исключений. Для задания списка исключений, которые могут возбуждаться методом, используется
ключевое слово throws.

Если метод в явном виде (т.е. с помощью оператора throw) возбуждает исключение, тип класса исключений должен быть указан
в операторе throws в объявлении этого метода. Принимая данное положение во внимание синтаксис определения метода
должен быть описан следующим образом:

public class TestThrow 
{
    static void method() throws IllegalAccessException 
    { 
        try { 
            System.out.println("inside method"); 
            throw new IllegalAccessException (
                                    "Exception in method");
        } catch (NullPointerException e) { 
            System.out.println(e.getMessage()); 
        }
    } 
    public static void main(String args[])
    { 
        try { 
            method(); 
        } catch(IllegalAccessException  e) { 
            System.out.println("Catch inside main : " +
                                       e.getMessage());
        } 
    }
}

Результат работы примера:

inside method
Catch inside main : Exception in method
 

Ключевое слово finally

В случае, когда необходимо гарантировано выполнить определенный участок кода необходимо использовать ключевое слово finally.
Использование связи try…finally позволяет обеспечить выполнение кода независимо от того, какие исключения были возбуждены и
перехвачены, даже в тех случаях, когда в методе нет соответствующего возбужденному исключению раздела catch.

У каждого раздела try должен быть по крайней мере или один раздел catch или блок finally. Блок finally очень
удобен для закрытия файлов и освобождения любых других ресурсов, захваченных для временного использования в начале выполнения метода.

Ниже приведен пример класса с двумя методами, завершение которых происходит по разным причинам, но в обоих перед выходом выполняется
код раздела finally.

public class TestFinally
{
    static void methodA()
    { 
        try { 
           System.out.println("inside methodA"); 
           throw new RuntimeException("Exception in methodA");
        } finally { 
           System.out.println("finally inside methodA");
        } 
    }

    static void methodB()
    { 
        try { 
            System.out.println("inside methodB"); 
            return; 
        } finally { 
            System.out.println("finally inside methodB"); 
        }
    } 

    public static void main(String args[])
    { 
        try { 
            methodA(); 
        } catch (Exception e) {
          System.out.println("Catch exception iinside main");
        } 
        methodB(); 
    }
} 

В тестовом примере в методе methodA возбуждается исключение. Но перед преждевременным выходом из блока try, выполняется
раздел finally. Во втором методе methodB завершается работа в try-блоке оператором return, но и при этом
перед выходом из метода выполняется программный код блока finally. Результат работы тестового примера:

inside methodA
finally inside methodA
Catch exception iinside main
inside methodB
finally inside methodB
 

Обработка исключений в Java предоставляет исключительно мощный механизм для управления сложными программами. Ключевые слова
try, throw, catch позволяют выполнять обработку ошибок и разных нештатных ситуаций в программе.

Наследование исключений

catch — полиморфная конструкция, т.е. catch по типу parent перехватывает исключения любого типа, которые является
Parent’ом.

public class TestException
{
    public static void main(String[] args) {
        try {
            System.err.print("level 0");
            throw new RuntimeException();
            System.err.print("level 1");
        } catch (Exception e) { 
            // catch Exception ПЕРЕХВАТ RuntimeException
            System.err.print("level 2");
        }
        System.err.println("level 3");
    }
}

В результате в консоли увидим

Error и Exception из параллельных веток наследования от
Throwable, поэтому catch по одному «брату» не может поймать другого «брата».

public class TestError
{
    public static void main(String[] args)
    {
        try {
            System.err.println("level 0");
            if (true) {
                throw new Error();
            }
            System.err.println("level 1");
        } catch (Exception e) {
            System.err.println("level 2");
        }
        System.err.println("level 3");
    }
}

Результат выполения программы

level 0
Exception in thread "main" java.lang.Error
    at TestError.main(TestFinally.java:8)
 

Множественные исключения

Объявление исключений в методе может быть множественным. Пример :

import java.io.EOFException;
import java.io.FileNotFoundException;

public class MultiException
{
    // объявляем исключения
    public static void main(String[] args) 
                 throws EOFException, FileNotFoundException
    {
        if (System.currentTimeMillis() % 2 == 0) {
            throw new EOFException();
        } else {
            throw new FileNotFoundException();
        }
    }
}

Наверх

#База знаний

  • 24 фев 2021

  • 13

Разбираемся, что такое исключения, зачем они нужны и как с ними работать.

 vlada_maestro / shutterstock

Мария Помазкина

Хлебом не корми — дай кому-нибудь про Java рассказать.

Из этой статьи вы узнаете:

  • что такое исключения (Exceptions);
  • как они возникают и чем отличаются от ошибок (Errors);
  • зачем нужна конструкция try-catch;
  • как разобраться в полученном исключении
  • и как вызвать исключение самому.

Код вашей программы исправно компилируется и запускается, только вот вместо желанного результата вы видите непонятный текст. Строчки его будто кричат на вас, аж побагровели.

За примером далеко ходить не надо: сделаем то, что нам запрещали ещё в школе, — поделим на ноль.

public static void main(String[] args) {
    hereWillBeTrouble(42, 0);
}

public static void hereWillBeTrouble(int a, int b) {
    int oops = a / b;
    System.out.println(oops);
}

А получим вот что:

Это и есть исключение.

«Исключение» — сокращение от слов «исключительный случай». Это ситуация, в которой программа не может продолжить работу или её работа становится бессмысленной. Причём речь не только о нештатных ситуациях — исключения бывают и намеренными, такие разработчик вызывает сам.

Это интересно. Исключения в Java появились уже в первой версии языка. А вот в языках, где их нет, вместо них возвращают коды ошибок.

У всех классов исключений есть общий класс-предок Throwable, от него наследуются классы Error и Exception, базовые для всех прочих.

Верхушка иерархии исключений Java

Error — это критические условия, в которых работа программы должна быть завершена. Например, когда при выполнении программы закончилась память, произошёл сбой в системе или виртуальной машине. Не будем задерживаться на этой ветке, поскольку документация Java говорит:

Error is the superclass of all the exceptions from which ordinary programs are not ordinarily expected to recover.

Что в переводе означает: ошибки (Error) — это такие исключительные ситуации, в которых восстанавливать работу программы не предполагается.

То есть это проблемы, которые нельзя (недопустимо) исправлять на ходу. Всё, что нам остаётся, — извиниться перед пользователем и впредь писать программы, где возникнет меньше подобных ситуаций. Например, не допускать такой глубокой рекурсии, как в коде ниже:

static void notGood() {
    System.out.println("Только не снова!");
    notGood();
}

При работе этого метода у нас возникнет ошибка: Exception in thread «main» java.lang.StackOverflowError — стек вызовов переполнился, так как мы не указали условие выхода из рекурсии.

А теперь об Exception. Эти исключительные ситуации возникают, если разработчик допустил невыполнимую операцию, не предусмотрел особые случаи в бизнес-логике программы (или сообщает о них с помощью исключений).

1. Невыполнимая операция

Мир не рухнул, как в случае с Error, просто Java не знает, что делать дальше. Как раз из этого разряда деление на ноль в начале статьи: и правда, какое значение тогда присвоить переменной oops?

Убедитесь сами, что исключение класса ArithmeticException наследуется как раз от Exception.

Стоит запомнить. В IntelliJ IDEA, чтобы увидеть положение класса в иерархии, выберите его и нажмите Ctrl + H (или на пункт Type Hierarchy в меню Navigate).

Другая частая ситуация — обращение к несуществующему элементу массива. Например, у нас в нём десять элементов, а мы пытаемся обратиться к одиннадцатому.

2. Особый случай в бизнес-логике программы

Классика. Программируем задачу о перевозке волка, козы и капусты через реку: в лодке может быть только два пассажира, но волка с козой и козу с капустой нельзя оставлять на берегу вместе. Это и есть особый случай в бизнес-логике, который нельзя нарушать.

Или пользователь вводит дату начала некоторого периода и дату его окончания. Вторая дата не может быть раньше первой.

Или, допустим, у нас есть метод, который читает файл. Сам метод написан верно. Пользователь передал в него корректный путь. Только вот у этого работника нет права читать этот файл (его роль и права обусловлены предметной областью). Что же тогда методу возвращать? Вернуть-то нечего, ведь метод не отработал. Самое очевидное решение — выдать исключение.

В дерево исключений мы ещё углубимся, а сейчас посмотрим, что и как с ними делают.

Простейший вариант — ничего; возникает исключение — программа просто прекращает работать.

Чтобы убедиться в этом, выполним код:

public static void main(String[] args) {
    hereWillBeTrouble(42, 0);
}

public static void hereWillBeTrouble(int a, int b) {
    System.out.println("Всё, что было до...");
    int oops = a / b;
    System.out.println(oops);
    System.out.println("Всё, что будет после...");
}

Так и есть: до деления на ноль код выполнялся, а после — нет.

Это интересно: когда возникает исключение, программисты выдают что-то вроде «код [вы]бросил исключение» или «код кинул исключение». А глагол таков потому, что все исключения — наследники класса Throwable, что значит «бросаемый» / «который можно бросить».

Второе, что можно делать с исключениями, — это их обрабатывать.

Для этого нужно заключить кусок кода, который может вызвать исключение, в конструкцию try-catch.

Как это работает: если в блоке try возникает исключение, которое указано в блоке catch, то исполнение блока try прервётся и выполнится код из блока catch.

Например:

public static void main(String[] args) {
    hereWillBeTrouble();
}

private static void hereWillBeTrouble(int a, int b) {
    int oops;
    try {
        System.out.println("Всё, что было до...");
        oops = a / b;
        System.out.println(oops);
        System.out.println("Всё, что будет после...");
    } catch (ArithmeticException e) {
        System.out.println("Говорили же не делить на ноль!");
        oops = 0;
    }
    System.out.println("Метод отработал");
}

Разберём этот код.

Если блок try кинет исключение ArithmeticException, то управление перехватит блок catch, который выведет строку «Говорили же не делить на ноль!», а значение oops станет равным 0.

После этого программа продолжит работать как ни в чём не бывало: выполнится код после блока try-catch, который сообщит: «Метод отработал».

Проверьте сами: запустите код выше. Вызовите метод hereWillBeTrouble с любыми значениями аргументов кроме нулевого b. Если в блоке try не возникнет исключений, то его код выполнится целиком, а в блок catch мы даже не попадём.

Есть ещё и третий вариант — пробросить исключение наверх. Но об этом в следующей статье.

Вернёмся к первой картинке. Посмотрим, что нам сказала Java, когда произошло исключение:

Начинаем разбирать сверху вниз:

— это указание на поток, в котором произошло исключение. В нашей простой однопоточной программе это поток main.

— какое исключение брошено. У нас это ArithmeticException. А java.lang.ArithmeticException — полное название класса вместе с пакетом, в котором он размещается.

— весточка, которую принесло исключение. Дело в том, что одно и то же исключение нередко возникает по разным причинам. И тут мы видим стандартное пояснение «/ by zero» — из-за деления на ноль.

— это самое интересное: стектрейс.

Стектрейс (Stack trace) — это упорядоченный список методов, сквозь которые исключение пронырнуло.

У нас оно возникло в методе hereWillBeTrouble на 8-й строке в классе Main (номер строки и класс указаны в скобках синим). А этот метод, в свою очередь, вызван методом main на 3-й строке класса Main.

Стектрейсы могут быть довольно длинными — из десятков методов, которые вызывают друг друга по цепочке. И они здорово помогают расследовать неожиданно кинутое исключение.

Советую закреплять теорию на практике. Поэтому вернитесь в блок про Error и вызовите метод notGood — увидите любопытный стектрейс.

Всё это время мы имели дело с исключением, которое бросает Java-машина — при делении на ноль. Но как вызвать исключение самим?

Раз исключение — это объект класса, то программисту всего-то и нужно, что создать объект с нужным классом исключения и бросить его с помощью оператора throw.

public static void main(String[] args) {
    hereWillBeTrouble(42, 0);
}

private static void hereWillBeTrouble(int a, int b) {
    if (b == 0) {
        throw new ArithmeticException("ты опять делишь на ноль?");
    }
    int oops = a / b;
    System.out.println(oops);
}

При создании большинства исключений первым параметром в конструктор можно передать сообщение — мы как раз сделали так выше.

А получим мы то же самое, что и в самом первом примере, только вместо стандартной фразы «/by zero» теперь выдаётся наш вопрос-пояснение «ты опять делишь на ноль?»:

В следующей статье мы углубимся в иерархию исключений Java, узнаем про их разделение на checked и unchecked, а также о том, что ещё интересного можно с ними делать.

Научитесь: Профессия Java-разработчик PRO
Узнать больше

В C++ различают ошибки времени компиляции и ошибки времени выполнения. Ошибки первого типа обнаруживает компилятор до запуска программы. К ним относятся, например, синтаксические ошибки в коде. Ошибки второго типа проявляются при запуске программы. Примеры ошибок времени выполнения: ввод некорректных данных, некорректная работа с памятью, недостаток места на диске и т. д. Часто такие ошибки могут привести к неопределённому поведению программы.

Некоторые ошибки времени выполнения можно обнаружить заранее с помощью проверок в коде. Например, такими могут быть ошибки, нарушающие инвариант класса в конструкторе. Обычно, если ошибка обнаружена, то дальнейшее выполение функции не имеет смысла, и нужно сообщить об ошибке в то место кода, откуда эта функция была вызвана. Для этого предназначен механизм исключений.

Коды возврата и исключения

Рассмотрим функцию, которая считывает со стандартного потока возраст и возвращает его вызывающей стороне. Добавим в функцию проверку корректности возраста: он должен находиться в диапазоне от 0 до 128 лет. Предположим, что повторный ввод возраста в случае ошибки не предусмотрен.

int ReadAge() {
    int age;
    std::cin >> age;
    if (age < 0 || age >= 128) {
        // Что вернуть в этом случае?
    }
    return age;
}

Что вернуть в случае некорректного возраста? Можно было бы, например, договориться, что в этом случае функция возвращает ноль. Но тогда похожая проверка должна быть и в месте вызова функции:

int main() {
    if (int age = ReadAge(); age == 0) {
        // Произошла ошибка
    } else {
        // Работаем с возрастом age
    }
}

Такая проверка неудобна. Более того, нет никакой гарантии, что в вызывающей функции программист вообще её напишет. Фактически мы тут выбрали некоторое значение функции (ноль), обозначающее ошибку. Это пример подхода к обработке ошибок через коды возврата. Другим примером такого подхода является хорошо знакомая нам функция main. Только она должна возвращать ноль при успешном завершении и что-либо ненулевое в случае ошибки.

Другим способом сообщить об обнаруженной ошибке являются исключения. С каждым сгенерированным исключением связан некоторый объект, который как-то описывает ошибку. Таким объектом может быть что угодно — даже целое число или строка. Но обычно для описания ошибки заводят специальный класс и генерируют объект этого класса:

#include <iostream>

struct WrongAgeException {
    int age;
};

int ReadAge() {
    int age;
    std::cin >> age;
    if (age < 0 || age >= 128) {
        throw WrongAgeException(age);
    }
    return age;
}

Здесь в случае ошибки оператор throw генерирует исключение, которое представлено временным объектом типа WrongAgeException. В этом объекте сохранён для контекста текущий неправильный возраст age. Функция досрочно завершает работу: у неё нет возможности обработать эту ошибку, и она должна сообщить о ней наружу. Поток управления возвращается в то место, откуда функция была вызвана. Там исключение может быть перехвачено и обработано.

Перехват исключения

Мы вызывали нашу функцию ReadAge из функции main. Обработать ошибку в месте вызова можно с помощью блока try/catch:

int main() {
    try {
        age = ReadAge();  // может сгенерировать исключение
        // Работаем с возрастом age
    } catch (const WrongAgeException& ex) {  // ловим объект исключения
        std::cerr << "Age is not correct: " << ex.age << "n";
        return 1;  // выходим из функции main с ненулевым кодом возврата
    }
    // ...
}

Мы знаем заранее, что функция ReadAge может сгенерировать исключение типа WrongAgeException. Поэтому мы оборачиваем вызов этой функции в блок try. Если происходит исключение, для него подбирается подходящий catch-обработчик. Таких обработчиков может быть несколько. Можно смотреть на них как на набор перегруженных функций от одного аргумента — объекта исключения. Выбирается первый подходящий по типу обработчик и выполняется его код. Если же ни один обработчик не подходит по типу, то исключение считается необработанным. В этом случае оно пробрасывается дальше по стеку — туда, откуда была вызвана текущая функция. А если обработчик не найдётся даже в функции main, то программа аварийно завершается.

Усложним немного наш пример, чтобы из функции ReadAge могли вылетать исключения разных типов. Сейчас мы проверяем только значение возраста, считая, что на вход поступило число. Но предположим, что поток ввода досрочно оборвался, или на входе была строка вместо числа. В таком случае конструкция std::cin >> age никак не изменит переменную age, а лишь возведёт специальный флаг ошибки в объекте std::cin. Наша переменная age останется непроинициализированной: в ней будет лежать неопределённый мусор. Можно было бы явно проверить этот флаг в объекте std::cin, но мы вместо этого включим режим генерации исключений при таких ошибках ввода:

int ReadAge() {
    std::cin.exceptions(std::istream::failbit);
    int age;
    std::cin >> age;
    if (age < 0 || age >= 128) {
        throw WrongAgeException(age);
    }
    return age;
}

Теперь ошибка чтения в операторе >> у потока ввода будет приводить к исключению типа std::istream::failure. Функция ReadAge его не обрабатывает. Поэтому такое исключение покинет пределы этой функции. Поймаем его в функции main:

int main() {
    try {
        age = ReadAge();  // может сгенерировать исключения разных типов
        // Работаем с возрастом age
    } catch (const WrongAgeException& ex) {
        std::cerr << "Age is not correct: " << ex.age << "n";
        return 1;
    } catch (const std::istream::failure& ex) {
        std::cerr << "Failed to read age: " << ex.what() << "n";
        return 1;
    } catch (...) {
        std::cerr << "Some other exceptionn";
        return 1;
    }
    // ...
}

При обработке мы воспользовались функцией ex.what у исключения типа std::istream::failure. Такие функции есть у всех исключений стандартной библиотеки: они возвращают текстовое описание ошибки.

Обратите внимание на третий catch с многоточием. Такой блок, если он присутствует, будет перехватывать любые исключения, не перехваченные ранее.

Исключения стандартной библиотеки

Функции и классы стандартной библиотеки в некоторых ситуациях генерируют исключения особых типов. Все такие типы выстроены в иерархию наследования от базового класса std::exception. Иерархия классов позволяет писать обработчик catch сразу на группу ошибок, которые представлены базовым классом: std::logic_error, std::runtime_error и т. д.

Вот несколько примеров:

  1. Функция at у контейнеров std::array, std::vector и std::deque генерирует исключение std::out_of_range при некорректном индексе.

  2. Аналогично, функция at у std::map, std::unordered_map и у соответствующих мультиконтейнеров генерирует исключение std::out_of_range при отсутствующем ключе.

  3. Обращение к значению у пустого объекта std::optional приводит к исключению std::bad_optional_access.

  4. Потоки ввода-вывода могут генерировать исключение std::ios_base::failure.

Исключения в конструкторах

В главе 3.1 мы написали класс Time. Этот класс должен был соблюдать инвариант на значение часов, минут и секунд: они должны были быть корректными. Если на вход конструктору класса Time передавались некорректные значения, мы приводили их к корректным, используя деление с остатком.

Более правильным было бы сгенерировать в конструкторе исключение. Таким образом мы бы явно передали сообщение об ошибке во внешнюю функцию, которая пыталась создать объект.

class Time {
private:
    int hours, minutes, seconds;

public:
    // Заведём класс для исключения и поместим его внутрь класса Time как в пространство имён
    class IncorrectTimeException {
    };

    Time::Time(int h, int m, int s) {
        if (s < 0 || s > 59 || m < 0 || m > 59 || h < 0 || h > 23) {
            throw IncorrectTimeException();
        }
        hours = h;
        minutes = m;
        seconds = s;
    }

    // ...
};

Генерировать исключения в конструкторах — совершенно нормальная практика. Однако не следует допускать, чтобы исключения покидали пределы деструкторов. Чтобы понять причины, посмотрим подробнее, что происходит при генерации исключения.

Свёртка стека

Вспомним класс Logger из предыдущей главы. Посмотрим, как он ведёт себя при возникновении исключения. Воспользуемся в этом примере стандартным базовым классом std::exception, чтобы не писать свой класс исключения.

#include <exception>
#include <iostream>

void f() {
    std::cout << "Welcome to f()!n";
    Logger x;
    // ...
    throw std::exception();  // в какой-то момент происходит исключение
}

int main() {
    try {
        Logger y;
        f();
    } catch (const std::exception&) {
        std::cout << "Something happened...n";
        return 1;
    }
}

Мы увидим такой вывод:

Logger(): 1
Welcome to f()!
Logger(): 2
~Logger(): 2
~Logger(): 1
Something happened...

Сначала создаётся объект y в блоке try. Затем мы входим в функцию f. В ней создаётся объект x. После этого происходит исключение. Мы должны досрочно покинуть функцию. В этот момент начинается свёртка стека (stack unwinding): вызываются деструкторы для всех созданных объектов в самой функции и в блоке try, как если бы они вышли из своей области видимости. Поэтому перед обработчиком исключения мы видим вызов деструктора объекта x, а затем — объекта y.

Аналогично, свёртка стека происходит и при генерации исключения в конструкторе. Напишем класс с полем Logger и сгенерируем нарочно исключение в его конструкторе:

#include <exception>
#include <iostream>

class C {
private:
    Logger x;

public:
    C() {
        std::cout << "C()n";
        Logger y;
        // ...
        throw std::exception();
    }

    ~C() {
        std::cout << "~C()n";
    }
};

int main() {
    try {
        C c;
    } catch (const std::exception&) {
        std::cout << "Something happened...n";
    }
}

Вывод программы:

Logger(): 1  // конструктор поля x
C()
Logger(): 2  // конструктор локальной переменной y
~Logger(): 2  // свёртка стека: деструктор y
~Logger(): 1  // свёртка стека: деструктор поля x
Something happened...

Заметим, что деструктор самого класса C не вызывается, так как объект в конструкторе не был создан.

Механизм свёртки стека гарантирует, что деструкторы для всех созданных автоматических объектов или полей класса в любом случае будут вызваны. Однако он полагается на важное свойство: деструкторы самих классов не должны генерировать исключений. Если исключение в деструкторе произойдёт в момент свёртки стека при обработке другого исключения, то программа аварийно завершится.

Пример с динамической памятью

Подчеркнём, что свёртка стека работает только с автоматическими объектами. В этом нет ничего удивительного: ведь за временем жизни объектов, созданных в динамической памяти, программист должен следить самостоятельно. Исключения вносят дополнительные сложности в ручное управление динамическими объектами:

void f() {
    Logger* ptr = new Logger();  // конструируем объект класса Logger в динамической памяти
    // ...
    g();  // вызываем какую-то функцию
    // ...
    delete ptr;  // вызываем деструктор и очищаем динамическую память
}

На первый взгляд кажется, что в этом коде нет ничего опасного: delete вызывается в конце функции. Однако функция g может сгенерировать исключение. Мы не перехватываем его в нашей функции f. Механизм свёртки уберёт со стека лишь сам указатель ptr, который является автоматической переменной примитивного типа. Однако он ничего не сможет сделать с объектом в памяти, на которую ссылается этот указатель. В логе мы увидим только вызов конструктора класса Logger, но не увидим вызова деструктора. Нам придётся обработать исключение вручную:

void f() {
    Logger* ptr = new Logger();
    // ...
    try {
        g();
    } catch (...) {  // ловим любое исключение
        delete ptr;  // вручную удаляем объект
        throw;  // перекидываем объект исключения дальше
    }
    // ...
    delete ptr;

}

Здесь мы перехватываем любое исключение и частично обрабатываем его, удаляя объект в динамической памяти. Затем мы прокидываем текущий объект исключения дальше с помощью оператора throw без аргументов.

Согласитесь, этот код очень далёк от совершенства. При непосредственной работе с объектами в динамической памяти нам приходится оборачивать в try/catch любую конструкцию, из которой может вылететь исключение. Понятно, что такой код чреват ошибками. В главе 3.6 мы узнаем, как с точки зрения C++ следует работать с такими ресурсами, как память.

Гарантии безопасности исключений

Предположим, что мы пишем свой класс-контейнер, похожий на двусвязный список. Наш контейнер позволяет добавлять элементы в хранилище и отдельно хранит количество элементов в некотором поле elementsCount. Один из инвариантов этого класса такой: значение elementsCount равно реальному числу элементов в хранилище.

Не вдаваясь в детали, давайте посмотрим, как могла бы выглядеть функция добавления элемента.

template <typename T>
class List {
private:
    struct Node {  // узел двусвязного списка
        T element;
        Node* prev = nullptr;  // предыдущий узел
        Node* next = nullptr;  // следующий узел
    };

    Node* first = nullptr;  // первый узел списка
    Node* last = nullptr;  // последний узел списка
    int elementsCount = 0;

public:
    // ...

    size_t Size() const {
        return elementsCount;
    }

    void PushBack(const T& elem) {
        ++elementsCount;

        // Конструируем в динамической памяти новой узел списка
        Node* node = new Node(elem, last, nullptr);

        // Связываем новый узел с остальными узлами
        if (last != nullptr) {
            last->next = node;
        } else {
            first = node;
        }
        last = node;
    }
};

Не будем здесь рассматривать другие функции класса — конструкторы, деструктор, оператор присваивания… Рассмотрим функцию PushBack. В ней могут произойти такие исключения:

  1. Выражение new может сгенерировать исключение std::bad_alloc из-за нехватки памяти.

  2. Конструктор копирования класса T может сгенерировать произвольное исключение. Этот конструктор вызывается при инициализации поля element создаваемого узла в конструкторе класса Node. В этом случае new ведёт себя как транзакция: выделенная перед этим динамическая память корректно вернётся системе.

Эти исключения не перехватываются в функции PushBack. Их может перехватить код, из которого PushBack вызывался:

#include <iostream>

class C;  // какой-то класс

int main() {
    List<C> data;
    C element;

    try {
        data.PushBack(element);
    } catch (...) {  // не получилось добавить элемент
        std::cout << data.Size() << "n";  // внезапно 1, а не 0
    }

    // работаем дальше с data
}

Наша функция PushBack сначала увеличивает счётчик элементов, а затем выполняет опасные операции. Если происходит исключение, то в классе List нарушается инвариант: значение счётчика elementsCount перестаёт соответствовать реальности. Можно сказать, что функция PushBack не даёт гарантий безопасности.

Всего выделяют четыре уровня гарантий безопасности исключений (exception safety guarantees):

  1. Гарантия отсутствия сбоев. Функции с такими гарантиями вообще не выбрасывают исключений. Примерами могут служить правильно написанные деструктор и конструктор перемещения, а также константные функции вида Size.

  2. Строгая гарантия безопасности. Исключение может возникнуть, но от этого объект нашего класса не поменяет состояние: количество элементов останется прежним, итераторы и ссылки не будут инвалидированы и т. д.

  3. Базовая гарантия безопасности. При исключении состояние объекта может поменяться, но оно останется внутренне согласованным, то есть, инварианты будут соблюдаться.

  4. Отсутсвие гарантий. Это довольно опасная категория: при возникновении исключений могут нарушаться инварианты.

Всегда стоит разрабатывать классы, обеспечивающие хотя бы базовую гарантию безопасности. При этом не всегда возможно эффективно обеспечить строгую гарантию.

Переместим в нашей функции PushBack изменение счётчика в конец:

    void PushBack(const T& elem) {
        Node* node = new Node(elem, last, nullptr);

        if (last != nullptr) {
            last->next = node;
        } else {
            first = node;
        }
        last = node;

        ++elementsCount;  // выполнится только если раньше не было исключений
    }

Теперь такая функция соответствует строгой гарантии безопасности.

В документации функций из классов стандартной библиотеки обычно указано, какой уровень гарантии они обеспечивают. Рассмотрим, например, гарантии безопасности класса std::vector.

  • Деструктор, функции empty, size, capacity, а также clear предоставляют гарантию отсутствия сбоев.

  • Функции push_back и resize предоставляют строгую гарантию.

  • Функция insert предоставляет лишь базовую гарантию. Можно было бы сделать так, чтобы она предоставляла строгую гарантию, но за это пришлось бы заплатить её эффективностью: при вставке в середину вектора пришлось бы делать реаллокацию.

Функции класса, которые гарантируют отсутсвие сбоев, следует помечать ключевым словом noexcept:

class C {
public:
    void f() noexcept {
        // ...
    }
};

С одной стороны, эта подсказка позволяет компилятору генерировать более эффективный код. С другой — эффективно обрабатывать объекты таких классов в стандартных контейнерах. Например, std::vector<C> при реаллокации будет использовать конструктор перемещения класса C, если он помечен как noexcept. В противном случае будет использован конструктор копирования, который может быть менее эффективен, но зато позволит обеспечить строгую гарантию безопасности при реаллокации.

Поговорим об исключениях в C++, начиная определением и заканчивая грамотной обработкой.

  1. Инструмент программирования для исключительных ситуаций
  2. Исключения: панацея или нет
  3. Синтаксис исключений в C++
  4. Базовые исключения стандартной библиотеки
  5. Заключение

Георгий Осипов

Георгий Осипов


Один из авторов курса «Разработчик C++» в Яндекс Практикуме, разработчик в Лаборатории компьютерной графики и мультимедиа ВМК МГУ

Исключения — важный инструмент в современном программировании. В большинстве источников тема исключений раскрывается не полностью: не описана механика их работы, производительность или особенности языка C++.

В статье я постарался раскрыть тему исключений достаточно подробно. Она будет полезна новичкам, чтобы узнать об исключениях, и программистам с опытом, чтобы углубиться в явление и достичь его полного понимания.

Статья поделена на две части. Первая перед вами и содержит базовые, но важные сведения. Вторая выйдет чуть позже. В ней — информация для более продвинутых разработчиков.

В первой части разберёмся:

  • для чего нужны исключения;
  • особенности C++;
  • синтаксис выбрасывания и обработки исключений;
  • особые случаи, связанные с исключениями.

Также рассмотрим основные стандартные типы исключений, где и для чего они применяются.

Мы опираемся на современные компиляторы и Стандарт C++20. Немного затронем C++23 и даже C++03.

Если вы только осваиваете C++, возможно, вам будет интересен курс «Разработчик C++» в Яндекс Практикуме. У курса есть бесплатная вводная часть. Именно она может стать вашим первым шагом в мир C++. Для тех, кто знаком с программированием, есть внушительная ознакомительная часть, тоже бесплатная.

Инструмент программирования для исключительных ситуаций

В жизни любой программы бывают моменты, когда всё идёт не совсем так, как задумывал разработчик. Например:

  • в системе закончилась оперативная память;
  • соединение с сервером внезапно прервалось;
  • пользователь выдернул флешку во время чтения или записи файла;
  • понадобилось получить первый элемент списка, который оказался пустым;
  • формат файла не такой, как ожидалось.

Примеры объединяет одно: возникшая ситуация достаточно редка, и при нормальной работе программы, всех устройств, сети и адекватном поведении пользователя она не возникает.

Хороший программист старается предусмотреть подобные ситуации. Однако это бывает сложно: перечисленные проблемы обладают неприятным свойством — они могут возникнуть практически в любой момент.

На помощь программисту приходят исключения (exception). Так называют объекты, которые хранят данные о возникшей проблеме. Механизмы исключений в разных языках программирования очень похожи. В зависимости от терминологии языка исключения либо выбрасывают (throw), либо генерируют (raise). Это происходит в тот момент, когда программа не может продолжать выполнять запрошенную операцию.

После выбрасывания в дело вступает системный код, который ищет подходящий обработчик. Особенность в том, что тот, кто выбрасывает исключение, не знает, кто будет его обрабатывать. Может быть, что и вовсе никто — такое исключение останется сиротой и приведёт к падению программы.

Если обработчик всё же найден, то он ловит (catch) исключение и программа продолжает работать как обычно. В некоторых языках вместо catch используется глагол except (исключить).

Обработчик ловит не все исключения, а только некоторые — те, что возникли в конкретной части определённой функции. Эту часть нужно явно обозначить, для чего используют конструкцию try (попробовать). Также обработчик не поймает исключение, которое ранее попало в другой обработчик. После обработки исключения программа продолжает выполнение как ни в чём не бывало.

Исключения: панацея или нет

Перед тем как совершить операцию, нужно убедиться, что она корректна. Если да — совершить эту операцию, а если нет — выбросить исключение. Так делается в некоторых языках, но не в C++. Проверка корректности — это время, а время, как известно, деньги. В C++ считается, что программист знает, что делает, и не нуждается в дополнительных проверках. Это одна из причин, почему программы на C++ такие быстрые.

Но за всё нужно платить. Если вы не уследили и сделали недопустимую операцию, то в менее производительных языках вы получите исключение, а в C++ — неопределённое поведение. Исключение можно обработать и продолжить выполнение программы. Неопределённое поведение гарантированно обработать нельзя.

Но некоторые виды неопределённого поведения вполне понятны и даже могут быть обработаны. Это зависит от операционной системы:

  • сигналы POSIX — низкоуровневые уведомления, которые отправляются программе при совершении некорректных операций и в некоторых других случаях;
  • структурированные исключения Windows (SEH) — специальные исключения, которые нельзя обработать средствами языка.

Особенность C++ в том, что не любая ошибка влечёт исключение, и не любую ошибку можно обработать. Но если для операции производительность не так критична, почему бы не сделать проверку?

У ряда операций в C++ есть две реализации. Одна супербыстрая, но вы будете отвечать за корректность, а вторая делает проверку и выбрасывает исключение в случае ошибки. Например, к элементу класса std::vector можно обратиться двумя способами:

  • vec[15] — ничего не проверяет. Если в векторе нет элемента с индексом 15, вы получаете неопределённое поведение. Это может быть сигнал SIGSEGV, некорректное значение или взрыв компьютера.
  • vec.at(15) — то же самое, но в случае ошибки выбрасывается исключение, которое можно обработать.

В C++ вам даётся выбор: делать быстро или делать безопасно. Часто безопасность важнее, но в определённых местах программы любое промедление критично.

Ловим исключения

Начнём с примера:

void SomeFunction() {
    DoSomething0();

    try {
        SomeClass var;

        DoSomething1();
        DoSomething2();

        // ещё код

        cout << "Если возникло исключение, то этот текст не будет напечатан" << std::endl;
    }
    catch(ExceptionType e) {
        std::cout << "Поймано исключение: " << e.what() << std::endl;
        // ещё код
    }

    std::cout << "Это сообщение не будет выведено, если возникло исключение в DoSomething0 или "
                  "непойманное исключение внутри блока try." << std::endl;
}

В примере есть один try-блок и один catch-блок. Если в блоке try возникает исключение типа ExceptionType, то выполнение блока заканчивается. При этом корректно удаляются созданные объекты — в данном случае переменная var. Затем управление переходит в конструкцию catch. Сам объект исключения передаётся в переменную e. Выводя e.what(), мы предполагаем, что у типа ExceptionType есть метод what.

Если в блоке try возникло исключение другого типа, то управление также прервётся, но поиск обработчика будет выполняться за пределами функции SomeFunction — выше по стеку вызовов. Это также касается любых исключений, возникших вне try-блока.

Во всех случаях объект var будет корректно удалён.

Исключение не обязано возникнуть непосредственно внутри DoSomething*(). Будут обработаны исключения, возникшие в функциях, вызванных из DoSomething*, или в функциях, вызванных из тех функций, да и вообще на любом уровне вложенности. Главное, чтобы исключение не было обработано ранее.

Ловим исключения нескольких типов

Можно указать несколько блоков catch, чтобы обработать исключения разных типов:

void SomeFunction() {
    DoSomething0();

    try {
        DoSomething1();
        DoSomething2();
        // ещё код
    }
    catch(ExceptionType1 e) {
        std::cout << "Some exception of type ExceptionType1: " << e.what() << std::endl;
        // ещё код
    }
    catch(ExceptionType2 e) {
        std::cout << "Some exception of type ExceptionType2: " << e.what() << std::endl;
        // ещё код
    }
    // ещё код
}

Ловим все исключения

void SomeFunction() {
    DoSomething0();

    try {
        DoSomething1();
        DoSomething2();
        // ещё код
    }
    catch(...) {
        std::cout << "An exception any type" << std::endl;
        // ещё код
    }
    // ещё код
}

Если перед catch(...) есть другие блоки, то он означает «поймать все остальные исключения». Ставить другие catch-блоки после catch(...) не имеет смысла.

Перебрасываем исключение

Внутри catch(...) нельзя напрямую обратиться к объекту-исключению. Но можно перебросить тот же объект, чтобы его поймал другой обработчик:

void SomeFunction() {
    DoSomething0();

    try {
        DoSomething1();
        DoSomething2();
        // ещё код
    }
    catch(...) {
        std::cout << "Какое-то исключение неизвестного типа. Сейчас не можем его обработать" << std::endl;
        throw; // перебрасываем исключение
    }
    // ещё код
}

Можно использовать throw в catch-блоках с указанным типом исключения. Но если поместить throw вне блока catch, то программа тут же аварийно завершит работу через вызов std::terminate().

Перебросить исключение можно другим способом:

std::rethrow_exception(std::current_exception())

Этот способ обладает дополнительным преимуществом: можно сохранить исключение и перебросить его в другом месте. Однако результат std::current_exception() — это не объект исключения, поэтому его можно использовать только со специализированными функциями.

Принимаем исключение по ссылке

Чтобы избежать лишних копирований, можно ловить исключение по ссылке или константной ссылке:

void SomeFunction() {
    DoSomething0();

    try {
        DoSomething1();
        DoSomething2();
        // ещё код
    }
    catch(ExceptionType& e) {
        std::cout << "Some exception of type ExceptionType: " << e.what() << std::endl;
        // ещё код
    }
    catch(const OtherExceptionType& e) {
        std::cout << "Some exception of type OtherExceptionType: " << e.what() << std::endl;
        // ещё код
    }
}

Это особенно полезно, когда мы ловим исключение по базовому типу.

Выбрасываем исключения

Чтобы поймать исключение, нужно его вначале выбросить. Для этого применяется throw.

Если throw используется с параметром, то он не перебрасывает исключение, а выбрасывает новое. Параметр может быть любого типа, даже примитивного. Использовать такую конструкцию разрешается в любом месте программы:

void ThrowIfNegative(int x) {
    if (x < 0) {
        // выбрасываем исключение типа int
        throw x;
    }
}

int main() {
    try {
        ThrowIfNegative(10);
        ThrowIfNegative(-15);
        ThrowIfNegative(0);
        cout << "Этот текст никогда не будет напечатан" << std::endl;
    }
    // ловим выброшенное исключение
    catch(int x) {
        cout << "Поймано исключение типа int, содержащее число " << x << std::endl;
    }
}

Вывод: «Поймано исключение типа int, содержащее число –15».

Создаём типы для исключений

Выбрасывать int или другой примитивный тип можно, но это считается дурным тоном. Куда лучше создать специальный тип, который будет использоваться только для исключений. Причём удобно для каждого вида ошибок сделать отдельный класс. Он даже не обязан содержать какие-то данные или методы: отличать исключения друг от друга можно по названию типа.

class IsZeroException{};
struct IsNegativeException{};

void ThrowIfNegative(int x) {
    if (x < 0) {
        // Выбрасывается не тип, а объект.
        // Не забываем скобки, чтобы создать объект заданного типа:
        throw IsNegativeException();
    }
}

void ThrowIfZero(int x) {
    if (x == 0) {
        throw IsZeroException();
    }
}

void ThrowIfNegativeOrZero(int x) {
    ThrowIfNegative(x);
    ThrowIfZero(x);
}

int main() {
    try {
        ThrowIfNegativeOrZero(10);
        ThrowIfNegativeOrZero(-15);
        ThrowIfNegativeOrZero(0);
    }
    catch(IsNegativeException x) {
        cout << "Найдено отрицательное число" << std::endl;
    }
    catch(IsZeroException x) {
        cout << "Найдено нулевое число" << std::endl;
    }
}

В итоге будет напечатана только фраза: «Найдено отрицательное число», поскольку –15 проверено раньше нуля.

Ловим исключение по базовому типу

Чтобы поймать исключение, тип обработчика должен в точности совпадать с типом исключения. Например, нельзя поймать исключение типа int обработчиком типа unsigned int.

Но есть ситуации, в которых типы могут не совпадать. Про одну уже сказано выше: можно ловить исключение по ссылке. Есть ещё одна возможность — ловить исключение по базовому типу.

Например, чтобы не писать много catch-блоков, можно сделать все используемые типы исключений наследниками одного. В этом случае рекомендуется принимать исключение по ссылке.

class NumericException {
public:
    virtual std::string_view what() const = 0;
}

// Класс — наследник NumericException.
class IsZeroException : public NumericException {
public:
    std::string_view what() const override {
        return "Обнаружен ноль";
    }
}

// Ещё один наследник NumericException.
class IsNegativeException : public NumericException {
public:
    std::string_view what() const override {
        return "Обнаружено отрицательное число";
    }
}

void ThrowIfNegative(int x) {
    if (x < 0) {
        // Выбрасывается не тип, а объект.
        // Не забываем скобки, чтобы создать объект заданного типа:
        throw IsNegativeException();
    }
}

void ThrowIfZero(int x) {
    if (x == 0) {
        throw IsZeroException();
    }
}

void ThrowIfNegativeOrZero(int x) {
    ThrowIfNegative(x);
    ThrowIfZero(x);
}

int main() {
    try {
        ThrowIfNegativeOrZero(10);
        ThrowIfNegativeOrZero(-15);
        ThrowIfNegativeOrZero(0);
    }
    // Принимаем исключение базового типа по константной ссылке (&):
    catch(const NumericException& e) {
        std::cout << e.what() << std::endl;
    }
}

Выбрасываем исключение в тернарной операции ?:

Напомню, что тернарная операция ?: позволяет выбрать из двух альтернатив в зависимости от условия:

std::cout << (age >= 18 ? "Проходите" : "Извините, вход в бар с 18 лет") << std::endl;

Оператор throw можно использовать внутри тернарной операции в качестве одного из альтернативных значений. Например, так можно реализовать безопасное деление:

int result = y != 0 ? x / y : throw IsZeroException();

Это эквивалентно такой записи:

int result;
if (y != 0) {
    result = x / y;
} 
else {
    throw IsZeroException();
}

Согласитесь, первый вариант лаконичнее. Так можно выбрасывать несколько исключений в одном выражении:

// Вычислим корень отношения чисел:
int result = y == 0 ? throw IsZeroException() : x / y < 0 ? throw IsNegativeException() : sqrt(x / y);

Вся функция — try-блок

Блок try может быть всем телом функции:

int SomeFunction(int x) try {
    return DoSomething(x);
}
catch(ExceptionType e) {
    std::cout << "Some exception of type ExceptionType: " << e.what() << std::endl;
    // ещё код

    // Для того, кто вызвал функцию, всё прошло штатно: исключение поймано.
    // Мы должны возвратить значение:
    return –1; 
}

Тут мы просто опустили фигурные скобки функции. По-другому можно записать так:

int SomeFunction(int x) {
    try {
        return DoSomething(x);
    }
    catch(ExceptionType e) {
        std::cout << "Some exception of type ExceptionType: " << e.what() << std::endl;
        // ещё код
    
        // Для того, кто вызвал функцию, всё прошло штатно: исключение поймано.
        // Мы должны возвратить значение:
        return –1; 
    }
}

Исключения в конструкторе

Есть как минимум два случая возникновения исключений в конструкторе объекта:

  1.  Внутри тела конструктора.
  2. При конструировании данных объекта.

В первом случае исключение ещё можно поймать внутри тела конструктора и сделать вид, как будто ничего не было.

Во втором случае исключение тоже можно поймать, если использовать try-блок в качестве тела конструктора. Однако тут есть особенность: сделать вид, что ничего не было, не получится. Объект всё равно будет считаться недоконструированным:

class IsZeroException{};

// Функция выбросит исключение типа IsZeroException
// если аргумент равен нулю.
void ThrowIf0(int x) {
    if (x == 0) {
        throw IsZeroException();
    }
}

// Класс содержит только одно число.
// Он выбрасывает исключение в конструкторе, если число нулевое.
class NotNullInt {
public:
    NotNullInt(int x) : x_(x) {
        ThrowIf0(x_);
    }

private:
    int x_;
}

class Ratio {
public:
    // Инициализаторы пишем после try:
    Ratio(int x, int y) try : x_(x), y_(y) {
    }
    catch(IsZeroException e) {
        std::cout << "Знаменатель дроби не может быть нулём" << std::endl;
        // Тут неявный throw; — конструктор прерван
    }

private:
    int x_;
    NotNullInt y_;
};

int main() {
    Ratio(10, 15);
    try {
        Ratio(15, 0);
    }
    catch(...) {
        std::cout << "Дробь не построена" << std::endl;
    }
}

Тут мы увидим оба сообщения: «Знаменатель дроби не может быть нулём» и «Дробь не построена».

Если объект недоконструирован, то его деструктор не вызывается. Это логичная, но неочевидная особенность языка. Однако все полностью построенные члены – данные объекта будут корректно удалены:

#include 

class A{
public:
    A() {
        std::cout << "A constructed" << std::endl;
    }
    ~A() {
        std::cout << "A destructed" << std::endl;
    }
private:
}

class B{
public:
    B() {
        std::cout << "B constructed" << std::endl;
        throw 1;
    }
    ~B() {
        // Этой надписи мы не увидим:
        std::cout << "B destructed" << std::endl;
    }
    
private:
    A a;
};

int main() {
    try {
        B b;
    }
    catch (...) {
    }
}

Запустим код и увидим такой вывод:

A constructed
B constructed
A destructed

Объект типа A создался и удалился, а объект типа B создался не до конца и поэтому не удалился.

Не все исключения в конструкторах можно обработать. Например, нельзя поймать исключения, выброшенные при конструировании глобальных и thread_local объектов, — в этом случае будет вызван std::terminate.

Исключения в деструкторе

В этом разделе примера не будет, потому что исключения в деструкторе — нежелательная практика. Бывает, что язык удаляет объекты вынужденно, например, при поиске обработчика выброшенного исключения. Если во время этого возникнет другое исключение в деструкторе какого-то объекта, то это приведёт к вызову std::terminate.

Более того, по умолчанию исключения в деструкторе запрещены и всегда приводят к вызову std::terminate. Выможете разрешить их для конкретного конструктора — об этом я расскажу в следующей части — но нужно много раз подумать, прежде чем сделать это.

Обрабатываем непойманные исключения

Поговорка «не пойман — не вор» для исключений не работает. Непойманные исключения приводят к завершению программы через std::terminate. Это нештатная ситуация, но можно предотвратить немедленное завершение, добавив обработчик для std::terminate:

int main() {
    // Запишем обработчик в переменную terminate_handler
    auto terminate_handler = []() {
        auto e_ptr = std::current_exception();
        if (e_ptr) {
            try {
                // Перебросим исключение:
                std::rethrow_exception(e_ptr);
            } catch (const SomeType& e) {
                std::cerr << "Непойманное исключение типа SomeType: " << e.what() << std::endl;
            } 
            catch (...) {
                std::cerr << "Непойманное исключение неизвестного типа" << std::endl;
            }
        }
        else {
            std::cerr << "Неизвестная ошибка" << std::endl;
        }

        // Всё равно завершим программу.
        std::abort();
    };
    
    // Установим обработчик для функции terminate
    std::set_terminate(terminate_handler);

    // …..
}

Однако не стоит надеяться, что программа после обработки такой неприятной ситуации продолжит работу как ни в чём не бывало. std::terminate — часть завершающего процесса программы. Внутри него доступен только ограниченный набор операций, зависящий от операционной системы.

Остаётся только сохранить всё, что можно, и извиниться перед пользователем за неполадку. А затем выйти из программы окончательно вызовом std::abort().

Базовые исключения стандартной библиотеки

Далеко не всегда есть смысл создавать новый тип исключений, ведь в стандартной библиотеке их и так немало. А если вы всё же создаёте свои исключения, то сделайте их наследниками одного из базовых. Рекомендуется делать все типы исключений прямыми или косвенными наследниками std::exception.

Обратим внимание на одну важную вещь. Все описываемые далее классы не содержат никакой магии. Это обычные и очень простые классы, которые вы могли бы реализовать и самостоятельно. Использовать их можно и без throw, однако смысла в этом немного.

Их особенность в том, что разработчики договорились использовать эти классы для описания исключений, генерируемых в программе. Например, этот код абсолютно корректен, но совершенно бессмысленен:

#include 
#include 

int main() {
    // Используем std::runtime_error вместо std::string.
    // Но зачем?
    std::runtime_error err("Буря мглою небо кроет");

    std::cout << err.what() << std::endl;
}

Разберём основные типы исключений, описанные в стандартной библиотеке C++.

std::exception

Базовый класс всех исключений стандартной библиотеки. Конструктор не принимает параметров. Имеет метод what(), возвращающий описание исключения. Как правило, используются производные классы, переопределяющие метод what().

std::logic_error : public std::exception

Исключение типа logic_error выбрасывается, когда нарушены условия, сформулированные на этапе написания программы. Например, мы передали в функцию извлечения квадратного корня отрицательное число или попытались извлечь элемент из пустого списка.

Конструктор принимает сообщение в виде std::string, которое будет возвращаться методом what().

// класс копилка
class Moneybox {
public:
    void WithdrawCoin() {
        if (coins_ == 0) {
            throw std::logic_error("В копилке нет денег");
        }
        --coins_;
    }
    void PutCoin() {
        ++coins_;
    }

private:
    int coins_ = 0;
}

Перечислим некоторые производные классы std::logic_error. У всех них похожий интерфейс.

  • std::invalid_argument. Исключение этого типа показывает, что функции передан некорректный аргумент, не соответствующий условиям.
double GetSqrt(double x) {
    return x >= 0 ? sqrt(x) : 
        throw std::invalid_argument("Попытка извлечь квадратный корень из отрицательного числа");
}

Это исключение выбрасывают функции преобразования строки в число, такие как stol, stof, stoul, а также конструктор класса std::bitset:

try {
    int f = std::stoi("abracadabra");
} catch (std::invalid_argument& ex) {
    std::cout << ex.what() << 'n';
}
  • std::length_error. Исключение говорит о том, что превышен лимит вместимости контейнера. Может выбрасываться из методов, меняющих размер контейнеров string и vector. Например resize, reserve, push_back.
  • std::out_of_range. Исключение говорит о том, что некоторое значение находится за пределами допустимого диапазона. Возникает при использовании метода at практически всех контейнеров. Также возникает при использовании функций конвертации в строки в число, таких как stol, stof, stoul. В стандартной библиотеке есть исключение с похожим смыслом — std::range_error.

std::runtime_error : public std::exception

std::runtime_error — ещё один базовый тип для нескольких видов исключений. Он говорит о том, что исключение относится скорее не к предусмотренной ошибке, а к выявленной в процессе выполнения.

При этом, если std::logic_error подразумевает конкретную причину ошибки — нарушение конкретного условия, — то std::runtime_error говорит о том, что что-то идёт не так, но первопричина может быть не вполне очевидна.

Интерфейс такой же, как и у logic_error: класс принимает описание ошибки в конструкторе и переопределяет метод what() базового класса std::exception.

class CommandLineParsingError : public std::runtime_error {
public:
    // этой строкой импортируем конструктор из базового класса:
    using runtime_error::runtime_error;
};

class ZeroDenominatorError : public std::runtime_error {
public:
    // используем готовое сообщение:
    ZeroDenominatorError() : std::runtime_error("Знаменатель не может быть нулём") {
    }
}

Рассмотрим некоторые важные производные классы:

  • std::regex_error. Исключение, возникшее в процессе работы с регулярными выражениями. Например, при неверном синтаксисе регулярного выражения.
  • std::system_error. Широкий класс исключений, связанных с потоками, вводом-выводом или файловой системой.
  • std::format_error. Исключение, возникшее при работе функции std::format.

std::bad_alloc : public std::exception

У std::exception есть и другие наследники. Самый важный — std::bad_alloc. Его может выбрасывать операция new. Это исключение — слабое место многих программ и головная боль многих разработчиков, ведь оно может возникать практически везде — в любом месте, где есть динамическая аллокация. То есть при:

  • вставке в любой контейнер;
  • копировании любого контейнера, например, обычной строки;
  • создании умного указателя unique_ptr или shared_ptr;
  • копировании объекта, содержащего контейнер;
  • прямом вызове new (надеемся, что вы так не делаете);
  • работе с потоками ввода-вывода;
  • работе алгоритмов;
  • вызове корутин;
  • в пользовательских классах и библиотеках — практически при любых операциях.

При обработке bad_alloc нужно соблюдать осторожность и избегать других динамических аллокаций.

#include 
#include 
#include 
#include 

int main() {
    std::vector vec;
    try {
        while (true) {
            vec.push_back(std::string(10000000, 'a'));
        }
    }
    catch (const std::bad_alloc& e) {
        std::cout << "Место закончилось после вставки " << vec.size() << " элементов" << std::endl;
    }
}

Возможный вывод: «Место закончилось после вставки 2640 элементов».

При аллокациях возможна также ошибка std::bad_array_new_length, производная от bad_alloc. Она возникает при попытке выделить слишком большое, слишком маленькое (меньше, чем задано элементов для инициализации) либо отрицательное количество памяти.

Также при аллокации можно запретить new выбрасывать исключение. Для этого пишем (std::nothrow) после new:

int main()
{
    int* m = new (std::nothrow) int [0xFFFFFFFFFFFFFFULL];
    std::cout << m; // выведет 0
    delete[] m;
}

В случае ошибки операция будет возвращать нулевой указатель.

bad_alloc настолько сложно учитывать, что многие даже не пытаются это делать. Мотивация такая: если память закончилась, то всё равно программе делать уже нечего. Лучше поскорей вызвать std::terminate и завершиться.

Заключение

В этой части мы разобрали, как создавать исключения C++, какие они бывают и как с ними работать. Разобрали ключевые слова try, catch и throw.

В следующей части запустим бенчмарк, разберём гарантии безопасности, спецификации исключений, а также узнаем, когда нужны исключения, а когда можно обойтись без них. И главное — узнаем, как они работают.

Исключения не так просты, как кажутся на первый взгляд. Они нарушают естественный ход программы и кратно увеличивают количество возможных путей исполнения. Но без них ещё сложнее.

C++ позволяет выразительно обрабатывать исключения, он аккуратен при удалении всех объектов и освобождении ресурсов. Будьте аккуратны и вы, и тогда всё получится. Каждому исключению — по обработчику.

Исключения — это лишь одна из многих возможностей C++. Глубже погрузиться в язык и узнать больше о нём, его экосистеме и принципах программирования поможет курс «Разработчик C++».

Исключение — ошибка, которая нарушает нормальную работу программы. Java обеспечивает надежный объектно-ориентированный способ обработки исключений. Именно его мы и будем изучать в этом руководстве. 

Исключение может возникнуть в разного рода ситуациях: неправильные входные данные, аппаратный сбой, сбоя сетевого соединения, ошибка при работе с базой данных и т.д. Именно поэтому любой Java программист должен уметь правильно обрабатывать исключения, понимать причины их появления и следовать лучшим практикам работы с исключениями даже в небольших проектах.

Java — объектно-ориентированный язык программирования, поэтому всякий раз, когда происходит ошибка при выполнении инструкции, создается объект-исключение, а затем нормальный ход выполнения программы останавливается и JRE пытается найти кого-то, кто может справиться (обработать) это исключение. Объект-исключение содержит много информации об отладке, а именно номер строки, где произошло исключение, тип исключения и т.д.

Что и как происходит, когда появляется ошибка

Когда в методе происходит исключение, то процесс создания объекта-исключения и передачи его в Runtime Environment называется «бросать исключение».

После создания исключения, Java Runtime Environment пытается найти обработчик исключения.

Обработчик исключения — блок кода, который может обрабатывать объект-исключение.

Логика нахождения обработчика исключений проста — прежде всего начинается поиск в методе, где возникла ошибка, если соответствующий обработчик не найден, то происходит переход к тому методу, который вызывает этот метод и так далее.

Пример

У нас есть 3 метода, каждый из которых вызывает друг-друга: А -> В -> С (А вызывает В, а В вызывает С). Если исключение появляется в методе C, то поиск соответствующего обработчика будет происходить в обратном порядке: С -> В -> А (сначала там, где было исключение — в С, если там нет обработчика, то идем в метод В — если тут тоже нет, то идем в А).

Если соответствующий обработчик исключений будет найден, то объект-исключение передаётся обработчику.

Обработать исключение — значит «поймать исключение».

Если обработчик исключений не был найден, то программа завершает работу и печатает информации об исключении.

Обратите внимание, что обработка исключений в Java — это фреймворк, который используется только для обработки ошибок времени выполнения. Ошибки компиляции не обрабатываются рамках обработки исключений.

Основные элементы обработки исключений в Java

Мы используем определенные ключевые слова в для создания блока обработки исключений. Давайте рассмотрим их на примере. Также мы напишем простую программу для обработки исключений.

  • Бросить исключение (throw) — ключевое слово, которое используется для того, чтобы бросить исключение во время выполнения. Мы знаем, что Java Runtime начинает поиск обработчика исключений как только оно будет брошено, но часто нам самим нужно генерировать исключение в нашем коде, например, в программе авторизации, если какое-то поле null. Именно для таких случаем и существует возможность бросить исключение.
  • throws — когда мы бросаем исключение в методе и не обрабатываем его, то мы должны использовать ключевое слово throws в сигнатуре метода для того, чтобы пробросить исключение для обработки в другом методе. Вызывающий метод может обработать это исключение или пробросить его еще дальше с помощью throws в сигнатуре метода. Следует отметить, что пробрасывать можно сразу несколько исключений.
  • Блок try-catch используется для обработки исключений в коде. Слово try — это начало блока обработки, catch — конец блока для обработки исключений. Мы можем использовать сразу несколько блоков catch при одном try. catch в качестве параметра принимает тип исключения для обработки.
  • finally — необязательная завершающая конструкция блока try-catch. Как только исключение остановило процесс исполнения программы, в finally мы можем безопасно освободить какие-то открытые ресурсы. Следует отметить, что finally блок выполняется всегда — не смотря на появление исключительной ситуации.

Давайте посмотрим простую программу обработки исключений в Java.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

package ua.com.prologistic;

import java.io.FileNotFoundException;

import java.io.IOException;

public class ExceptionHandling {

    // в методе main() пробрасывается сразу несколько исключений

    public static void main(String[] args) throws FileNotFoundException, IOException {

        // в блоке try-catch перехватываются сразу несколько исключений вызовом дополнительного catch(…)

        try{

            testException(5);

            testException(10);

        }catch(FileNotFoundException e){

            e.printStackTrace();

        }catch(IOException e){

            e.printStackTrace();

        }finally{

            System.out.println(«Необязательный блок, но раз уже написан, то выполнятся будет не зависимо от того было исключение или нет»);          

        }

        testException(15);

    }

    // тестовый метод создания, обработки и пробрасывания исключения

    public static void testException(int i) throws FileNotFoundException, IOException{

        if(i < 0){

            FileNotFoundException myException = new FileNotFoundException(«число меньше 0: « + i);

            throw myException;

        }else if(i > 10){

            throw new IOException(«Число должно быть в пределах от 0 до 10»);

        }

    }

}

А в консоле эта программа напишет такое:

java.io.FileNotFoundException: число меньше 0: 5

    at ua.com.prologistic.ExceptionHandling.testException(ExceptionHandling.java:24)

    at ua.com.prologistic.ExceptionHandling.main(ExceptionHandling.java:10)

Необязательный блок, но раз уже написан, то выполнятся будет не зависимо от того было исключение или нет

Exception in thread «main» java.io.IOException: Число должно быть в пределах от 0 до 10

    at ua.com.prologistic.ExceptionHandling.testException(ExceptionHandling.java:27)

    at ua.com.prologistic.ExceptionHandling.main(ExceptionHandling.java:19)

Обратите внимание, что метод testException() бросает исключение, используя ключевое слово throw, а в сигнатуре метода используется ключевое слово throws, чтобы дать понять вызывающему методу тип исключений, которые может бросить testException().

Важные моменты в обработке исключений:

  • Нельзя использовать блоки catch или finally без блока try.
  • Блок try также может быть использован только с catch блоком, или только с finally блоком, или с тем и другим блоком.
  • Мы можем использовать несколько блоков catch только с одним try.
  • try-catch блоки могут быть вложенными — этим они очень похожи на if-else конструкции.
  • Мы можем использовать только один, блок finally в одном try-catch.

Иерархия исключений в Java

Java исключения являются иерархическими, а наследование используется для категоризации различных типов исключений. Throwable — родительский класс в иерархии Java исключений. Он имеет два дочерних объекта — Error и Exception. Исключения далее разделены на проверяемые исключения и исключения времени выполнения.

  1. Error — это тип ошибок, которые выходят за рамки вашей программы, их невозможно предвидеть или обработать. Это может быть аппаратный сбой, «поломка» JVM или ошибка памяти. Именно для таких необычных ситуаций есть отдельная иерархия ошибок. Мы должны просто знать, что такие ошибки есть и не можем справиться с такими ситуациями. Примеры Error: OutOfMemoryError и StackOverflowError.
  2. Проверяемые исключения (Checked Exceptions) — тип исключений, которые мы можем предвидеть в программе и попытаться обработать, например, FileNotFoundException. Мы должны поймать это исключение и написать внятное и полезное сообщение пользователю о том, что произошло (также желательно логировать ошибки). Exception — родительский класс всех проверяемых исключений (Checked Exceptions). Если мы бросили проверяемое исключение, то должны поймать его в том же методе или должны пробросить его с помощью ключевого слова throws.
  3. Runtime Exception — это ошибки программиста. Например, пытаясь получить элемент из массива, мы должны проверить длину массива, прежде чем пытаться получить элемент — в противном случае это может быть брошен ArrayIndexOutOfBoundException. RuntimeException — родительский класс для всех Runtime исключений. Если мы сами бросаем Runtime Exception в методе, то не обязательно указывать в сигнатуре метода ключевое слово throws.

На рисунке 1 представлена иерархия исключений в Java:

иерархия исключений в Java

Рисунок 1 — Иерархия исключений в Java

 Полезные методы в обработке исключений

Класс Exception и все его подклассы не содержат какие-либо методы для обработки исключений. Все предоставляемые методы находятся в базовом классе Throwable. Подклассы класса Exception созданы для того, чтобы определять различные виды исключений. Именно поэтому при обработке исключений мы можем легко определить причину и обработать исключение в соответствии с его типом.

Полезные методы класса Throwable:

  1. public String getMessage() — этот метод возвращает сообщение, которое было создано при создании исключения через конструктор.
  2. public String getLocalizedMessage() — метод, который переопределяют подклассы для локализации конкретное сообщение об исключении. В реализации Throwable класса этот метод просто использует метод getMessage(), чтобы вернуть сообщение об исключении (Throwable на вершине иерархии — ему нечего локализировать, поэтому он вызывает getMessage()).
  3. public synchronized Throwable getCause() — этот метод возвращает причину исключения или идентификатор в виде null, если причина неизвестна.
  4. public String toString() — этот метод возвращает информацию о Throwable в формате String.
  5. public void printStackTrace() — этот метод выводит информацию трассировки стека в стандартный поток ошибок, этот метод перегружен и мы можем передать PrintStream или PrintWriter в качестве аргумента, чтобы написать информацию трассировки стека в файл или поток.

Автоматическое управление ресурсами и улучшения блока перехвата ошибок в Java 7

Если вам нужно перехватывать много исключений в одном блоке try-catch, то блок перехвата будет выглядеть очень некрасиво и в основном будет состоять из избыточного кода. Именно поэтому в Java 7 это было значительно улучшено и теперь мы можем перехватывать несколько исключений в одном блоке catch.

Это выглядит следующим образом:

catch(IOException | SQLException | Exception ex){

     //что-то сделать с перехваченной ошибкой…

}

Как видим, здесь блок catch перехватывает сразу несколько исключений — это очень красиво, компактно и удобно.

В большинстве случаев мы используем блок finally для того, чтобы закрыть открытые потоки, подключения или освободить другие ресурсы. Очень часто мы забываем закрыть и получаем runtime исключения. Такие исключения трудно отлаживать. Поэтому в Java 7 был введен try с ресурсами, где мы можем открыть ресурс в самом try и использовать его внутри блока try-catch. Когда программа заканчивает выполнение блока try-catch, то среда выполнения автоматически закрывает эти ресурсы. Вот пример try-catch блока с ресурсами:

// try c ресурсами

try (MyResource mr = new MyResource()) {

            System.out.println(«Красивый и компактный код в try c ресурсами»);

        } catch (Exception e) {

            e.printStackTrace();

        }

Создание своих классов исключений

Java предоставляет много классов исключений, но иногда нам может понадобиться создать свои «кастомные» классы исключений. Это может понадобиться для того, чтобы уведомить абонента о конкретном типе исключения с соответствующим сообщением. Например, мы напишем метод для обработки только текстовых файлов, поэтому мы можем написать свой класс исключений и передавать соответствующий код ошибки, когда кто-то передает неподходящий тип файла в качестве входных данных.

Вот пример своего класса исключений и его использование:

package ua.com.prologistic;

// наследуемся от класс Exception

public class MyException extends Exception {

    private String errorCode = «Unknown_Exception»;

    public MyException(String message, String errorCode){

        super(message);

        this.errorCode = errorCode;

    }

    public String getErrorCode(){

        return this.errorCode;

    }

}

А теперь проверим в работе наш класс MyException:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

package ua.com.prologistic;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.InputStream;

public class CustomExceptionExample {

    public static void main(String[] args) throws MyException {

        try {

            processFile(«file.txt»);

        } catch (MyException e) {

            processErrorCodes(e);

        }

    }

    // метод для обработки ошибок

    private static void processErrorCodes(MyException e) throws MyException {

        // здесь мы ищем указанный при выбросе исключения код ошибки и сообщаем пользователю что произошло

        switch(e.getErrorCode()){

        case «BAD_FILE_TYPE»:

            System.out.println(«Неподходящий тип файла»);

            throw e;

        case «FILE_NOT_FOUND_EXCEPTION»:

            System.out.println(«Файл не найден»);

            throw e;

        case «FILE_CLOSE_EXCEPTION»:

            System.out.println(«Ошибка при закрытии файла»);

            break;

        default:

            System.out.println(«Произошла неизвестная ошибка « + e.getMessage());

            e.printStackTrace();

        }

    }

    // метод для работы с файлом, который пробрасывает наш тип исключений

    private static void processFile(String file) throws MyException {      

        InputStream fis = null;

        try {

            fis = new FileInputStream(file);

        } catch (FileNotFoundException e) {

            // здесь мы бросаем исключение с указанием кода ошибки

            throw new MyException(e.getMessage(),«FILE_NOT_FOUND_EXCEPTION»);

        }finally{

            try {

                if(fis !=null)fis.close();

            } catch (IOException e) {

                // здесь мы бросаем исключение с указанием кода ошибки

                throw new MyException(e.getMessage(),«FILE_CLOSE_EXCEPTION»);

            }

        }

    }

}

Полезные советы по обработке исключений в Java

  1. Не используйте для перехвата исключений класс Exception. В иерархии исключений есть множество классов на все случаи жизни вашей программы, которые не только эффективно обработают конкретную ошибку, но и предоставят полезную для пользователя и отладки информацию.
  2. Бросайте исключение как можно раньше. Это является хорошей практикой программирования на Java.
  3. Ловите исключения только тогда, когда сможете эффективно для пользователя и отладки их обработать.
  4. Освобождайте ресурсы. Перехватывая исключение всегда закрывайте открытые ресурсы. Еще проще и эффективнее это делать с Java 7. Используйте try с ресурсами для лаконичного и красивого кода.
  5. Логируйте исключения. Логируйте сообщения, которые предоставляет исключение. В большинстве случаев это даст вам четкое понимание причин и поможет в отладке. Не оставляйте пустым блок catch, иначе он будет просто поглощать исключение без каких-либо значимых деталей для отладки.
  6. Один catch для нескольких исключений. Используйте преимущества Java 7 для удобства и красоты вашего кода.
  7. Используйте свои исключения. Это позволит вам лучше чувствовать свою программу и эффективнее с ней работать.
  8. Соглашения об именовании. Когда вы создать свои классы исключений, следите за тем, что из самого названия класса будет ясно, что это исключение.
  9. Используйте исключения с умом. Бросить исключение — достаточно дорогостоящая в Java операция. Возможно, в некоторых случаях будем уместно не бросать исключений, а вернуть, например, логическую переменную, которая обозначала успешное или не успешное выполнение метода.
  10. Документируйте исключения. Желательно писать javadoc @throws для ваших исключений. Это будет особенно полезно в тех случаях, когда ваша программа предоставляет интерфейс для работы с другими приложениями.

Вот и все, что нужно знать об обработке исключений в Java.

  • Анализ на вич возможна ли ошибка
  • Анализ методом дерева ошибок
  • Анализ логопедических ошибок на письме
  • Анализ контрольной работы работа над ошибками повторение пройденного что узнали чему научились
  • Анализ контрольной работы работа над ошибками 3 класс конспект урока