Как описать классы ошибок java

Классы исключений

Последнее обновление: 23.04.2018

Базовым классом для всех исключений является класс Throwable. От него уже наследуются два класса: Error
и Exception. Все остальные классы являются производными от этих двух классов.

Класс Error описывает внутренние ошибки в исполняющей среде Java. Программист имеет очень ограниченные возможности для обработки подобных ошибок.

Собственно исключения наследуются от класса Exception. Среди этих исключений следует выделить класс RuntimeException.
RuntimeException является базовым классом для так называемой группы непроверяемых исключений (unchecked exceptions) —
компилятор не проверяет факт обработки таких исключений и их можно не указывать вместе с оператором throws в объявлении метода.
Такие исключения являются следствием ошибок разработчика, например, неверное преобразование типов или выход за пределы массива.

Некоторые из классов непроверяемых исключений:

  • ArithmeticException: исключение, возникающее при делении на ноль

  • IndexOutOfBoundException: индекс вне границ массива

  • IllegalArgumentException: использование неверного аргумента при вызове метода

  • NullPointerException: использование пустой ссылки

  • NumberFormatException: ошибка преобразования строки в число

Все остальные классы, образованные от класса Exception, называются проверяемыми исключениями (checked exceptions).

Некоторые из классов проверяемых исключений:

  • CloneNotSupportedException: класс, для объекта которого вызывается клонирование, не реализует интерфейс Cloneable

  • InterruptedException: поток прерван другим потоком

  • ClassNotFoundException: невозможно найти класс

Подобные исключения обрабатываются с помощью конструкции try..catch. Либо можно передать обработку методу, который будет вызывать данный метод,
указав исключения после оператора throws:

public Person clone() throws CloneNotSupportedException{
    
    Person p = (Person) super.clone();
    return p;
}

В итоге получается следующая иерархия исключений:

Иерархия классов исключений в Java

Поскольку все классы исключений наследуются от класса Exception, то все они наследуют ряд его методов, которые позволяют получить информацию о
характере исключения. Среди этих методов отметим наиболее важные:

  • Метод getMessage() возвращает сообщение об исключении

  • Метод getStackTrace() возвращает массив, содержащий трассировку стека исключения

  • Метод printStackTrace() отображает трассировку стека

Например:

try{
    int x = 6/0;
}
catch(Exception ex){
        
    ex.printStackTrace();
}

Исключения

  • Исключения
    • Введение
    • Иерархия исключений
      • Проверяемые и непроверяемые
      • Иерархия
        • Классификация
        • Error и Exception
    • Работа с исключениями
      • Обработка исключений
        • Правила try/catch/finally
        • Расположение catch блоков
        • Транзакционность
      • Делегирование
      • Методы и практики работы с исключительными ситуацими
        • Собственные исключения
        • Реагирование через re-throw
        • Не забывайте указывать причину возникновения исключения
        • Сохранение исключения
        • Логирование
        • Чего нельзя делать при обработке исключений
      • Try-with-resources или try-с-ресурсами
      • Общие советы
        • Избегайте генерации исключений, если их можно избежать простой проверкой
        • Предпочитайте Optional, если отсутствие значения — не исключительная ситуация
        • Заранее обдумывайте контракты методов
        • Предпочитайте исключения кодам ошибок и boolean флагам-признакам успеха
    • Исключения и статические блоки
    • Многопоточность и исключения
    • Проверяемые исключения и их необходимость
    • Заключение
    • Полезные ссылки

Введение

Начав заниматься программированием, мы, к своему удивлению, обнаружили, что не так уж просто заставить программы делать задуманное. Я могу точно вспомнить момент, когда я понял, что большая часть моей жизни с этих пор будет посвящена поиску ошибок в собственных программах.

(c) Морис Уилкс.

Предположим, вам понадобилась программа, считывающая содержимое файла.
В целом, здесь нет ничего сложного и код, выполняющий поставленную задачу, мог бы выглядеть как-то так:

    public List<String> readAll(String path) {
        BufferedReader br = new BufferedReader(new FileReader(path));
        String line;
        List<String> lines = new ArrayList<>();
        while ((line = br.readLine()) != null) {
            lines.add(line);
        }
        
        return lines;
    }

И это был бы вполне рабочий вариант, если бы не одно но: мы живём не в идеальном мире. Код, приведённый выше, рассчитан на то, что всё работает идеально: путь до файла указан верный, файл можно прочитать, во время чтения с файлом ничего не происходит, место хранения файла работает без ошибок и еще огромное количество предположений.

Однако, как показывает практика, мир не идеален, а нас повсюду преследуют ошибки и проблемы. Кто-то может указать путь до несуществующего файла, во время чтения может произойти ошибка, например, файл повреждён или удален в процессе чтения и т.д.

Игнорирование подобных ситуаций недопустимо, так как это ведет к нестабильно и непредсказуемо работающему коду.
Значит, на такие ситуации надо реагировать.

Самая простая реакция — это возвращать boolean — признак успеха или некоторый код ошибки, например, какое-то число.
Пусть, 0 — это код удачного завершения приложения, 1 — это аварийное завершение и т.д.
Мы получаем код возврата и уже на него реагируем.

Подобный ход имеет право на жизнь, однако, он крайне неудобен в повседневной разработке с её тысячами возможных ошибок и проблемных ситуаций.

Во-первых, он слишком немногословен, так как необходимо помнить что означает каждый код возврата, либо постоянно сверяться с таблицей расшифровки, где они описаны.

Во-вторых, такой подход предоставляет не совсем удобный способ обработки возникших ошибок. Более того, нередки ситуации, когда в месте возникновения ошибки непонятно, как реагировать на возникшую проблему. В таком случае было бы удобнее делегировать обработку ошибки вызывающему коду, до места, где будет понятно как реагировать на ошибку.

В-третьих, и это, на мой взгляд, самое главное — это небезопасно, так как подобный способ можно легко проигнорировать.

Lots of newbie’s coming in from the C world complain about exceptions and the fact that they have to put exception handling all over the place—they want to just write their code. But that’s stupid: most C code never checks return codes and so it tends to be very fragile. If you want to build something really robust, you need to pay attention to things that can go wrong, and most folks don’t in the C world because it’s just too damn hard.
One of the design principles behind Java is that I don’t care much about how long it takes to slap together something that kind of works. The real measure is how long it takes to write something solid.

In Java you can ignore exceptions, but you have to willfully do it. You can’t accidentally say, «I don’t care.» You have to explicitly say, «I don’t care.»

(c) James Gosling.

Поэтому, в Java используется другой механизм работы с такими ситуациями: исключения.

Что такое исключение? В некотором смысле можно сказать, что исключение — это некоторое сообщение, уведомляющее о проблеме, незапланированном поведении.

В нашем примере с чтением содержимого файла, источником такого сообщения может являться BufferedReader или FileReader. Сообщению необходим получатель/обработчик, чтобы перехватить его и что-то сделать, как-то отреагировать.

Важно понимать, что генерация исключения ломает поток выполнения программы, так как либо это сообщение будет перехвачено и обработано каким-то зарегистрированным получателем, либо программа завершится.

Что значит «ломает поток выполнения программы»?

Представьте, что по дороге едет грузовик. Движение машины и есть поток выполнения программы. Вдруг водитель видит, что впереди разрушенный мост — исключение, ошибка. Теперь он либо поедет по объездной дороге, т.е перехватит и отреагирует на исключение, либо остановится и поездка будет завершена.

Объездная

Исключения могут быть разных типов, под разные ситуации, а значит и получателей(обработчиков) может быть несколько — на каждый отдельный тип может быть своя реакция, свой обработчик.

Исключение также может хранить информацию о возникшей проблеме: причину, описание-комментарий и т.д.
Исходя из описания можно сказать, что исключение — это объект некоторого, специально для этого предназначенного, класса. Так как проблемы и ошибки бывают разного рода, их можно классифицировать и логически разделить, значит и классы исключений можно выстроить в некоторую иерархию.

Как генерировать исключения и регистрировать обработчики мы рассмотрим позднее, а пока давайте взглянем на иерархию этих классов.

Иерархия исключений

Ниже приведена иерархия исключений:

Exception Hierarchy

Картинка большая, чтобы лучше запоминалась.

Для начала разберем загадочные подписи checked и unchecked на рисунке.

Проверяемые и непроверяемые

Все исключения в Java делятся на два типа: проверяемые (checked) и непроверяемые исключения (unchecked).

Как видно на рисунке, java.lang.Throwable и java.lang.Exception относятся к проверяемым исключениям, в то время как java.lang.RuntimeException и java.lang.Error — это непроверяемые исключения.

Принадлежность к тому или иному типу каждое исключение наследует от родителя.
Это значит, что наследники java.lang.RuntimeException будут unchecked исключениями, а наследники java.lang.Exceptionchecked.

Что это за разделение?

В первую очередь напомним, что Java — это компилируемый язык, а значит, помимо runtime(время выполнения кода), существует ещё и compile-time(то, что происходит во время компиляции).

Так вот проверяемые исключения — это исключения, на которые разработчик обязан отреагировать, т.е написать обработчики, и наличие этих обработчиков будет проверено на этапе компиляции. Ваш код не будет скомпилирован, если какое-то проверяемое исключение не обработано, компилятор этого не допустит.

Непроверяемые исключения — это исключения времени выполнения. Компилятор не будет от вас требовать обработки непроверяемых исключений.

В чём же смысл этого разделения на проверяемые и непроверяемые исключения?

Я думаю так: проверяемые исключения в Java — это ситуации, которые разработчик никак не может предотвратить и исключение является одним из вариантов нормальной работы кода.

Например, при чтении файла требуется обрабатывать java.io.FileNotFoundException и java.io.IOException, которые является потомками java.io.Exception.

Потому, что отсутствие файла или ошибка работы с вводом/выводом — это вполне допустимая ситуация при чтении.

С другой стороны, java.lang.RuntimeException — это скорее ошибки разработчика.
Например, java.lang.NullPointerException — это ошибка обращения по null ссылке, данную ситуацию можно предотвратить: проверить ссылку на null перед вызовом.

Представьте, что вы едете по дороге, так вот предупредительные знаки — это проверяемые исключения. Например, знак «Осторожно, дети!» говорит о том, что рядом школа и дорогу может перебежать ребенок. Вы обязаны отреагировать на это, не обязательно ребенок перебежит вам дорогу, но вы не можете это проконтролировать, но в данном месте — это нормальная ситуация, ведь рядом школа.

Делать абсолютно все исключения проерямыми — не имеет никакого смысла, потому что вы просто с ума сойдете, пока будете писать обработчики таких ситуаций. Да и зачастую это будет только мешать: представьте себе дорогу, которая утыкана постоянными предупредительными знаками, на которые вы должны реагировать. Ехать по такой дороге будет крайне утомительно.

Разделение на проверяемые и непроверяемые исключения существует только в Java, в других языках программирования, таких как Scala, Groovy, Kotlin или Python, все исключения непроверяемые.

Это довольно холиварная тема и свои мысли по ней я изложу в конце статьи.

Теперь рассмотрим непосредственно иерархию исключений.

Иерархия

Итак, корнем иерархии является java.lang.Throwable, у которого два наследника: java.lang.Exception и java.lang.Error.
В свою очередь java.lang.Exception является родительским классом для java.lang.RuntimeException.

Занятно, что класс java.lang.Throwable назван так, как обычно называют интерфейсы, что иногда вводит в заблуждение новичков. Однако помните, что это класс! Запомнить это довольно просто, достаточно держать в уме то, что исключения могут содержать состояние (например, информация о возникшей проблеме).

Так как в Java все классы являются наследниками java.lang.Object, то и исключения (будучи тоже классами) наследуют все стандартные методы, такие как equals, hashCode, toString и т.д.

Раз мы работаем с классами, то можно с помощью наследования создавать свои собственные иерархии исключений, добавляя в них какое-то специфическое поведение и состояние.

Чтобы создать свой собственный класс исключение необходимо отнаследоваться от одного из классов в иерархии исключений. При этом помните, что наследуется еще и тип исключения: проверяемое или непроверяемое.

Классификация

Каждый тип исключения отвечает за свою область ошибок.

  1. java.lang.Exception

    Это ситуации, которые разработчик никак не может предотвратить, например, не получилось закрыть файловый дескриптор или отослать письмо, и исключение является одним из вариантов нормальной работы кода.

    Это проверяемые исключения, мы обязаны на такие исключения реагировать, это будет проверено на этапе компиляции.

    Пример: java.io.IOException, java.io.FileNotFoundException.

  2. java.lang.RuntimeException

    Это ситуации, когда основной причиной ошибки является сам разработчик, например, происходит обращение к null ссылке, деление на ноль, выход за границы массива и т.д. При этом исключение не является одним из вариантов нормальной работы кода.

    Это непроверяемые исключения, реагировать на них или нет решает разработчик.

    Пример: java.lang.NullPointerException.

  3. java.lang.Error

    Это критические ошибки, аварийные ситуации, после которых мы с трудом или вообще не в состоянии продолжить работу. Например, закончилась память, переполнился стек вызовов и т.д.

    Это непроверяемые исключения, реагировать на них или нет решает разработчик.

    Реагировать на подобные ошибки следует только в том случае, если разработчик точно знает как поступить в такой ситуации. Перехватывать такие ошибки не рекомендуется, так как чаще всего разработчик не знает как реагировать на подобного рода аварийные ситуации.

Теперь перейдем к вопросу: в чем же разница между java.lang.Error и java.lang.Exception?

Error и Exception

Все просто. Исключения java.lang.Error — это более серьезная ситуация, нежели java.lang.Exception.
Это серьезные проблемы в работе приложения, которые тяжело исправить, либо вообще неясно, можно ли это сделать.

Это не просто исключительная ситуация — это ситуация, в которой работоспособность всего приложения под угрозой! Например, исключение java.lang.OutOfMemoryError, сигнализирующее о том, что кончается память или java.lang.StackOverflowError – переполнение стека вызовов, которое можно встретить при бесконечной рекурсии.

Согласитесь, что если не получается преобразовать строку к числу, то это не та ситуация, когда все приложение должно завершаться. Это ситуация, после которой приложение может продолжить работать.
Да, это неприятно, что вы не смогли найти файл по указанному пути, но не настолько критично, как переполнение стека вызовов.

Т.е разница — в логическом разделении.

Поэтому, java.lang.Error и его наследники используются только для критических ситуаций.

Работа с исключениями

Обработка исключений

Корнем иерархии является класс java.lang.Throwable, т.е. что-то «бросаемое».
А раз исключения бросаются, то для обработки мы будем ловить их!

В Java исключения ловят и обрабатывают с помощью конструкции try/catch/finally.

При заключении кода в один или несколько блоков try указывается потенциальная возможность выбрасывания исключения в этом месте, все операторы, которые могут сгенерировать исключение, помещаются в этом блоке.

В блоках catch перечисляются исключения, на которые решено реагировать. Тут определяются блоки кода, предназначенные для решения возникших проблем. Это и есть объявление тех самых получателей/обработчиков исключений.

Пример:

public class ExceptionHandling {
    public static void main(String[] args) {
        try {
             // код
        } catch(FileNotFoundException fnf) {
            // обработчик на FileNotFoundException
        }
    }
}

Тот тип исключения, что указывается в catch блоке можно расценивать как фильтр, который перехватывает все исключения того типа, что вы указали и всех его потомков, расположенных ниже по иерархии.

Представьте себе просеивание муки. Это процесс целью которого является удаление посторонних частиц, отличающихся по размерам от частиц муки. Вы просеиваете через несколько фильтров муку, так как вам не нужны крупные комочки, осколки и другие посторонние частицы, вам нужна именно мука определенного качества. И в зависимости от выставленных фильтров вы будете перехватывать разные частицы, комочки и т.д. Эти частицы и есть исключения. И если выставляется мелкий фильтр, то вы словите как крупные частицы, так и мелкие.

Точно также и в Java, ставя фильтр на java.lang.RuntimeException вы ловите не только java.lang.RuntimeException, но и всех его наследников! Ведь эти потомки — это тоже runtime ошибки!

В блоке finally определяется код, который будет всегда выполнен, независимо от результата выполнения блоков try/catch. Этот блок будет выполняться независимо от того, выполнился или нет блок try до конца, было ли сгенерировано исключение или нет, и было ли оно обработано в блоке catch или нет.

Пример:

public class ExceptionHandling {
    public static void main(String[] args) {
        try {
             // some code
        } catch(FileNotFoundException fnf) {
            // обработчик 1
        } catch(RuntimeException re) {
            // обработчик 2
        } finally {
            System.out.println("Hello from finally block.");
        }
    }
}

В примере выше объявлен try блок с кодом, который потенциально может сгенерировать исключения, после try блока описаны два обработчика исключений, на случай генерации FileNotFoundException и на случай генерации любого RuntimeException.
Объект исключения доступен по ссылке exception.

Правила try/catch/finally

  1. Блок try находится перед блоком catch или finally. При этом должен присутствовать хотя бы один из этих блоков.

  2. Между try, catch и finally не может быть никаких операторов.

  3. Один блок try может иметь несколько catch блоков. В таком случае будет выполняться первый подходящий блок.

    Поэтому сначала должны идти более специальные блоки обработки исключений, а потом уже более общие.

  4. Блок finally будет выполнен всегда, кроме случая, когда JVM преждевременно завершит работу или будет сгенерировано исключение непосредственно в самом finally блоке.

  5. Допускается использование вложенных конструкций try/catch/finally.

    public class ExceptionHandling {
        public static void main(String[] args) {
            try {
                 try {
                    // some code
                } catch(FileNotFoundException fnf) {
                    // обработчик 1
                }
            } catch(RuntimeException re) {
                // обработчик 2
            } finally {
                System.out.println("Hello from finally block.");
            }
        }
    }

Вопрос:

Каков результат выполнения примера выше, если в блоке try не будет сгенерировано ни одного исключения?

Ответ:

Будет выведено на экран: «Hello from finally block.».

Так как блок finally выполняется всегда.


Вопрос:

Теперь немного видоизменим код, каков результат выполнения будет теперь?

public class ExceptionHandling {
  public static void main(String[] args) {
    try {
         return;
    } finally {
         System.out.println("Hello from finally block");
    }
  }
}

Ответ:

На экран будет выведено: Hello from finally block.


Вопрос:

Плохим тоном считается прямое наследование от java.lang.Throwable.
Это строго не рекомендуется делать, почему?

Ответ:

Наследование от наиболее общего класса, а в данном случае от корневого класса иерархии, усложняет обработку ваших исключений. Проблему надо стараться локализовать, а не делать ее описание/объявление максимально общим. Согласитесь, что java.lang.IllegalArgumentException говорит гораздо больше, чем java.lang.RuntimeException. А значит и реакция на первое исключение будет более точная, чем на второе.


Далее приводится несколько примеров перехвата исключений разных типов:

Обработка java.lang.RuntimeException:

try {
    String numberAsString = "one";
    Double res = Double.valueOf(numberAsString);
} catch (RuntimeException re) {
    System.err.println("Error while convert string to double!");
}

Результатом будет печать на экран: Error while convert string to double!.

Обработка java.lang.Error:

try {
    throw new Error();
} catch (RuntimeException re) {
    System.out.println("RuntimeException");
} catch (Error error) {
    System.out.println("ERROR");
}

Результатом будет печать на экран: ERROR.

Расположение catch блоков

Как уже было сказано, один блок try может иметь несколько catch блоков. В таком случае будет выполняться первый подходящий блок.

Это значит, что порядок расположения catch блоков важен.

Рассмотрим ситуацию, когда некоторый используемый нами метод может выбросить два разных исключения:

void method() throws Exception {
    if (new Random((System.currentTimeMillis())).nextBoolean()) {
        throw new Exception();
    } else {
       throw new IOException();
    }
}

Конструкция new Random((System.currentTimeMillis())).nextBoolean() генерирует нам случайное значение false или true.

Для обработки исключений этого метода написан следующий код:

try {
  method();
} catch (Exception e) {
  // Обработчик 1
} catch (IOException e) {
  // Обработчик 2
}

Все ли хорошо с приведенным выше кодом?
Нет, код выше неверен, так как обработчик java.io.IOException в данном случае недостижим. Все дело в том, что первый обработчик, ответсвенный за Exception, перехватит все исключения, а значит не может быть ситуации, когда мы сможем попасть во второй обработчик.

Снова вспомним пример с мукой, приведенный в начале.

Так вот песчинка, которую мы ищем, это и есть наше исключение, а каждый фильтр это catch блок.

Если первым установлен фильтр ловить все, что является Exception и его потомков, то до фильтра ловить все, что является IOException и его потомков ничего не дойдет, так как верхний фильтр уже перехватит все песчинки.

Отсюда следует правило:

Сначала должны идти более специальные блоки обработки исключений, а потом уже более общие.

А что если на два разных исключения предусмотрена одна и та же реакция? Написание двух одинаковых catch блоков не приветствуется, ведь дублирование кода — это зло.

Поэтому допускается объединить два catch блока с помощью |:

try {
    method2();
} catch (IllegalArgumentException | IndexOutOfBoundsException e) {
    // Обработчик
}

Вопрос:

Есть ли способ перехватить все возможные исключения?

Ответ:

Есть! Если взглянуть еще раз на иерархию, то можно отметить, что java.lang.Throwable является родительским классом для всех исключений, а значит, чтобы поймать все, необходимо написать что-то в виде:

try {
  method();
} catch (Throwable t) {
  // Обработчик
}

Однако, делать так не рекомендуется, что наталкивает на следующий вопрос.


Вопрос:

Почему перехватывать java.lang.Throwable — плохо?

Ответ:

Дело в том, что написав:

try {
  method();
} catch (Throwable t) {
  // catch all
}

Будут перехвачены абсолютно все исключения: и java.lang.Exception, и java.lang.RuntimeException, и java.lang.Error, и все их потомки.

И как реагировать на все? При этом надо учесть, что обычно на java.lang.Error исключений вообще не ясно как реагировать. А значит, мы можем неверно отреагировать на исключение и вообще потерять данные. А ловить то, что не можешь и не собирался обрабатывать — плохо.

Поэтому перехватывать все исключения — плохая практика.


Вопрос-Тест:

Что будет выведено на экран при запуске данного куска кода?

public static void main(String[] args) {
    try {
        try {
            throw new Exception("0");
        } finally {
            if (true) {
                throw new IOException("1");
            }

            System.err.println("2");
        }
    } catch (IOException ex) {
        System.err.println(ex.getMessage());
    } catch (Exception ex) {
        System.err.println("3");
        System.err.println(ex.getMessage());
    }
}

Ответ:

При выполнении данного кода выведется «1».
Давайте разберем почему.

Мы кидаем исключение во вложенном try блоке: throw new Exception("0");.

После этого поток программы ломается и мы попадаем в finally блок:

if (true) {
    throw new IOException("1");
}

System.err.println("2");

Здесь мы гарантированно зайдем в if и кинем уже новое исключение: throw new IOException("1");.
При этом вся информация о первом исключении будет потеряна! Ведь мы никак не отреагировали на него, а в finally блоке и вовсе ‘перезатерли’ новым исключением.

На try, оборачивающий наш код, настроено два фильтра: первый на IOException, второй на Exception.

Так как порядок расположения задан так, что мы прежде всего смотрим на IOException, то и сработает этот фильтр, который выполнит следующий код:

System.err.println(ex.getMessage());

Именно поэтому выведется 1.


Транзакционность

Важным моментом, который нельзя пропустить, является то, что try блок не транзакционный.

Под термином транзакционность я имею в виду то, что либо действия будут выполнены целиком и успешно, либо не будут выполнены вовсе.

Что это значит?

Это значит, что при возникновении исключения в try блоке все совершенные действия не откатываются к изначальному состоянию, а так и остаются совершенными.
Все выделенные ресурсы так и остаются занятыми, в том числе и при возникновении исключения.

По сути именно поэтому и существует finally блок, так как туда, как уже было сказано выше, мы зайдем в любом случае, то там и освобождают выделенные ресурсы.


Вопрос:

Работа с объектами из try блока в других блоках невозможна:

public class ExceptionExample {
    public static void main(String[] args) {
        try {
            String line = "hello";
        } catch (Exception e) {
            System.err.println(e);
        }

        // Compile error
        System.out.println(line); // Cannot resolve symbol `line`
    }
}

Почему?

Ответ:

Потому что компилятор не может нам гарантировать, что объекты, объявленные в try-блоке, были созданы.

Ведь могло быть сгенерировано исключение. Тогда после места, где было сгенерировано исключение, оставшиеся действия не будут выполнены, а значит возможна ситуация, когда объект не будет создан. Следовательно и работать с ним нельзя.


Вернемся к примеру с грузовиком, чтобы объяснить все вышесказанное.

Объездная

Объездная здесь — это catch блок, реакция на исключительную ситуацию. Если добавить еще несколько объездных дорог, несколько catch блоков, то водитель выберет наиболее подходящий путь, наиболее подходящий и удобный catch блок, что объясняет важность расположения этих блоков.

Транзакционность на этом примере объясняется тем, что если до этого водитель где-то оплатил проезд по мосту, то деньги ему автоматически не вернутся, необходимо будет написать в поддержку или куда-то пожаловаться на управляющую компанию.

Делегирование

Выше было разобрано то, как обрабатывать исключения. Однако, иногда возникают ситуации, когда в нет конкретного понимания того, как обрабатывать возникшее исключение. В таком случае имеет смысл делегировать задачу обработки исключения коду, который вызвал ваш метод, так как вызывающий код чаще всего обладает более обширными сведениями об источнике проблемы или об операции, которая сейчас выполняется.

Делегирование исключения производится с помощью ключевого слова throws, которое добавляется после сигнатуры метода.

Пример:

// Код написан только для ознакомительной цели, не стоит с него брать пример!
String readLine(String path) throws IOException {
    BufferedReader br = new BufferedReader(...);
    String line = br.readLine();

    return line;
}

Таким образом обеспечивается передача объявленного исключения в место вызова метода. И то, как на него реагировать уже становится заботой вызывающего этот метод.
Поэтому реагировать и писать обработчики на те исключения, которые мы делегировали, внутри метода уже не надо.

Механизм throws введен для проброса проверяемых исключений.

Разумеется, с помощью throws можно описывать делегирование как проверяемых, так и непроверяемых исключений.
Однако перечислять непроверяемые не стоит, такие исключения не контролируются в compile time.

Перечисление непроверяемых исключений бессмысленно, так как это примерно то же самое, что перечислять все, что может с вами случиться на улице.

Теперь пришла пора рассмотреть методы обработки исключительных ситуаций.

Методы и практики работы с исключительными ситуацими

Главное и основное правило при работе с исключениями звучит так:

На исключения надо либо реагировать, либо делегировать, но ни в коем случае не игнорировать.

Определить когда надо реагировать, а когда делегировать проще простого. Задайте вопрос: «Знаю ли я как реагировать на это исключение?».

Если ответ «да, знаю», то реагируйте, пишите обработчик и код, отвечающий за эту реакцию, если не знаете что делать с исключением, то делегируйте вызывающему коду.

Собственные исключения

Выше мы уже затронули то, что исключения это те же классы и объекты.
И иногда удобно выстроить свою иерархию исключений, заточенных под конкретную задачу. Дабы более гибко обрабатывать и реагировать на те исключительные ситуации, которые специфичны решаемой задаче.

Например, пусть есть некоторый справочник:

class Catalog {
    Person findPerson(String name);
}

В данном случае нам надо обработать ситуации, когда name является null, когда в каталоге нет пользователя с таким именем.

Если генерировать на все ситуации java.lang.Exception, то обработка ошибок будет крайне неудобной.
Более того, хотелось бы явно выделить ошибку, связанную с тем, что пользователя такого не существует.
Очевидно, что стандартное исключение для этого случая не существует, а значит вполне логично создать свое.

class PersonNotFoundException extends RuntimeException {
    private String name;

    // some code
}

Обратите внимание, что имя Person, по которому в каталоге не смогли его найти, выделено в свойство класса name.

Теперь при использовании этого метода проще реагировать на различные ситуации, такие как null вместо имени, а проблему с отсутствием Person в каталоге можно отдельно вынести в свой catch блок.

Реагирование через re-throw

Часто бывает необходимо перехватить исключение, сделать запись о том, что случилось (в файл лога, например) и делегировать его вызывающему коду.
Как уже было сказано выше, в рамках конструкции try/catch/finally можно сгенерировать другое исключение.

Такой подход называется re-throw.

Исключение перехватывается в catch блоке, совершаются необходимые действия, например, запись в лог или создание нового, более конкретного для контекста задачи, исключения и повторная генерация исключения.

Как это выглядит на практике:

try {
    Reader readerConf = ....
    readerConf.readConfig();
} catch(IOException ex) {
    System.err.println("Log exception: " + ex);
    throw new ConfigException(ex);
}

Во время чтения конфигурационного файла произошло исключение java.io.IOException, в catch блоке оно было перехвачено, сделана запись в консоль о проблеме, после чего было создано новое, более конкретное, исключение ConfigException, с указанием причины (перехваченное исключение, ссылка на которое ex) и оно было проброшено дальше.

По итогу, из метода с приведенным кодом, в случае ошибки чтения конфигурации, будет выброшено ConfigException.

Для чего мы здесь так поступили?

Это полезно для более гибкой обработки исключений.
В примере выше чтение конфигурации генерирует слишком общее исключение, так как java.io.IOException это довольно общее исключение, но проблема в примере выше понятна: работа с этим конфигурационным файлом невозможна.

Значит и сообщить лучше именно как о том, что это не абстрактный java.io.IOException, а именно ConfigException. При этом, так как перехваченное исключение было передано новому в конструкторе, т.е. указалась причина возникновения (cause) ConfigException, то при выводе на консоль или обработке в вызывающем коде будет понятно почему ConfigException был создан.

Также, можно было добавить еще и текстовое описание к сгенерированному ConfigException, более подробно описывающее произошедшую ситуацию.

Еще одной важной областью применения re-throw бывает преобразование проверяемых исключений в непроверяемые.
В Java 8 даже добавили исключение java.io.UncheckedIOException, которое предназначено как раз для того, чтобы сделать java.io.IOException непроверяемым, обернуть в unchecked обертку.

Пример:

try {
    Reader readerConf = ....
    readerConf.readConfig();
} catch(IOException ex) {
    System.err.println("Log exception: " + ex);
    throw new UncheckedIOException(ex);
}

Не забывайте указывать причину возникновения исключения

В предыдущем пункте мы создали собственное исключение, которому указали причину: перехваченное исключение, java.io.IOException.

Чтобы понять как это работает, давайте рассмотрим наиболее важные поля класса java.lang.Throwable:

public class Throwable implements Serializable {

    /**
     * Specific details about the Throwable.  For example, for
     * {@code FileNotFoundException}, this contains the name of
     * the file that could not be found.
     *
     * @serial
     */
    private String detailMessage;

    // ...


    /**
     * The throwable that caused this throwable to get thrown, or null if this
     * throwable was not caused by another throwable, or if the causative
     * throwable is unknown.  If this field is equal to this throwable itself,
     * it indicates that the cause of this throwable has not yet been
     * initialized.
     *
     * @serial
     * @since 1.4
     */
    private Throwable cause = this;

    // ...
}

Все исключения, будь то java.lang.RuntimeException, либо java.lang.Exception имеют необходимые конструкторы для инициализации этих полей.

При создании собственного исключения не пренебрегайте этими конструкторами!

Поле cause используются для указания родительского исключения, причины. Например, выше мы перехватили java.io.IOException, прокинув свое исключение вместо него. Но причиной того, что наш код выкинул ConfigException было именно исключение java.io.IOException. И эту причину нельзя игнорировать.

Представьте, что код, использующий ваш метод также перехватил ConfigException, пробросив какое-то своё исключение, а это исключение снова кто-то перехватил и пробросил свое. Получается, что истинная причина будет просто потеряна! Однако, если каждый будет указывать cause, истинного виновника возникновения исключения, то вы всегда сможете обнаружить по этому стеку виновника.

Для получения причины возникновения исключения существует метод getCause.

public class ExceptionExample {
    public Config readConfig() throws ConfigException { // (1)
      try {
        Reader readerConf = ....;
        readerConf.readConfig();
      } catch (IOException ex) {
          System.err.println("Log exception: " + ex);
          throw new ConfigException(ex); // (2)
      }
    }

    public void run() {
        try {
            Config config = readConfig(); // (3)
        } catch (ConfigException e) {
            Throwable t = e.getCause(); // (4)
        }
    }
}

В коде выше:

  1. В строке (1) объявлен метод readConfig, который может выбросить ConfigException.
  2. В строке (2) создаётся исключение ConfigException, в конструктор которого передается IOException — причина возникновения.
  3. readConfig вызывается в (3) строке кода.
  4. А в (4) вызван метод getCause который и вернёт причину возникновения ConfigExceptionIOException.

Сохранение исключения

Исключения необязательно генерировать, пробрасывать и так далее.
Выше уже упоминалось, что исключение — это Java-объект. А значит, его вполне можно присвоить переменной или свойству класса, передать по ссылке в метод и т.д.

class Reader {
    // A holder of the last IOException encountered
    private IOException lastException;

    // some code
    
    public void read() {
        try {
            Reader readerConf = ....
            readerConf.readConfig();
        } catch(IOException ex) {
            System.err.println("Log exception: " + ex);
            lastException = ex;
        }
    }
}

Генерация исключения это довольно дорогостоящая операция. Кроме того, исключения ломают поток выполнения программы. Чтобы не ломать поток выполнения, но при этом иметь возможность в дальнейшем отреагировать на исключительную ситуацию можно присвоить ее свойству класса или переменой.

Подобный прием использован в java.util.Scanner, где генерируемое исключение чтения потока сохраняется в свойство класса lastException.

Еще одним способом применения сохранения исключения может являться ситуация, когда надо сделать N операций, какие-то из них могут быть не выполнены и будет сгенерировано исключение, но реагировать на эти исключения будут позже, скопом.

Например, идет запись в базу данных тысячу строк построчно.
Из них 100 записей происходит с ошибкой.
Эти исключения складываются в список, а после этот список передается специальному методу, который по каждой ситуации из списка как-то отреагирует.
Т.е пока делаете операцию, копите ошибки, а потом уже реагируете.

Это похоже на то, как опрашивают 1000 человек, а негативные отзывы/голоса записывают, после чего реагируют на них. Согласитесь, было бы глупо после каждого негативного отзыва осуществлять реакцию, а потом снова возвращаться к толпе и продолжать опрос.

class Example {
    private List<Exception> exceptions;

    // some code
    
    public void parse(String s) {
        try {
            // do smth
        } catch(Exception ex) {
            exceptions.add(ex);
        }
    }

    private void handleExceptions()  {
        for(Exception e : exceptions) {
            System.err.println("Log exception: " + e);
        }
    }
}

Логирование

Когда логировать исключение?

В большинстве случаев лучше всего логировать исключение в месте его обработки. Это связано с тем, что именно в данном месте кода достаточно информации для описания возникшей проблемы — реакции на исключение. Кроме этого, одно и то же исключение при вызове одного и того же метода можно перехватывать в разных местах программы.

Также, исключение может быть частью ожидаемого поведения. В этом случае нет необходимости его логировать.

Поэтому не стоит преждевременно логировать исключение, например:

/**
 * Parse date from string to java.util.Date.
 * @param date as string 
 * @return Date object.
 */
public static Date from(String date) {
    try {
        DateFormat format = new SimpleDateFormat("MMMM d, yyyy", Locale.ENGLISH);
        return format.parse(date);
    }  catch (ParseException e) {
        logger.error("Can't parse ")
        throw e;
    }
}

Здесь ParseException является частью ожидаемой работы, в ситуациях, когда строка содержит невалидные данные.
Раз происходит делегирование исключения выше (с помощью throw), то и там, где его будут обрабатывать и лучше всего логировать, а эта запись в лог будет избыточной. Хотя бы потому, что в месте обработки исключения его тоже залогируют!

Подробнее о логировании.

Чего нельзя делать при обработке исключений

  1. Старайтесь не игнорировать исключения.

    В частности, никогда не пишите подобный код:

        try {
            Reader readerConf = ....
            readerConf.readConfig();
        } catch(IOException e) {
            e.printStackTrace();
        }
  2. Не следует писать ‘универсальные’ блоки обработки исключений.

    Ведь очень трудно представить себе метод, который одинаково реагировал бы на все возникающие проблемы.

    Также программный код может измениться, а ‘универсальный’ обработчик исключений будет продолжать обрабатывать новые типы исключений одинаково.

    Поэтому таких ситуаций лучше не допускать.

  3. Старайтесь не преобразовывать более конкретные исключения в более общие.

    В частности, например, не следует java.io.IOException преобразовывать в java.lang.Exception или в java.lang.Throwable.

    Чем с более конкретными исключениями идет работа, тем проще реагировать и принимать решения об их обработке.

  4. Старайтесь не злоупотреблять исключениями.

    Если исключение можно не допустить, например, дополнительной проверкой, то лучше так и сделать.

    Например, можно обезопасить себя от java.lang.NullPointerException простой проверкой:

      if(ref != null) {
          // some code
      }

Try-with-resources или try-с-ресурсами

Как уже говорилось выше про finally блок, код в нем выполняется в любом случае, что делает его отличным кандидатом на место по освобождению ресурсов, учитывая нетранзакционность блока try.

Чаще всего за закрытие ресурса будет отвечать код, наподобие этого:

try {
    // code
} finally {
    resource.close();
}

Освобождение ресурса (например, освобождение файлового дескриптора) — это поведение.

А за поведение в Java отвечают интерфейсы.

Это наталкивает на мысль, что нужен некоторый общий интерфейс, который бы реализовывали все классы, для которых необходимо выполнить какой-то код по освобождению ресурсов, т.е выполнить ‘закрытие’ в finally блоке и еще удобнее, если бы этот однообразный finally блок не нужно было писать каждый раз.

Поэтому, начиная с Java 7, была введена конструкция try-with-resources или TWR.

Для этого объявили специальный интерфейс java.lang.AutoCloseable, у которого один метод:

void close() throws Exception;

Все классы, которые будут использоваться так, как было описано выше, должны реализовать или java.lang.Closable, или java.lang.AutoCloseable.

В качестве примера, напишем код чтения содержимого файла и представим две реализации этой задачи: используя и не используя try-with-resources.

Без использования try-with-resources (пример ниже плох и служит только для демонстрации объема необходимого кода):

BufferedReader br = null;
try {
    br = new BufferedReader(new FileReader(path));
    // read from file
} catch (IOException e) {
    // catch and do smth
} finally {
    try {
        if (br != null) {
            br.close();
        }
    } catch (IOException ex) {
        // catch and do smth
    }
}

А теперь то же самое, но в Java 7+:

try (FileReader fr = new FileReader(path);
    BufferedReader br = new BufferedReader(fr)) {
         // read from file
} catch (IOException e) {
         // catch and do smth
}

По возможности пользуйтесь только try-with-resources.

Помните, что без реализации java.lang.Closable или java.lang.AutoCloseable ваш класс не будет работать с try-with-resources так, как показано выше.


Вопрос:

Получается, что используя TWR мы не пишем код для закрытия ресурсов, но при их закрытии может же тоже быть исключение! Что произойдет?

Ответ:

Точно так же, как и без TWR, исключение выбросится так, будто оно было в finally-блоке.

Помните, что TWR, грубо говоря, просто добавляет вам блок кода вида:

finally {
    resource.close();
}

Вопрос:

Является ли безопасной конструкция следующего вида?

try (BufferedWriter bufferedWriter
        = new BufferedWriter(new OutputStreamWriter(new FileOutputStream("a")))) {
}

Ответ:

Не совсем, если конструктор OutputStreamWriter или BufferedWriter выбросит исключение, то FileOutputStream закрыт не будет.

Пример, демонстрирующий это:

public class Main {
    public static void main(String[] args) throws Exception {
        try (ThrowingAutoCloseable throwingAutoCloseable
                     = new ThrowingAutoCloseable(new PrintingAutoCloseable())) { // (1)
        }
    }

    private static class ThrowingAutoCloseable implements AutoCloseable { // (2)
        private final AutoCloseable other;

        public ThrowingAutoCloseable(AutoCloseable other) {
            this.other = other;
            throw new IllegalStateException("I always throw"); // (3)
        }

        @Override
        public void close() throws Exception {
            try {
                other.close(); // (4)
            } finally {
                System.out.println("ThrowingAutoCloseable is closed");
            }
        }
    }

    private static class PrintingAutoCloseable implements AutoCloseable { // (5)
        public PrintingAutoCloseable() {
            System.out.println("PrintingAutoCloseable created"); // (6)
        }

        @Override
        public void close() {
            System.out.println("PrintingAutoCloseable is closed"); // (7)
        }
    }
}
  1. В строке (1) происходит заворачивание одного ресурса в другой, аналогично new BufferedWriter(new OutputStreamWriter(new FileOutputStream("a"))).
  2. ThrowingAutoCloseable (2) — такой AutoCloseable, который всегда бросает исключение (3), в (4) производится попытка закрыть полученный в конструкторе AutoCloseable.
  3. PrintingAutoCloseable (5) — AutoCloseable, который печатает сообщения о своём создании (6) и закрытии (7).

В результате выполнения этой программы вывод будет примерно следующим:

PrintingAutoCloseable created
Exception in thread "main" java.lang.IllegalStateException: I always throw
    at ru.misc.Main$ThrowingAutoCloseable.<init>(Main.java:19)
    at ru.misc.Main.main(Main.java:9)

Как видно, PrintingAutoCloseable закрыт не был!


Вопрос:

В каком порядке закрываются ресурсы, объявленные в try-with-resources?

Ответ:

В обратном.

Пример:

public class Main {
    public static void main(String[] args) throws Exception {
        try (PrintingAutoCloseable printingAutoCloseable1 = new PrintingAutoCloseable("1");
             PrintingAutoCloseable printingAutoCloseable2 = new PrintingAutoCloseable("2");
             PrintingAutoCloseable printingAutoCloseable3 = new PrintingAutoCloseable("3")) {
        }
    }

    private static class PrintingAutoCloseable implements AutoCloseable {
        private final String id;

        public PrintingAutoCloseable(String id) {
            this.id = id;
        }

        @Override
        public void close() {
            System.out.println("Closed " + id);
        }
    }
}

Вывод:

Closed 3
Closed 2
Closed 1

Общие советы

Избегайте генерации исключений, если их можно избежать простой проверкой

Как уже было сказано выше, исключения ломают поток выполнения программы. Если же на сгенерированное исключение не найдется обработчика, не будет подходящего catch блока, то программа и вовсе будет завершена. Кроме того, генерация исключения это довольно дорогостоящая операция.

Помните, что если исключение можно не допустить, то лучше так и сделать.

Отсюда следует первый совет: не брезгуйте дополнительными проверками.

  1. Не ловите IllegalArgumentException, NullPointerException, ArrayIndexOutOfBoundsException и подобные.
    Потому что эти ошибки — это явная отсылка к тому, что где-то недостает проверки.
    Обращение по индексу за пределами массива, NullPointerException, все эти исключения — это ошибка разработчика.
  2. Вводите дополнительные проверки на данные, дабы избежать возникновения непроверяемых исключения

Например, запретите вводить в поле возраста не числовые значения, проверяйте ссылки на null перед обращением и т.д.

Предпочитайте Optional, если отсутствие значения — не исключительная ситуация

При написании API к каким-то хранилищам или коллекциям очень часто на отсутствие элемента генерируется исключение, как например в разделе собственные исключения.

class Catalog {
    Person findPerson(String name);
}

Но и в этом случае генерации исключения можно избежать, если воспользоваться java.util.Optional:

Optional<Person> findPerson(String name);

Класс java.util.Optional был добавлен в Java 8 и предназначен как раз для подобных ситуаций, когда возвращаемого значения может не быть. В зависимости от задачи и контекста можно как генерировать исключение, как это сделано в примере с PersonNotFoundException, так и изменить сигнатуру метода, воспользовавшись java.util.Optional.

Отсюда следует второй совет: думайте над API ваших классов, исключений можно избежать воспользовавшись другим подходом.

Заранее обдумывайте контракты методов

Важным моментом, который нельзя не упомянуть, является то, что если в методе объявляется, что он может сгенерировать исключение (с помощью throws), то при переопределении такого метода нельзя указать более общее исключение в качестве выбрасываемого.

class Person {
    void hello() throws RuntimeException {
        // some code
    }
}

// Compile Error
class PPerson extends Person {
    @Override
    void hello() throws Exception {
        // some code
    }
}

Если было явно указано, что метод может сгенерировать java.lang.RuntimeException, то нельзя объявить более общее бросаемое исключение при переопределении. Но можно указать потомка:

// IllegalArgumentException - потомок RuntimeException!
class PPerson extends Person {
    @Override
    void hello() throws IllegalArgumentException {
        // some code
    }
}

Что, в целом логично.

Если объявляется, что метод может сгенерировать java.lang.RuntimeException, а он выбрасывает java.io.IOException, то это было бы как минимум странно.

Это объясняется и с помощью полимофризма. Пусть есть интерфейс, в котором объявлен метод, генерирующий исключение. Если полиморфно работать с объектом через общий интерфейс, то разработчик обязан обработать исключение, объявленное в интерфейсе, а если одна из реализаций интерфейса генерирует более общее исключение, то это нарушает полиморфизм. Поэтому такой код даже не скомпилируется.

При этом при переопределении можно вообще не объявлять бросаемые исключения, таким образом сообщив, что все проблемы будут решены в методе:

class PPerson extends Person {
    @Override
    void hello() {
        // some code
    }
}

Отсюда следует третий совет: необходимо думать о тех исключениях, которые делегирует метод, если класс может участвовать в наследовании.

Предпочитайте исключения кодам ошибок и boolean флагам-признакам успеха

  1. Исключения более информативны: они позволяют передать сообщение с описанием ошибки
  2. Исключение практически невозможно проигнорировать
  3. Исключение может быть обработано кодом, находящимся выше по стеку, а boolean-флаг или код ошибки необходимо обрабатывать здесь и сейчас

Исключения и статические блоки

Еще интересно поговорить про то, что происходит, если исключение возникает в статическом блоке.

Так вот, такие исключения оборачиваются в java.lang.ExceptionInInitializerError:

public class ExceptionHandling {
    static {
        throwRuntimeException();
    }

    private static void throwRuntimeException()  {
        throw new NullPointerException();
    }

    public static void main(String[] args)  {
        System.out.println("Hello World");
    }
}

Результатом будет падение со следующим стектрейсом:

java.lang.ExceptionInInitializerError Caused by: java.lang.NullPointerException at exception.test.ExceptionHandling.throwRuntimeException(ExceptionHandling.java:13) at exception.test.ExceptionHandling. (ExceptionHandling.java:8)

Многопоточность и исключения

Код в Java потоке выполняется в методе со следующей сигнатурой:

Что делает невозможным пробрасывание проверяемых исключений, т.е разработчик должен обрабатывать все проверяемые исключения внутри метода run.

Непроверяемые исключения обрабатывать необязательно, однако необработанное исключение, выброшенное из run, завершит работу потока.

Например:

public class ExceptionHandling4 {
  public static void main(String[] args) throws InterruptedException {
    Thread t = new Thread() {
        @Override
        public void run() {
                throw new RuntimeException("Testing unhandled exception processing.");
         }
    };
    t.start();
  }
}

Результатом выполнения этого кода будет то, что возникшее исключение прервет поток исполнения (interrupt thread):

Exception in threadThread-0java.lang.RuntimeException: Testing unhandled exception processing. at exception.test. ExceptionHandling4$1.run(ExceptionHandling4.java:27)

При использовании нескольких потоков бывают ситуации, когда надо знать, как поток завершился, из-за какого именно исключения. И, разумеется, отреагировать на это.

В таких ситуациях рекомендуется использовать Thread.UncaughtExceptionHandler.

t.setUncaughtExceptionHandler(new Thread.UncaughtExceptionHandler() {
          public void uncaughtException(Thread t, Throwable e)   {
             System.out.println("Handled uncaught exception in thread :" + t + " Exception : " + e);
         }
  });

И вывод уже будет:

Handled uncaught exception in thread :Thread[Thread-0,5,main] Exception : java.lang.RuntimeException: Testing unhandled exception processing.

Необработанное исключение RuntimeException("Testing unhandled exception processing."), убившее поток, было перехвачено специальным зарегистрированным обработчиком.

Проверяемые исключения и их необходимость

В большинстве языков программирования, таких как C#, Scala, Groovy, Python и т.д., нет такого разделения, как в Java, на проверяемые и непроверяемые исключения.
Почему оно введено в Java было разобрано выше, а вот почему проверяемые исключения недолюбливают разработчики?

Основных причин две, это причины с: версионированием и масштабируемостью.

Представим, что вы, как разработчик библиотеки, объявили некоторый условный метод foo, бросающий исключения A, B и C:

void foo() throws A, B, C;

В следующей версии библиотеки в метод foo добавили функциональности и теперь он бросает еще новое исключение D:

void foo() throws A, B, C, D;

В таком случае новая версия библиотеки сломает код тех, кто ей пользуется. Это сравнимо с тем, что добавляется новый метод в интерфейс.

И с одной стороны, это правильно, так как в новой версии добавляется еще одно исключение и те, кто использует библиотеку должны отреагировать на все новые исключения. С другой стороны, чаще всего такие исключения будут также проброшены дальше. Все дело в том, что случаев, когда можно обработать специфический тип исключения, например тот же D или A в примере выше, и сделать в обработчике что-то интеллектуальное, можно пересчитать по пальцам одной руки.

Проблема с масштабируемостью начинается тогда, когда происходит вызов не одного, а нескольких API, каждый из которых также несет с собой проверяемые исключения. Представьте, что помимо foo, бросающего A, B, C и D, в методе hello вызывается еще и bar, который также бросает E и T исключения. Как сказано выше, как реагировать чаще всего непонятно, поэтому эти исключения делегируются вызывающему коду, из-за чего объявление метода hello выглядит совсем уж угрожающе:

void hello() throws A, B, C, D, E, T {
    try {
        foo();
        bar();
    } finally {
        // clear resources if needed
    }
}

Все это настолько раздражающе, что чаще всего разработчики просто объявляют наиболее общее исключение в throws:

void hello() throws Exception {
    try {
        foo();
        bar();
    } finally {
        // clear resources if needed
    }
}

А в таком случае это все равно, что сказать «метод может выбросить исключение» — это настолько общие и абстрактные слова, что смысла в throws Exception практически нет.

Также есть еще одна проблема с проверяемыми исключениями. Это то, что с проверяемыми исключениями крайне неудобно работать в lambda-ах и stream-ах:

// compilation error
    Lists.newArrayList("a", "asg").stream().map(e -> {throw new Exception();});

Так как с Java 8 использование lambda и stream-ов распространенная практика, то накладываемые ограничения вызовут дополнительные трудности при использовании проверяемых исключений.

Поэтому многие разработчики недолюбливают проверяемые исключения, например, оборачивая их в непроверяемые аналоги с помощью re-throw.

Мое мнение таково: на проверяемых исключениях очень хорошо учиться. Компилятор и язык сами подсказывают вам, что нельзя игнорировать исключения и требуют от вас реакции. Опять же, логическое разделение на проверяемые и непроверяемые помогает в понимании исключений, в понимании того, как и на что реагировать. В промышленной же разработке это становится уже больше раздражающим фактором.

В своей работе я стараюсь чаще использовать непроверяемые исключения, а проверяемые оборачивать в unchecked аналоги, как, например, java.io.IOException и java.io.UncheckedIOException.

Заключение

Иерархия исключений в Java.

Exception Hierarchy

Исключения делятся на два типа: непроверяемые(unchecked) и проверяемые(checked). Проверяемые исключения — это исключения, которые проверяются на этапе компиляции, мы обязаны на них отреагировать.

Проверяемые исключения в Java используются тогда, когда разработчик никак не может предотвратить их возникновение. Причину возникновения java.lang.RuntimeException можно проверить и устранить заранее, например, проверить ссылку на null перед вызовом метода, на объекте по ссылке. А вот с причинами проверяемых исключений так сделать не получится, так как ошибка при чтении файла может возникнуть непосредственно в момент чтения, потому что другая программа его удалила. Соответственно, при чтении файла требуется обрабатывать java.io.IOException, который является потомком java.lang.Exception.

Допускается создание собственных исключений, признак проверяемости или непроверяемости наследуется от родителя. Исключения — это такие же классы, со своим поведением и состоянием, поэтому при наследовании вполне допускается добавить дополнительное поведение или свойства классу.

Обработка исключений происходит с помощью конструкции try/catch/finally. Один блок try может иметь несколько catch блоков. В таком случае будет выполняться первый подходящий блок.

Помните, что try блок не транзакционен, все ресурсы, занятые в try ДО исключения остаются в памяти. Их надо освобождать и очищать вручную.
Если вы используете Java версии 7 и выше, то отдавайте предпочтение конструкции try-with-resources.

Основное правило:

На исключения можно реагировать, их обработку можно делегировать, но ни в коем случае нельзя их игнорировать.

Определить когда надо реагировать, а когда делегировать проще простого. Задайте вопрос: «Знаю ли я как реагировать на это исключение?».
Если ответ «да, знаю», то реагируйте, пишите обработчик и код, отвечающий за эту реакцию, если не знаете что делать с исключением, то делегируйте вызывающему коду.

Помните, что перехват java.lang.Error стоит делать только если вы точно знаете, что делаете. Восстановление после таких ошибок не всегда возможно и почти всегда нетривиально.
Не забывайте, что большинство ошибок java.lang.RuntimeException и его потомков можно избежать.

Не бойтесь создавать собственные исключения, так как это позволит писать более гибкие обработчики, а значит более точно реагировать на проблемы.

Представьте себе, что существуют пять причин, по которым может быть выброшено исключение, и во всех пяти случаях бросается java.lang.Exception. Вы же спятите разбираться, чем именно это исключение вызвано.

(c) Евгений Матюшкин.

Помните, что исключения ломают поток выполнения программы, поэтому чем раньше вы обработаете возникшую проблему, тем лучше. Отсюда же следует совет, что лучше не разбрасываться исключениями, так как помимо того, что это ломает поток выполнения, это еще и дорогостоящая операция.

Постарайтесь не создавать ‘универсальных’ обработчиков, так как это чревато трудноуловимыми ошибками.

Если исключение можно не генерировать, то лучше так и сделать. Не пренебрегайте проверками.

Старайтесь продумывать то, как вы будете реагировать на исключения, не игнорировать их, использовать только try-с-ресурсами.

Помните:

In Java you can ignore exceptions, but you have to willfully do it. You can’t accidentally say, «I don’t care.» You have to explicitly say, «I don’t care.»

(c) James Gosling.

Для закрепления материала рекомендую ознакомиться с ссылками ниже и этим материалом.

Полезные ссылки

  1. Книга С. Стелтинг ‘Java без сбоев: обработка исключений, тестирование, отладка’
  2. Oracle Java Tutorials
  3. Лекция Технострим Исключения
  4. Лекция OTUS Исключения в Java
  5. Лекция Ивана Пономарёва по исключениям
  6. Заметка Евгения Матюшкина про Исключения
  7. Failure and Exceptions by James Gosling
  8. The Trouble with Checked Exceptions by Bill Venners with Bruce Eckel
  9. Никто не умеет обрабатывать ошибки
  10. Исключения и обобщенные типы в Java
  11. Вопросы для закрепления

Исключение (exception) — это ненормальная ситуация (термин «исключение» здесь следует понимать как «исключительная ситуация»), возникающая во время выполнения программного кода. Иными словами, исключение — это ошибка, возникающая во время выполнения программы (в runtime).

Исключение — это способ системы Java (в частности, JVM — виртуальной машины Java) сообщить вашей программе, что в коде произошла ошибка. К примеру, это может быть деление на ноль, попытка обратиться к массиву по несуществующему индексу, очень распространенная ошибка нулевого указателя (NullPointerException) — когда вы обращаетесь к ссылочной переменной, у которой значение равно null и так далее.

В любом случае, с формальной точки зрения, Java не может продолжать выполнение программы.

Обработка исключений (exception handling) — название объектно-ориентированной техники, которая пытается разрешить эти ошибки.

Программа в Java может сгенерировать различные исключения, например:

  • программа может пытаться прочитать файл из диска, но файл не существует;

  • программа может попытаться записать файл на диск, но диск заполнен или не отформатирован;

  • программа может попросить пользователя ввести данные, но пользователь ввел данные неверного типа;

  • программа может попытаться осуществить деление на ноль;

  • программа может попытаться обратиться к массиву по несуществующему индексу.

Используя подсистему обработки исключений Java, можно управлять реакцией программы на появление ошибок во время выполнения. Средства обработки исключений в том или ином виде имеются практически во всех современных языках программирования. В Java подобные инструменты отличаются большей гибкостью, понятнее и удобнее в применении по сравнению с большинством других языков программирования.

Преимущество обработки исключений заключается в том, что она предусматривает автоматическую реакцию на многие ошибки, избавляя от необходимости писать вручную соответствующий код.

В Java все исключения представлены отдельными классами. Все классы исключений являются потомками класса Throwable. Так, если в программе возникнет исключительная ситуация, будет сгенерирован объект класса, соответствующего определенному типу исключения. У класса Throwable имеются два непосредственных подкласса: Exception и Error.

Исключения типа Error относятся к ошибкам, возникающим в виртуальной машине Java, а не в прикладной программе. Контролировать такие исключения невозможно, поэтому реакция на них в приложении, как правило, не предусматривается. В связи с этим исключения данного типа не будут рассматриваться в книге.

Ошибки, связанные с работой программы, представлены отдельными подклассами, производными от класса Exception. В частности, к этой категории относятся ошибки деления на нуль, выхода за пределы массива и обращения к файлам. Подобные ошибки следует обрабатывать в самой программе. Важным подклассом, производным от Exception, является класс RuntimeException, который служит для представления различных видов ошибок, часто возникающих во время выполнения программ.

Каждой исключительной ситуации поставлен в соответствие некоторый класс. Если подходящего класса не существует, то он может быть создан разработчиком.


Так как в Java
ВСЁ ЯВЛЯЕТСЯ ОБЪЕКТОМ, то исключение тоже является объектом некоторого класса, который описывает исключительную ситуацию, возникающую в определенной части программного кода.

«Обработка исключений» работает следующим образом:

  • когда возникает исключительная ситуация, JVM генерирует (говорят, что JVM ВЫБРАСЫВАЕТ исключение, для описания этого процесса используется ключевое слово throw) объект исключения и передает его в метод, в котором произошло исключение;

  • вы можете перехватить исключение (используется ключевое слово catch), чтобы его каким-то образом обработать. Для этого, необходимо определить специальный блок кода, который называется обработчиком исключений, этот блок будет выполнен при возникновении исключения, код должен содержать реакцию на исключительную ситуацию;

  • таким образом, если возникнет ошибка, все необходимые действия по ее обработке выполнит обработчик исключений.

Если вы не предусмотрите обработчик исключений, то исключение будет перехвачено стандартным обработчиком Java. Стандартный обработчик прекратит выполнение программы и выведет сообщение об ошибке.

Рассмотрим пример исключения и реакцию стандартного обработчика Java.

public static void main(String[] args) {

System.out.println(5 / 0);

Мы видим, что стандартный обработчик вывел в консоль сообщение об ошибке. Давайте разберемся с содержимым этого сообщения:

«C:Program FilesJavajdk1.8.0_60binjava»

Exception in thread «main» java.lang.ArithmeticException: / by zero

at ua.opu.Main.main(Main.java:6)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:497)

at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)

Process finished with exit code 1

Exception in thread «main» java.lang.ArithmeticException: / by zero

сообщает нам тип исключения, а именно класс ArithmeticException (про классы исключений мы будем говорить позже), после чего сообщает, какая именно ошибка произошла. В нашем случае это деление на ноль.

at ua.opu.Main.main(Main.java:6)

в каком классе, методе и строке произошло исключение. Используя эту информацию, мы можем найти ту строчку кода, которая привела к исключительной ситуации, и предпринять какие-то действия. Строки

at ua.opu.Main.main(Main.java:6)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:497)

at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)

называются «трассировкой стека» (stack tracing). О каком стеке идет речь? Речь идет о стеке вызовов (call stack). Соответственно, эти строки означают последовательность вызванных методов, начиная от метода, в котором произошло исключение, заканчивая самым первым вызванным методом.

Для вызова методов в программе используется инструкция «call». Когда вы вызываете метод в программе, важно сохранить адрес следующей инструкции, чтобы, когда вызванный метод отработал, программа продолжила работу со следующей инструкции. Этот адрес нужно где-то хранить в памяти. Также перед вызовом необходимо сохранить аргументы функции, которые тоже необходимо где-то хранить.

Вся эта информация хранится в специальной структуре – стеке вызовов. Каждая запись в стеке вызовов называется кадром или фреймом (stack frame).

Таким образом, зная, какая строка привела к возникновению исключения, вы можете изменить код либо предусмотреть обработчик событий.

Как уже было сказано выше, исключение это объект некоторого класса. В Java существует разветвленная иерархия классов исключений.

В Java, класс исключения служит для описания типа исключения. Например, класс NullPointerException описывает исключение нулевого указателя, а FileNotFoundException означает исключение, когда файл, с которым пытается работать приложение, не найден. Рассмотрим иерархию классов исключений:

На самом верхнем уровне расположен класс Throwable, который является базовым для всех исключений (как мы помним, JVM «выбрасывает» исключение», поэтому класс Throwable означает – то, что может «выбросить» JVM).

От класса Throwable наследуются классы Error и Exception. Среди подклассов Exception отдельно выделен класс RuntimeException, который играет важную роль в иерархии исключений.

В Java существует некоторая неопределенность насчет того – существует ли два или три вида исключений.

Если делить исключения на два вида, то это:

  1. 1.

    контролируемые исключения (checked exceptions) – подклассы класса Exception, кроме подкласса RuntimeException и его производных;

  2. 2.

    неконтролируемые исключения (unchecked exceptions) – класс Error с подклассами, а также класс RuntimeException и его производные;

В некоторых источниках класс Error и его подклассы выделяют в отдельный вид исключений — ошибки (errors).

Далее мы видим класс Error. Классы этой ветки составляют вид исключений, который можно обозначить как «ошибки» (errors). Ошибки представляют собой серьезные проблемы, которые не следует пытаться обработать в собственной программе, поскольку они связаны с проблемами уровня JVM.

На самом деле, вы конечно можете предпринять некоторые действия при возникновении ошибок, например, вывести сообщение для пользователя в удобном формате, выслать трассировку стека себе на почту, чтобы понять – что вообще произошло.

Но, по факту, вы ничего не можете предпринять в вашей программе, чтобы эту ошибку исправить, и ваша программа, как правило, при возникновении такой ошибки дальше работать не может.

В качестве примеров «ошибок» можно привести: переполнение стека вызова (класс StackOverflowError); нехватка памяти в куче (класс OutOfMemoryError), вследствие чего JVM не может выделить память под новый объект и сборщик мусора не помогает; ошибка виртуальной машины, вследствие которой она не может работать дальше (класс VirtualMachineError) и так далее.

Несмотря на то, что в нашей программе мы никак не можем помочь этой проблеме, и приложение не может работать дальше (ну как может работать приложение, если стек вызовов переполнен или JVM не может дальше выполнять код?!); знание природы этих ошибок поможет вам предпринять некоторые действия, чтобы избежать этих ошибок в дальнейшем. Например, ошибки типа StackOverflowError и OutOfMemoryError могут быть следствием вашего некорректного кода.

Например, попробуем спровоцировать ошибку StackOverflowError

public static void main(String[] args) {

public static void methodA() {

private static void methodB() {

Получим такое сообщение об ошибке

Exception in thread «main» java.lang.StackOverflowError

at com.company.Main.methodB(Main.java:14)

at com.company.Main.methodA(Main.java:10)

at com.company.Main.methodB(Main.java:14)

at com.company.Main.methodA(Main.java:10)

at com.company.Main.methodB(Main.java:14)

at com.company.Main.methodA(Main.java:10)

at com.company.Main.methodB(Main.java:14)

at com.company.Main.methodA(Main.java:10)

Ошибка OutOfMemoryError может быть вызвана тем, что ваш код, вследствие ошибки при программировании, создает очень большое количество массивных объектов, которые очень быстро заполняют кучу и свободного места не остается.

Exception in thread «main» java.lang.OutOfMemoryError: Java heap space

at java.base/java.util.Arrays.copyOf(Arrays.java:3511)

at java.base/java.util.Arrays.copyOf(Arrays.java:3480)

at java.base/java.util.ArrayList.grow(ArrayList.java:237)

at java.base/java.util.ArrayList.grow(ArrayList.java:244)

at java.base/java.util.ArrayList.add(ArrayList.java:454)

at java.base/java.util.ArrayList.add(ArrayList.java:467)

at com.company.Main.main(Main.java:13)

Process finished with exit code 1

Ошибка VirtualMachineError может означать, что следует переустановить библиотеки Java.

В любом случае, следует относиться к типу Error не как к неизбежному злу и «воле богов», а просто как к сигналу к тому, что в вашем приложении что-то не так, или что-то не так с программным или аппаратным обеспечением, которое вы используете.

Класс Exception описывает исключения, связанные непосредственно с работой программы. Такого рода исключения «решаемы» и их грамотная обработка позволит программе работать дальше в нормальном режиме.

В классе Exception описаны исключения двух видов: контролируемые исключения (checked exceptions) и неконтролируемые исключения (unchecked exceptions).

Неконтролируемые исключения содержатся в подклассе RuntimeException и его наследниках. Контролируемые исключения содержатся в остальных подклассах Exception.

В чем разница между контролируемыми и неконтролируемыми исключениями, мы узнаем позже, а теперь рассмотрим вопрос – а как же именно нам обрабатывать исключения?

Обработка исключений в методе может выполняться двумя способами:

  1. 1.

    с помощью связки try-catch;

  2. 2.

    с помощью ключевого слова throws в сигнатуре метода.

Рассмотрим оба метода поподробнее:

Способ 1. Связка try-catch

Этот способ кратко можно описать следующим образом.

Код, который теоретически может вызвать исключение, записывается в блоке try{}. Сразу за блоком try идет блок код catch{}, в котором содержится код, который будет выполнен в случае генерации исключения. В блоке finally{} содержится код, который будет выполнен в любом случае – произошло ли исключение или нет.

Теперь разберемся с этим способом более подробно. Рассмотрим следующий пример – программу, которая складывает два числа, введенные пользователем из консоли

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.println(«Введите первое число: «);

String firstNumber = scanner.nextLine();

System.out.println(«Введите второе число: «);

String secondNumber = scanner.nextLine();

a = Integer.parseInt(firstNumber);

b = Integer.parseInt(secondNumber);

System.out.println(«Результат: « + (a + b));

Первое, что нам нужно определить – и что является главным при работе с исключениями, КАКАЯ ИНСТРУКЦИЯ МОЖЕТ ПРИВЕСТИ К ВОЗНИКНОВЕНИЮ ИСКЛЮЧЕНИЯ?

То есть, мы должны понять – где потенциально у нас может возникнуть исключение? Понятно, что речь идет не об операции сложения и не об операции чтения данных из консоли. Потенциально опасными строчками кода здесь являются строчки

a = Integer.parseInt(firstNumber);

b = Integer.parseInt(secondNumber);

в которых происходит преобразование ввода пользователя в целое число (метод parseInt() преобразует цифры в строке в число).

Почему здесь может возникнуть исключение? Потому что пользователь может ввести не число, а просто какой-то текст и тогда непонятно – что записывать в переменную a или b. И да, действительно, если пользователь введет некорректное значение, возникнет исключение в методе Integer.parseInt().

Итак, что мы можем сделать. «Опасный код» нужно поместить в блок try{}

Обратите внимание на синтаксис блока try. В самом простом случае это просто ключевое слово try, после которого идут парные фигурные скобки. Внутри этих скобок и заключается «опасный» код, который может вызвать исключение. Сразу после блока try должен идти блок catch().

a = Integer.parseInt(firstNumber);

b = Integer.parseInt(secondNumber);

} catch (NumberFormatException e) {

// сохранить текст ошибки в лог

System.out.println(«Одно или оба значения некорректны!»);

System.out.println(«Результат: « + (a + b));

Обратите внимание на синтаксис блока catch. После ключевого слова, в скобках описывается аргумент с именем e типа NumberFormatException.

Когда произойдет исключение, то система Java прервет выполнение инструкций в блоке try и передаст управление блоку catch и запишет в этот аргумент объект исключения, который сгенерировала Java-машина.

То есть, как только в блоке try возникнет исключение, то дальше инструкции в блоке try выполняться не будут! А сразу же начнут выполняться действия в блоке catch.

Обработчик исключения находится в блоке catch, в котором мы можем отреагировать на возникновение исключения. Также, в этом блоке нам будет доступен объект исключения, от которого мы можем получить дополнительные сведения об исключении.

Блок catch сработает только в том случае, если указанный в скобках тип объекта исключения будет суперклассом или будет того же типа, что и объект исключения, который сгенерировала Java.

Например, если в нашем примере мы напишем код, который потенциально может выбросить исключение типа IOException, но не изменим блок catch

} catch (NumberFormatException e) {

// сохранить текст ошибки в лог

System.out.println(«Одно или оба значения некорректны!»);

тогда обработчик не будет вызван и исключение будет обработано стандартным обработчиком Java.

Способ 2. Использование ключевого слова throws

Второй способ позволяет передать обязанность обработки исключения тому методу, который вызывает данный метод (а тот, в свою очередь может передать эту обязанность выше и т.д.).

Изменим наш пример и выделим в отдельный метод код, который будет запрашивать у пользователя число и возвращать его как результат работы метода

public static void main(String[] args) {

int a = getNumberFromConsole(«Введите первое число»);

int b = getNumberFromConsole(«Введите второе число»);

System.out.println(«Результат: « + (a + b));

public static int getNumberFromConsole(String message) {

Scanner scanner = new Scanner(System.in);

System.out.print(message + «: «);

String s = scanner.nextLine();

return Integer.parseInt(s);

Мы понимаем, что в данном методе может произойти исключение, но мы не хотим или не можем его обработать. Причины могут быть разными, например:

  1. 1.

    обработка исключений может происходить централизованно однотипным способом (например, показ окошка с сообщением и с определенным текстом);

  2. 2.

    это не входит в нашу компетенцию как программиста – обработкой исключений занимается другой программист;

  3. 3.

    мы пишем только некоторую часть программы и непонятно – как будет обрабатывать исключение другой программист, который потом будет использовать наш код (например, мы пишем просто какую-то библиотеку, которая производит вычисления, и как будет выглядеть обработка – это не наше дело).

В любом случае, мы знаем, что в этом коде может быть исключение, но мы не хотим его обрабатывать, а хотим просто предупредить другой метод, который будет вызывать наш код, что выполнение кода может привести к исключению. В этом случае, используется ключевое слово throws, которое указывается в сигнатуре метода

public static int getNumberFromConsole(String message) throws NumberFormatException {

Scanner scanner = new Scanner(System.in);

System.out.print(message + «: «);

String s = scanner.nextLine();

return Integer.parseInt(s);

Обратите внимание на расположение сигнатуру метода. Мы привыкли, что при объявлении метода сразу после скобок входных аргументов мы открываем фигурную скобку и записываем тело метода. Здесь же, после входных аргументов, мы пишем ключевое слово throws и потом указываем тип исключения, которое может быть сгенерировано в нашем методе. Если метод может выбрасывать несколько типов исключений, они записываются через запятую

public static void foo() throws NumberFormatException, ArithmeticException, IOException {

Тогда, в методе main мы должны написать примерно следующее

public static void main(String[] args) {

a = getNumberFromConsole(«Введите первое число»);

b = getNumberFromConsole(«Введите второе число»);

} catch (NumberFormatException e) {

// сохранить текст ошибки в лог

System.out.println(«Одно или оба значения некорректны!»);

System.out.println(«Результат: « + (a + b));

Основное преимущество этого подхода – мы передаем обязанность по обработке исключений другому, вышестоящему методу.

Отличия между контролируемыми и неконтролируемыми исключениями

Если вы вызываете метод, который выбрасывает checked исключение, то вы ОБЯЗАНЫ предусмотреть обработку возможного исключения, то есть связку try-catch.

Яркий пример checked исключения – класс IOException и его подклассы.

Рассмотрим пример – попробуем прочитать файл и построчно вывести его содержимое на экран консоли:

public static void main(String[] args) {

Path p = Paths.get(«c:\temp\file.txt»);

BufferedReader reader = Files.newBufferedReader(p);

while ((line = reader.readLine()) != null) {

System.out.println(line);

Как мы видим, компилятор не хочет компилировать наш код. Чем же он недоволен? У нас в коде происходит вызов двух методов – статического метода Files.newBufferedReader() и обычного метода BufferedReader.readLine().

Если посмотреть на сигнатуры этих методов то можно увидеть, что оба этих метода выбрасывают исключения типа IOException. Этот тип исключения относится к checked-исключению и поэтому, если вы вызываете эти методы, компилятор ТРЕБУЕТ от вас предусмотреть блок catch, либо в самом вашем методе указать throws IOException и, таким образом, передать обязанность обрабатывать исключение другому методу, который будет вызывать ваш.

Таким образом, «оборачиваем» наш код в блок try и пишем блок catch.

public static void main(String[] args) {

Path p = Paths.get(«c:\temp\file.txt»);

BufferedReader reader = Files.newBufferedReader(p);

while ((line = reader.readLine()) != null) {

System.out.println(line);

} catch (IOException e) {

System.out.println(«Ошибка при чтении файла!»);

Еще один способ — указать в сигнатуре метода, что он выбрасывает исключение типа IOException и переложить обязанность обработать ошибку в вызывающем коде

public static void main(String[] args) {

Path p = Paths.get(«c:\temp\file.txt»);

} catch (IOException e) {

System.out.println(«Ошибка при чтении файла!»);

public static void printFile(Path p) throws IOException {

BufferedReader reader = Files.newBufferedReader(p);

while ((line = reader.readLine()) != null) {

System.out.println(line);

Eсли метод выбрасывает checked-исключение, то проверка на наличие catch-блока происходит на этапе компиляции. И вы обязаны предусмотреть обработку исключения для checked-исключения.

Что касается unchecked-исключения, то обязательной обработки исключения нет – вы можете оставить подобные ситуации без обработки.

Зачем необходимо наличие двух видов исключений?

В большинстве языков существует всего лишь один тип исключений – unchecked. Некоторые языки, например, C#, в свое время отказались от checked-исключений.

Во-первых, мы не можем сделать все исключения checked, т.к. очень многие операции могут генерировать исключения, и если каждый такой участок кода «оборачивать» в блок try-catch, то код получится слишком громоздким и нечитабельным.

С другой стороны, зачем нужно делать некоторые типы исключений checked? Почему просто не сделать все исключения unchecked и оставить решения об обработке исключений целиком на совести программиста?

В официальной документации написано, что unchecked-исключения – это те исключения, от которых программа «не может восстановиться», тогда как checked-исключения позволяют откатить некоторую операцию и повторить ее снова.

На самом деле, если вы посмотрите на различные типы unchecked-исключений, то вы увидите, что большинство их связаны с ошибками самого программиста. Выход за пределы массива, исключение нулевого указателя, деление на ноль – большинство из подобного рода исключений целиком лежат на совести программистов. Тогда мы можем сказать, что лучше программист пишет более хороший код, чем везде вставляет проверки на исключения.

Контролируемые исключения, как правило, представляют те ошибки, которые возникают не из-за программиста и предусмотреть которые программист не может. Например, это отсутствующие файлы, работа с сокетами, подключение к базе данных, сетевые соединения, некорректный пользовательский ввод.

Вы можете написать идеальный код, но потом вы отдадите приложение пользователю, а он введет название файла, которого нет или напишет неправильный IP для сокет-соединения. Таким образом, мы заранее должны быть готовыми к неверным действиям пользователя или к программным или аппаратным проблемам на его стороне и в обязательном порядке предусмотреть обработку возможных исключений.

Дополнительно об исключениях

Рассмотрим детально различные возможности механизма исключений, которые позволяют программисту максимально эффективно противодействовать исключениям:

Java позволяет вам для одного блока try предусмотреть несколько блоков catch, каждый из которых должен обрабатывать свой тип исключения

public static void foo() {

} catch (ArithmeticException e) {

// обработка арифметического исключения

} catch (IndexOutOfBoundsException e) {

// обработка выхода за пределы коллекции

} catch (IllegalArgumentException e) {

// обработка некорректного аргумента

Важно помнить, что Java обрабатывает исключения последовательно. Java просматривает блок catch сверху вниз и выполняет первый подходящий блок, который может обработать данное исключение.

Так как вы можете указать как точный класс, так и суперкласс, то если первым блоком будет блок для суперкласса – выполнится он. Например, исключение FileNotFoundException является подклассом IOException. И поэтому если вы первым поставите блок с IOException – он будет вызываться для всех подтипов исключений, в том числе и для FileNotFoundException и блок c FileNotFoundException никогда не выполнится.

public static void main(String[] args) {

Path p = Paths.get(«c:\temp\file.txt»);

} catch (IOException e) {

System.out.println(«Ошибка при чтении файла!»);

} catch (FileNotFoundException e) {

// данный блок никогда не будет вызван

public static void printFile(Path p) throws IOException {

BufferedReader reader = Files.newBufferedReader(p);

while ((line = reader.readLine()) != null) {

System.out.println(line);

Один блок для обработки нескольких типов исключений

Начиная с версии Java 7, вы можете использовать один блок catch для обработки исключений нескольких, не связанных друг с другом типов. Приведем пример

public static void foo() {

} catch (ArithmeticException | IllegalArgumentException | IndexOutOfBoundsException e) {

// три типа исключений обрабатываются одинаково

Как мы видим, один блок catch используется для обработки и типа IOException и NullPointerException и NumberFormaException.

Вы можете использовать вложенные блоки try, которые могут помещаться в других блоках try. После вложенного блока try обязательно идет блок catch

public static void foo() {

} catch (IllegalArgumentException e) {

// обработка вложенного блока try

} catch (ArithmeticException e) {

Выбрасывание исключения с помощью ключевого слова throw

С помощью ключевого слова throw вы можете преднамеренно «выбросить» определенный тип исключения.

public static void foo(int a) {

throw new IllegalArgumentException(«Аргумент не может быть отрицательным!»);

Кроме блока try и catch существует специальный блок finally. Его отличительная особенность – он гарантированно отработает, вне зависимости от того, будет выброшено исключение в блоке try или нет. Как правило, блок finally используется для того, чтобы выполнить некоторые «завершающие» операции, которые могли быть инициированы в блоке try.

public static void foo(int a) {

FileOutputStream fout = null;

File file = new File(«file.txt»);

fout = new FileOutputStream(file);

} catch (IOException e) {

// обработка исключения при записи в файл

} catch (IOException e) {

При любом развитии события в блоке try, код в блоке finally отработает в любом случае.

Блок finally отработает, даже если в try-catch присутствует оператор return.

Как правило, блок finally используется, когда мы в блоке try работаем с ресурсами (файлы, базы данных, сокеты и т.д.), когда по окончании блока try-catch мы освобождаем ресурсы. Например, допустим, в процессе работы программы возникло исключение, требующее ее преждевременного закрытия. Но в программе открыт файл или установлено сетевое соединение, а, следовательно, файл нужно закрыть, а соединение – разорвать. Для этого удобно использовать блок finally.

Блок try-with-resources является модификацией блока try. Данный блок позволяет автоматически закрывать ресурс после окончания работы блока try и является удобной альтернативой блоку finally.

public static void foo() {

Path p = Paths.get(«c:\temp\file.txt»);

try (BufferedReader reader = Files.newBufferedReader(p)) {

while ((line = reader.readLine()) != null)

System.out.println(line);

} catch (IOException e) {

Внутри скобок блока try объявляется один или несколько ресурсов, которые после отработки блока try-catch будут автоматически освобождены. Для этого объект ресурса должен реализовывать интерфейс java.lang.AutoCloseable.

Создание собственных подклассов исключений

Встроенные в Java исключения позволяют обрабатывать большинство распространенных ошибок. Тем не менее, вы можете создавать и обрабатывать собственные типы исключений. Для того, чтобы создать класс собственного исключения, достаточно определить как его произвольный от Exception или от RuntimeException (в зависимости от того, хотите ли вы использовать checked или unchecked – исключения).

Насчет создания рекомендуется придерживаться двух правил:

  1. 1.

    определитесь, исключения какого типа вы хотите использовать для собственных исключений (checked или unchecked) и старайтесь создавать исключения только этого типа;

  2. 2.

    старайтесь максимально использовать стандартные типы исключений и создавать свои типы только в том случае, если существующие типы исключений не отражают суть того исключения, которое вы хотите добавить.

Плохие практики при обработке исключений

Ниже представлены действия по обработке ошибок, которые характерны для плохого программиста. Ни в коем случае не рекомендуется их повторять!

  1. 1.

    Указание в блоке catch объекта исключения типа Exception. Существует очень большой соблазн при создании блока catch указать тип исключения Exception и, таким образом, перехватывать все исключения, которые относятся к этому классу (а это все исключения, кроме системных ошибок). Делать так крайне не рекомендуется, т.к. вместо того чтобы решать проблему с исключениями, мы фактически игнорируем ее и просто реализуем некоторую «заглушку», чтобы приложение продолжило работу дальше. Кроме того, каждый тип исключения должен быть обработан своим определенным образом.

  2. 2.

    Помещение в блок try всего тела метода. Следующий плохой прием используется, когда программист не хочет разбираться с кодом, который вызывает исключение и просто, опять же, реализует «заглушку». Этот прием очень «хорошо» сочетается с первым приемом. В блок try должен помещаться только тот код, который потенциально может вызвать исключение, а не всё подряд, т.к. лень обрабатывать исключения нормально.

  3. 3.

    Игнорирование исключения. Следующий плохой прием состоит в том, что мы просто игнорируем исключение и оставляем блок catch пустым. Программа должна реагировать на исключения и должна информировать пользователя и разработчика о том, что что-то пошло не так. Безусловно, исключение это не повод тут же закрывать приложение, а попытаться повторить то действие, которое привело к исключению (например, повторно указать название файла, попытаться открыть базу данных через время и т.д.). В любом случае, когда приложение в ответ на ошибку никак не реагирует – не выдает сообщение, но и не делает того, чего от нее ожидали – это самый плохой вариант.

#База знаний

  • 24 фев 2021

  • 13

Разбираемся, что такое исключения, зачем они нужны и как с ними работать.

 vlada_maestro / shutterstock

Мария Помазкина

Хлебом не корми — дай кому-нибудь про Java рассказать.

Из этой статьи вы узнаете:

  • что такое исключения (Exceptions);
  • как они возникают и чем отличаются от ошибок (Errors);
  • зачем нужна конструкция try-catch;
  • как разобраться в полученном исключении
  • и как вызвать исключение самому.

Код вашей программы исправно компилируется и запускается, только вот вместо желанного результата вы видите непонятный текст. Строчки его будто кричат на вас, аж побагровели.

За примером далеко ходить не надо: сделаем то, что нам запрещали ещё в школе, — поделим на ноль.

public static void main(String[] args) {
    hereWillBeTrouble(42, 0);
}

public static void hereWillBeTrouble(int a, int b) {
    int oops = a / b;
    System.out.println(oops);
}

А получим вот что:

Это и есть исключение.

«Исключение» — сокращение от слов «исключительный случай». Это ситуация, в которой программа не может продолжить работу или её работа становится бессмысленной. Причём речь не только о нештатных ситуациях — исключения бывают и намеренными, такие разработчик вызывает сам.

Это интересно. Исключения в Java появились уже в первой версии языка. А вот в языках, где их нет, вместо них возвращают коды ошибок.

У всех классов исключений есть общий класс-предок Throwable, от него наследуются классы Error и Exception, базовые для всех прочих.

Верхушка иерархии исключений Java

Error — это критические условия, в которых работа программы должна быть завершена. Например, когда при выполнении программы закончилась память, произошёл сбой в системе или виртуальной машине. Не будем задерживаться на этой ветке, поскольку документация Java говорит:

Error is the superclass of all the exceptions from which ordinary programs are not ordinarily expected to recover.

Что в переводе означает: ошибки (Error) — это такие исключительные ситуации, в которых восстанавливать работу программы не предполагается.

То есть это проблемы, которые нельзя (недопустимо) исправлять на ходу. Всё, что нам остаётся, — извиниться перед пользователем и впредь писать программы, где возникнет меньше подобных ситуаций. Например, не допускать такой глубокой рекурсии, как в коде ниже:

static void notGood() {
    System.out.println("Только не снова!");
    notGood();
}

При работе этого метода у нас возникнет ошибка: Exception in thread «main» java.lang.StackOverflowError — стек вызовов переполнился, так как мы не указали условие выхода из рекурсии.

А теперь об Exception. Эти исключительные ситуации возникают, если разработчик допустил невыполнимую операцию, не предусмотрел особые случаи в бизнес-логике программы (или сообщает о них с помощью исключений).

1. Невыполнимая операция

Мир не рухнул, как в случае с Error, просто Java не знает, что делать дальше. Как раз из этого разряда деление на ноль в начале статьи: и правда, какое значение тогда присвоить переменной oops?

Убедитесь сами, что исключение класса ArithmeticException наследуется как раз от Exception.

Стоит запомнить. В IntelliJ IDEA, чтобы увидеть положение класса в иерархии, выберите его и нажмите Ctrl + H (или на пункт Type Hierarchy в меню Navigate).

Другая частая ситуация — обращение к несуществующему элементу массива. Например, у нас в нём десять элементов, а мы пытаемся обратиться к одиннадцатому.

2. Особый случай в бизнес-логике программы

Классика. Программируем задачу о перевозке волка, козы и капусты через реку: в лодке может быть только два пассажира, но волка с козой и козу с капустой нельзя оставлять на берегу вместе. Это и есть особый случай в бизнес-логике, который нельзя нарушать.

Или пользователь вводит дату начала некоторого периода и дату его окончания. Вторая дата не может быть раньше первой.

Или, допустим, у нас есть метод, который читает файл. Сам метод написан верно. Пользователь передал в него корректный путь. Только вот у этого работника нет права читать этот файл (его роль и права обусловлены предметной областью). Что же тогда методу возвращать? Вернуть-то нечего, ведь метод не отработал. Самое очевидное решение — выдать исключение.

В дерево исключений мы ещё углубимся, а сейчас посмотрим, что и как с ними делают.

Простейший вариант — ничего; возникает исключение — программа просто прекращает работать.

Чтобы убедиться в этом, выполним код:

public static void main(String[] args) {
    hereWillBeTrouble(42, 0);
}

public static void hereWillBeTrouble(int a, int b) {
    System.out.println("Всё, что было до...");
    int oops = a / b;
    System.out.println(oops);
    System.out.println("Всё, что будет после...");
}

Так и есть: до деления на ноль код выполнялся, а после — нет.

Это интересно: когда возникает исключение, программисты выдают что-то вроде «код [вы]бросил исключение» или «код кинул исключение». А глагол таков потому, что все исключения — наследники класса Throwable, что значит «бросаемый» / «который можно бросить».

Второе, что можно делать с исключениями, — это их обрабатывать.

Для этого нужно заключить кусок кода, который может вызвать исключение, в конструкцию try-catch.

Как это работает: если в блоке try возникает исключение, которое указано в блоке catch, то исполнение блока try прервётся и выполнится код из блока catch.

Например:

public static void main(String[] args) {
    hereWillBeTrouble();
}

private static void hereWillBeTrouble(int a, int b) {
    int oops;
    try {
        System.out.println("Всё, что было до...");
        oops = a / b;
        System.out.println(oops);
        System.out.println("Всё, что будет после...");
    } catch (ArithmeticException e) {
        System.out.println("Говорили же не делить на ноль!");
        oops = 0;
    }
    System.out.println("Метод отработал");
}

Разберём этот код.

Если блок try кинет исключение ArithmeticException, то управление перехватит блок catch, который выведет строку «Говорили же не делить на ноль!», а значение oops станет равным 0.

После этого программа продолжит работать как ни в чём не бывало: выполнится код после блока try-catch, который сообщит: «Метод отработал».

Проверьте сами: запустите код выше. Вызовите метод hereWillBeTrouble с любыми значениями аргументов кроме нулевого b. Если в блоке try не возникнет исключений, то его код выполнится целиком, а в блок catch мы даже не попадём.

Есть ещё и третий вариант — пробросить исключение наверх. Но об этом в следующей статье.

Вернёмся к первой картинке. Посмотрим, что нам сказала Java, когда произошло исключение:

Начинаем разбирать сверху вниз:

— это указание на поток, в котором произошло исключение. В нашей простой однопоточной программе это поток main.

— какое исключение брошено. У нас это ArithmeticException. А java.lang.ArithmeticException — полное название класса вместе с пакетом, в котором он размещается.

— весточка, которую принесло исключение. Дело в том, что одно и то же исключение нередко возникает по разным причинам. И тут мы видим стандартное пояснение «/ by zero» — из-за деления на ноль.

— это самое интересное: стектрейс.

Стектрейс (Stack trace) — это упорядоченный список методов, сквозь которые исключение пронырнуло.

У нас оно возникло в методе hereWillBeTrouble на 8-й строке в классе Main (номер строки и класс указаны в скобках синим). А этот метод, в свою очередь, вызван методом main на 3-й строке класса Main.

Стектрейсы могут быть довольно длинными — из десятков методов, которые вызывают друг друга по цепочке. И они здорово помогают расследовать неожиданно кинутое исключение.

Советую закреплять теорию на практике. Поэтому вернитесь в блок про Error и вызовите метод notGood — увидите любопытный стектрейс.

Всё это время мы имели дело с исключением, которое бросает Java-машина — при делении на ноль. Но как вызвать исключение самим?

Раз исключение — это объект класса, то программисту всего-то и нужно, что создать объект с нужным классом исключения и бросить его с помощью оператора throw.

public static void main(String[] args) {
    hereWillBeTrouble(42, 0);
}

private static void hereWillBeTrouble(int a, int b) {
    if (b == 0) {
        throw new ArithmeticException("ты опять делишь на ноль?");
    }
    int oops = a / b;
    System.out.println(oops);
}

При создании большинства исключений первым параметром в конструктор можно передать сообщение — мы как раз сделали так выше.

А получим мы то же самое, что и в самом первом примере, только вместо стандартной фразы «/by zero» теперь выдаётся наш вопрос-пояснение «ты опять делишь на ноль?»:

В следующей статье мы углубимся в иерархию исключений Java, узнаем про их разделение на checked и unchecked, а также о том, что ещё интересного можно с ними делать.

Учись бесплатно:
вебинары по программированию, маркетингу и дизайну.

Участвовать

Школа дронов для всех
Учим программировать беспилотники и управлять ими.

Узнать больше

Java_Deep_7.4-5020-83cb21.png

JavaSpec_Welcome_970x90-1801-439a19.png

В нашей жизни нередко возникают ситуации, которые мы не планировали. К примеру, пошли вы утром умываться и с досадой обнаружили, что отключили воду. Вышли на улицу, сели в машину, а она не заводится. Позвонили другу, а он недоступен. И так далее и тому подобное… В большинстве случаев человек без труда справится с подобными проблемами. А вот как с непредвиденными ситуациями справляется Java, мы сейчас и поговорим.

Что называют исключением. Исключения в мире программирования

В программировании исключением называют возникновение ошибки (ошибок) и различных непредвиденных ситуаций в процессе выполнения программы. Исключения могут появляться как в итоге неправильных действий юзера, так и из-за потери сетевого соединения с сервером, отсутствии нужного ресурса на диске и т. п. Также среди причин исключений — ошибки программирования либо неверное использование API.

При этом в отличие от «человеческого мира», программное приложение должно чётко понимать, как поступать в подобной ситуации. И вот как раз для этого в Java и существует механизм исключений (exception).

Используемые ключевые слова

При обработке исключений в Java применяются следующие ключевые слова:
try – служит для определения блока кода, в котором может произойти исключение;
catch – необходим для определения блока кода, где происходит обработка исключения;
finally – применяется для определения блока кода, являющегося необязательным, однако при его наличии он выполняется в любом случае вне зависимости от результата выполнения блока try.

Вышеперечисленные ключевые слова необходимы для создания в коде ряда специальных обрабатывающих конструкций: try{}finally{}, try{}catch, try{}catch{}finally.

Кроме того:
1. Для возбуждения исключения используем throw.
2. Для предупреждения в сигнатуре методов о том, что метод может выбросить исключение, применяем throws.

Давайте на примере посмотрим, как используются ключевые слова в Java-программе:

//метод считывает строку с клавиатуры

public String input() throws MyException {//предупреждаем с помощью throws,
// что метод может выбросить исключение MyException
      BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
    String s = null;
//в блок try заключаем код, в котором может произойти исключение, в данном
// случае компилятор нам подсказывает, что метод readLine() класса
// BufferedReader может выбросить исключение ввода/вывода
    try {
        s = reader.readLine();
// в блок  catch заключаем код по обработке исключения IOException
    } catch (IOException e) {
        System.out.println(e.getMessage());
// в блоке finally закрываем поток чтения
    } finally {
// при закрытии потока тоже возможно исключение, например, если он не был открыт, поэтому “оборачиваем” код в блок try
        try {
            reader.close();
// пишем обработку исключения при закрытии потока чтения
        } catch (IOException e) {
            System.out.println(e.getMessage());
        }
    }

    if (s.equals("")) {
// мы решили, что пустая строка может нарушить в дальнейшем работу нашей программы, например, на результате этого метода нам надо вызывать метод substring(1,2), поэтому мы вынуждены прервать выполнение программы с генерацией своего типа исключения MyException с помощью throw
        throw new MyException("String can not be empty!");
    }
    return s;
}

Зачем нам механизм исключений?

Для понимания опять приведём пример из обычного мира. Представьте, что на какой-нибудь автодороге имеется участок с аварийным мостом, на котором ограничена грузоподъёмность. И если по такому мосту проедет грузовик со слишком большой массой, мост разрушится, а в момент этого ЧП ситуация для шофёра станет, мягко говоря, исключительной. И вот, дабы такого не произошло, дорожные службы заранее устанавливают на дороге соответствующие предупреждающие знаки. И тогда водитель, посмотрев на знак, сравнит массу своего авто со значением разрешённой грузоподъёмности и примет соответствующее решение, например, поедет по другой дороге.

То есть мы видим, что из-за правильных действий дорожной службы шоферы крупногабаритных транспортных средств:
1) получили возможность заранее изменить свой путь;
2) были предупреждены об опасности;
3) были предупреждены о невозможности проезжать по мосту при определённых условиях.

Вот как наш жизненный пример соотносится с применением исключения на Java:

1-20219-9bd18c.jpg

Исходя из вышесказанного, мы можем назвать одну из причин применения исключений в Java. Заключается она в возможности предупреждения исключительной ситуации для её последующего разрешения и продолжения работы программы. То есть механизм исключений позволит защитить написанный код от неверного применения пользователем путём валидации входящих данных.

Что же, давайте ещё раз побудем дорожной службой. Чтобы установить знак, мы ведь должны знать места, где водителей ТС могут ждать различные неприятности. Это первое. Далее, нам ведь надо заготовить и установить знаки. Это второе. И, наконец, надо предусмотреть маршруты объезда, позволяющие избежать опасности.

В общем, механизм исключений в Java работает схожим образом. На стадии разработки программы мы выполняем «ограждение» опасных участков кода в отношении наших исключений, используя блок try{}. Чтобы предусмотреть запасные пути, применяем блок catch{}. Код, выполняемый в программе при любом исходе, пишем в блоке finally{}.

Иногда бывает, что мы не можем предусмотреть «запасной аэродром» либо специально желаем предоставить право его выбора юзеру. Но всё равно мы должны как минимум предупредить пользователя об опасности. Иначе он превратится в разъярённого шофёра, который ехал долго, не встретил ни одного предупреждающего знака и в итоге добрался до аварийного моста, проехать по которому не представляется возможным.

Что касается программирования на Java, то мы, когда пишем свои классы и методы, далеко не всегда можем предвидеть контекст их применения другими программистами в своих программах, а значит, не можем со стопроцентной вероятностью предвидеть правильный путь для разрешения исключительных ситуаций. Но предупредить коллег о возможной исключительной ситуации мы всё-таки должны, и это не что иное, как правило хорошего тона.

Выполнить это правило в Java нам как раз и помогает механизм исключений с помощью throws. Выбрасывая исключение, мы, по сути, объявляем общее поведение нашего метода и предоставляем пользователю метода право написания кода по обработке исключения.

Предупреждаем о неприятностях

Если мы не планируем обрабатывать исключение в собственном методе, но желаем предупредить пользователей метода о возможной исключительной ситуации, мы используем, как это уже было упомянуто, ключевое слово throws. В сигнатуре метода оно означает, что при некоторых обстоятельствах метод может выбросить исключение. Это предупреждение становится частью интерфейса метода и даёт право пользователю на создание своего варианта реализации обработчика исключения.

После упоминания ключевого слова throws мы указываем тип исключения. Как правило, речь идёт о наследниках класса Exception Java. Но так как Java — это объектно-ориентированный язык программирования, все исключения представляют собой объекты.

2-20219-ee1e82.jpg

Когда возникают ошибки при выполнении программы, исполняющая среда Java Virtual Machine обеспечивает создание объекта нужного типа, используя иерархию исключений Java — речь идёт о множестве возможных исключительных ситуаций, которые унаследованы от класса Throwable — общего предка. При этом исключительные ситуации, которые возникают в программе, делят на 2 группы:
1. Ситуации, при которых восстановление нормальной дальнейшей работы невозможно.
2. Ситуации с возможностью восстановления.

К первой группе можно отнести случаи, при которых возникают исключения, которые унаследованы из класса Error. Это ошибки, возникающие во время выполнения программы при сбое работы Java Virtual Machine, переполнении памяти либо сбое системы. Как правило, такие ошибки говорят о серьёзных проблемах, устранение которых программными средствами невозможно. Данный вид исключений в Java относят к неконтролируемым исключениям на стадии компиляции (unchecked). К этой же группе относятся и исключения-наследники класса Exception, генерируемые Java Virtual Machine в процессе выполнения программы — RuntimeException. Данные исключения тоже считаются unchecked на стадии компиляции, а значит, написание кода по их обработке необязательно.

Что касается второй группы, то к ней относят ситуации, которые можно предвидеть ещё на стадии написания приложения, поэтому для них код обработки должен быть написан. Это контролируемые исключения (checked). И в большинстве случаев Java-разработчики работают именно с этими исключениями, выполняя их обработку.

Создание исключения

В процессе исполнения программы исключение генерируется Java Virtual Machine либо вручную посредством оператора throw. В таком случае в памяти происходит создание объекта исключения, выполнение основного кода прерывается, а встроенный в JVM обработчик исключений пробует найти способ обработать это самое исключение.

Обработка исключения

Обработка исключений в Java подразумевает создание блоков кода и производится в программе посредством конструкций try{}finally{}, try{}catch, try{}catch{}finally.

3-20219-4ec690.jpg

В процессе возбуждения исключения в try обработчик исключения ищется в блоке catch, который следует за try. При этом если в catch присутствует обработчик данного вида исключения, происходит передача управления ему. Если же нет, JVM осуществляет поиск обработчика данного типа исключения, используя для этого цепочку вызова методов. И так происходит до тех пор, пока не находится подходящий catch. После того, как блок catch выполнится, управление переходит в необязательный блок finally. Если подходящий блок catch найден не будет, Java Virtual Machine остановит выполнение программы, выведя стек вызовов методов под названием stack trace. Причём перед этим выполнится код блока finally при наличии такового.

Рассмотрим практический пример обработки исключений:

public class Print {

     void print(String s) {
        if (s == null) {
            throw new NullPointerException("Exception: s is null!");
        }
        System.out.println("Inside method print: " + s);
    }

    public static void main(String[] args) {
        Print print = new Print();
        List list= Arrays.asList("first step", null, "second step");

        for (String s:list) {
            try {
                print.print(s);
            }
            catch (NullPointerException e) {
                System.out.println(e.getMessage());
                System.out.println("Exception was processed. Program continues");
            }
            finally {
                System.out.println("Inside bloсk finally");
            }
            System.out.println("Go program....");
            System.out.println("-----------------");
        }

    }
    }

А теперь глянем на результаты работы метода main:

Inside method print: first step
Inside bloсk finally
Go program....
-----------------
Exception: s is null!
Exception was processed. Program continues
Inside bloсk finally
Go program....
-----------------
Inside method print: second step
Inside bloсk finally
Go program....
-----------------

Блок finally чаще всего используют, чтобы закрыть открытые в try потоки либо освободить ресурсы. Но при написании программы уследить за закрытием всех ресурсов возможно не всегда. Чтобы облегчить жизнь разработчикам Java, была предложена конструкция try-with-resources, автоматически закрывающая ресурсы, открытые в try. Используя try-with-resources, мы можем переписать наш первый пример следующим образом:

public String input() throws MyException {
    String s = null;
    try(BufferedReader reader = new BufferedReader(new InputStreamReader(System.in))){
        s = reader.readLine();
   } catch (IOException e) {
       System.out.println(e.getMessage());
   }
    if (s.equals("")){
        throw new MyException ("String can not be empty!");
    }
    return s;
}

А благодаря появившимся возможностям Java начиная с седьмой версии, мы можем ещё и объединять в одном блоке перехват разнотипных исключений, делая код компактнее и читабельнее:

public String input() {
    String s = null;
    try (BufferedReader reader = new BufferedReader(new InputStreamReader(System.in))) {
        s = reader.readLine();
        if (s.equals("")) {
            throw new MyException("String can not be empty!");
        }
    } catch (IOException | MyException e) {
        System.out.println(e.getMessage());
    }
    return s;
}

Итоги

Итак, применение исключений в Java повышает отказоустойчивость программы благодаря использованию запасных путей. Кроме того, появляется возможность отделить код обработки исключительных ситуаций от логики основного кода за счёт блоков catch и переложить обработку исключений на пользователя кода посредством throws.

Основные вопросы об исключениях в Java

1.Что такое проверяемые и непроверяемые исключения?
Если говорить коротко, то первые должны быть явно пойманы в теле метода либо объявлены в секции throws метода. Вторые вызываются проблемами, которые не могут быть решены. Например, это нулевой указатель или деление на ноль. Проверяемые исключения очень важны, ведь от других программистов, использующих ваш API, вы ожидаете, что они знают, как обращаться с исключениями. К примеру, наиболее часто встречаемое проверяемое исключение — IOException, непроверяемое — RuntimeException.
2.Почему переменные, определённые в try, нельзя использовать в catch либо finally?
Давайте посмотрим на нижеследующий код. Обратите внимание, что строку s, которая объявлена в блоке try, нельзя применять в блоке catch. То есть данный код не скомпилируется.

try {
    File file = new File("path");
    FileInputStream fis = new FileInputStream(file);
    String s = "inside";
} catch (FileNotFoundException e) {
    e.printStackTrace();
    System.out.println(s);
}

А всё потому, что неизвестно, где конкретно в try могло быть вызвано исключение. Вполне вероятно, что оно было вызвано до объявления объекта.
3.Почему Integer.parseInt(null) и Double.parseDouble(null) вызывают разные исключения?
Это проблема JDK. Так как они были разработаны разными людьми, то заморачиваться вам над этим не стоит:

Integer.parseInt(null);
// вызывает java.lang.NumberFormatException: null

Double.parseDouble(null);
// вызывает java.lang.NullPointerException

4.Каковы основные runtime exceptions в Java?
Вот лишь некоторые из них:

IllegalArgumentException
ArrayIndexOutOfBoundsException

Их можно задействовать в операторе if, если условие не выполняется:

if (obj == null) {
   throw new IllegalArgumentException("obj не может быть равно null");

5.Возможно ли поймать в одном блоке catch несколько исключений?
Вполне. Пока классы данных исключений можно отследить вверх по иерархии наследования классов до одного и того же суперкласса, возможно применение только этого суперкласса.
6.Способен ли конструктор вызывать исключения?
Способен, ведь конструктор — это лишь особый вид метода.

class FileReader{
    public FileInputStream fis = null;

    public FileReader() throws IOException{
        File dir = new File(".");//get current directory
        File fin = new File(dir.getCanonicalPath() + File.separator + "not-existing-file.txt");
        fis = new FileInputStream(fin);
    }
}

7.Возможен ли вызов исключений в final?
В принципе, можете сделать таким образом:

public static void main(String[] args) {
    File file1 = new File("path1");
    File file2 = new File("path2");
    try {

        FileInputStream fis = new FileInputStream(file1);
    } catch (FileNotFoundException e) {
        e.printStackTrace();
    } finally {
        try {
            FileInputStream fis = new FileInputStream(file2);
        } catch (FileNotFoundException e) {
            e.printStackTrace();
        }
    }
}

Но если желаете сохранить читабельность, объявите вложенный блок try-catch в качестве нового метода и вставьте вызов данного метода в блок finally.

finally. 
public static void main(String[] args) {
    File file1 = new File("path1");
    File file2 = new File("path2");
    try {

        FileInputStream fis = new FileInputStream(file1);
    } catch (FileNotFoundException e) {
        e.printStackTrace();
    } finally {
        methodThrowException();
    }
}

JavaSpec_Welcome_970x90-1801-439a19.png

Исключения

  • Исключения
    • Введение
    • Иерархия исключений
      • Проверяемые и непроверяемые
      • Иерархия
        • Классификация
        • Error и Exception
    • Работа с исключениями
      • Обработка исключений
        • Правила try/catch/finally
        • Расположение catch блоков
        • Транзакционность
      • Делегирование
      • Методы и практики работы с исключительными ситуацими
        • Собственные исключения
        • Реагирование через re-throw
        • Не забывайте указывать причину возникновения исключения
        • Сохранение исключения
        • Логирование
        • Чего нельзя делать при обработке исключений
      • Try-with-resources или try-с-ресурсами
      • Общие советы
        • Избегайте генерации исключений, если их можно избежать простой проверкой
        • Предпочитайте Optional, если отсутствие значения — не исключительная ситуация
        • Заранее обдумывайте контракты методов
        • Предпочитайте исключения кодам ошибок и boolean флагам-признакам успеха
    • Исключения и статические блоки
    • Многопоточность и исключения
    • Проверяемые исключения и их необходимость
    • Заключение
    • Полезные ссылки

Введение

Начав заниматься программированием, мы, к своему удивлению, обнаружили, что не так уж просто заставить программы делать задуманное. Я могу точно вспомнить момент, когда я понял, что большая часть моей жизни с этих пор будет посвящена поиску ошибок в собственных программах.

(c) Морис Уилкс.

Предположим, вам понадобилась программа, считывающая содержимое файла.
В целом, здесь нет ничего сложного и код, выполняющий поставленную задачу, мог бы выглядеть как-то так:

    public List<String> readAll(String path) {
        BufferedReader br = new BufferedReader(new FileReader(path));
        String line;
        List<String> lines = new ArrayList<>();
        while ((line = br.readLine()) != null) {
            lines.add(line);
        }
        
        return lines;
    }

И это был бы вполне рабочий вариант, если бы не одно но: мы живём не в идеальном мире. Код, приведённый выше, рассчитан на то, что всё работает идеально: путь до файла указан верный, файл можно прочитать, во время чтения с файлом ничего не происходит, место хранения файла работает без ошибок и еще огромное количество предположений.

Однако, как показывает практика, мир не идеален, а нас повсюду преследуют ошибки и проблемы. Кто-то может указать путь до несуществующего файла, во время чтения может произойти ошибка, например, файл повреждён или удален в процессе чтения и т.д.

Игнорирование подобных ситуаций недопустимо, так как это ведет к нестабильно и непредсказуемо работающему коду.
Значит, на такие ситуации надо реагировать.

Самая простая реакция — это возвращать boolean — признак успеха или некоторый код ошибки, например, какое-то число.
Пусть, 0 — это код удачного завершения приложения, 1 — это аварийное завершение и т.д.
Мы получаем код возврата и уже на него реагируем.

Подобный ход имеет право на жизнь, однако, он крайне неудобен в повседневной разработке с её тысячами возможных ошибок и проблемных ситуаций.

Во-первых, он слишком немногословен, так как необходимо помнить что означает каждый код возврата, либо постоянно сверяться с таблицей расшифровки, где они описаны.

Во-вторых, такой подход предоставляет не совсем удобный способ обработки возникших ошибок. Более того, нередки ситуации, когда в месте возникновения ошибки непонятно, как реагировать на возникшую проблему. В таком случае было бы удобнее делегировать обработку ошибки вызывающему коду, до места, где будет понятно как реагировать на ошибку.

В-третьих, и это, на мой взгляд, самое главное — это небезопасно, так как подобный способ можно легко проигнорировать.

Lots of newbie’s coming in from the C world complain about exceptions and the fact that they have to put exception handling all over the place—they want to just write their code. But that’s stupid: most C code never checks return codes and so it tends to be very fragile. If you want to build something really robust, you need to pay attention to things that can go wrong, and most folks don’t in the C world because it’s just too damn hard.
One of the design principles behind Java is that I don’t care much about how long it takes to slap together something that kind of works. The real measure is how long it takes to write something solid.

In Java you can ignore exceptions, but you have to willfully do it. You can’t accidentally say, «I don’t care.» You have to explicitly say, «I don’t care.»

(c) James Gosling.

Поэтому, в Java используется другой механизм работы с такими ситуациями: исключения.

Что такое исключение? В некотором смысле можно сказать, что исключение — это некоторое сообщение, уведомляющее о проблеме, незапланированном поведении.

В нашем примере с чтением содержимого файла, источником такого сообщения может являться BufferedReader или FileReader. Сообщению необходим получатель/обработчик, чтобы перехватить его и что-то сделать, как-то отреагировать.

Важно понимать, что генерация исключения ломает поток выполнения программы, так как либо это сообщение будет перехвачено и обработано каким-то зарегистрированным получателем, либо программа завершится.

Что значит «ломает поток выполнения программы»?

Представьте, что по дороге едет грузовик. Движение машины и есть поток выполнения программы. Вдруг водитель видит, что впереди разрушенный мост — исключение, ошибка. Теперь он либо поедет по объездной дороге, т.е перехватит и отреагирует на исключение, либо остановится и поездка будет завершена.

Объездная

Исключения могут быть разных типов, под разные ситуации, а значит и получателей(обработчиков) может быть несколько — на каждый отдельный тип может быть своя реакция, свой обработчик.

Исключение также может хранить информацию о возникшей проблеме: причину, описание-комментарий и т.д.
Исходя из описания можно сказать, что исключение — это объект некоторого, специально для этого предназначенного, класса. Так как проблемы и ошибки бывают разного рода, их можно классифицировать и логически разделить, значит и классы исключений можно выстроить в некоторую иерархию.

Как генерировать исключения и регистрировать обработчики мы рассмотрим позднее, а пока давайте взглянем на иерархию этих классов.

Иерархия исключений

Ниже приведена иерархия исключений:

Exception Hierarchy

Картинка большая, чтобы лучше запоминалась.

Для начала разберем загадочные подписи checked и unchecked на рисунке.

Проверяемые и непроверяемые

Все исключения в Java делятся на два типа: проверяемые (checked) и непроверяемые исключения (unchecked).

Как видно на рисунке, java.lang.Throwable и java.lang.Exception относятся к проверяемым исключениям, в то время как java.lang.RuntimeException и java.lang.Error — это непроверяемые исключения.

Принадлежность к тому или иному типу каждое исключение наследует от родителя.
Это значит, что наследники java.lang.RuntimeException будут unchecked исключениями, а наследники java.lang.Exceptionchecked.

Что это за разделение?

В первую очередь напомним, что Java — это компилируемый язык, а значит, помимо runtime(время выполнения кода), существует ещё и compile-time(то, что происходит во время компиляции).

Так вот проверяемые исключения — это исключения, на которые разработчик обязан отреагировать, т.е написать обработчики, и наличие этих обработчиков будет проверено на этапе компиляции. Ваш код не будет скомпилирован, если какое-то проверяемое исключение не обработано, компилятор этого не допустит.

Непроверяемые исключения — это исключения времени выполнения. Компилятор не будет от вас требовать обработки непроверяемых исключений.

В чём же смысл этого разделения на проверяемые и непроверяемые исключения?

Я думаю так: проверяемые исключения в Java — это ситуации, которые разработчик никак не может предотвратить и исключение является одним из вариантов нормальной работы кода.

Например, при чтении файла требуется обрабатывать java.io.FileNotFoundException и java.io.IOException, которые является потомками java.io.Exception.

Потому, что отсутствие файла или ошибка работы с вводом/выводом — это вполне допустимая ситуация при чтении.

С другой стороны, java.lang.RuntimeException — это скорее ошибки разработчика.
Например, java.lang.NullPointerException — это ошибка обращения по null ссылке, данную ситуацию можно предотвратить: проверить ссылку на null перед вызовом.

Представьте, что вы едете по дороге, так вот предупредительные знаки — это проверяемые исключения. Например, знак «Осторожно, дети!» говорит о том, что рядом школа и дорогу может перебежать ребенок. Вы обязаны отреагировать на это, не обязательно ребенок перебежит вам дорогу, но вы не можете это проконтролировать, но в данном месте — это нормальная ситуация, ведь рядом школа.

Делать абсолютно все исключения проерямыми — не имеет никакого смысла, потому что вы просто с ума сойдете, пока будете писать обработчики таких ситуаций. Да и зачастую это будет только мешать: представьте себе дорогу, которая утыкана постоянными предупредительными знаками, на которые вы должны реагировать. Ехать по такой дороге будет крайне утомительно.

Разделение на проверяемые и непроверяемые исключения существует только в Java, в других языках программирования, таких как Scala, Groovy, Kotlin или Python, все исключения непроверяемые.

Это довольно холиварная тема и свои мысли по ней я изложу в конце статьи.

Теперь рассмотрим непосредственно иерархию исключений.

Иерархия

Итак, корнем иерархии является java.lang.Throwable, у которого два наследника: java.lang.Exception и java.lang.Error.
В свою очередь java.lang.Exception является родительским классом для java.lang.RuntimeException.

Занятно, что класс java.lang.Throwable назван так, как обычно называют интерфейсы, что иногда вводит в заблуждение новичков. Однако помните, что это класс! Запомнить это довольно просто, достаточно держать в уме то, что исключения могут содержать состояние (например, информация о возникшей проблеме).

Так как в Java все классы являются наследниками java.lang.Object, то и исключения (будучи тоже классами) наследуют все стандартные методы, такие как equals, hashCode, toString и т.д.

Раз мы работаем с классами, то можно с помощью наследования создавать свои собственные иерархии исключений, добавляя в них какое-то специфическое поведение и состояние.

Чтобы создать свой собственный класс исключение необходимо отнаследоваться от одного из классов в иерархии исключений. При этом помните, что наследуется еще и тип исключения: проверяемое или непроверяемое.

Классификация

Каждый тип исключения отвечает за свою область ошибок.

  1. java.lang.Exception

    Это ситуации, которые разработчик никак не может предотвратить, например, не получилось закрыть файловый дескриптор или отослать письмо, и исключение является одним из вариантов нормальной работы кода.

    Это проверяемые исключения, мы обязаны на такие исключения реагировать, это будет проверено на этапе компиляции.

    Пример: java.io.IOException, java.io.FileNotFoundException.

  2. java.lang.RuntimeException

    Это ситуации, когда основной причиной ошибки является сам разработчик, например, происходит обращение к null ссылке, деление на ноль, выход за границы массива и т.д. При этом исключение не является одним из вариантов нормальной работы кода.

    Это непроверяемые исключения, реагировать на них или нет решает разработчик.

    Пример: java.lang.NullPointerException.

  3. java.lang.Error

    Это критические ошибки, аварийные ситуации, после которых мы с трудом или вообще не в состоянии продолжить работу. Например, закончилась память, переполнился стек вызовов и т.д.

    Это непроверяемые исключения, реагировать на них или нет решает разработчик.

    Реагировать на подобные ошибки следует только в том случае, если разработчик точно знает как поступить в такой ситуации. Перехватывать такие ошибки не рекомендуется, так как чаще всего разработчик не знает как реагировать на подобного рода аварийные ситуации.

Теперь перейдем к вопросу: в чем же разница между java.lang.Error и java.lang.Exception?

Error и Exception

Все просто. Исключения java.lang.Error — это более серьезная ситуация, нежели java.lang.Exception.
Это серьезные проблемы в работе приложения, которые тяжело исправить, либо вообще неясно, можно ли это сделать.

Это не просто исключительная ситуация — это ситуация, в которой работоспособность всего приложения под угрозой! Например, исключение java.lang.OutOfMemoryError, сигнализирующее о том, что кончается память или java.lang.StackOverflowError – переполнение стека вызовов, которое можно встретить при бесконечной рекурсии.

Согласитесь, что если не получается преобразовать строку к числу, то это не та ситуация, когда все приложение должно завершаться. Это ситуация, после которой приложение может продолжить работать.
Да, это неприятно, что вы не смогли найти файл по указанному пути, но не настолько критично, как переполнение стека вызовов.

Т.е разница — в логическом разделении.

Поэтому, java.lang.Error и его наследники используются только для критических ситуаций.

Работа с исключениями

Обработка исключений

Корнем иерархии является класс java.lang.Throwable, т.е. что-то «бросаемое».
А раз исключения бросаются, то для обработки мы будем ловить их!

В Java исключения ловят и обрабатывают с помощью конструкции try/catch/finally.

При заключении кода в один или несколько блоков try указывается потенциальная возможность выбрасывания исключения в этом месте, все операторы, которые могут сгенерировать исключение, помещаются в этом блоке.

В блоках catch перечисляются исключения, на которые решено реагировать. Тут определяются блоки кода, предназначенные для решения возникших проблем. Это и есть объявление тех самых получателей/обработчиков исключений.

Пример:

public class ExceptionHandling {
    public static void main(String[] args) {
        try {
             // код
        } catch(FileNotFoundException fnf) {
            // обработчик на FileNotFoundException
        }
    }
}

Тот тип исключения, что указывается в catch блоке можно расценивать как фильтр, который перехватывает все исключения того типа, что вы указали и всех его потомков, расположенных ниже по иерархии.

Представьте себе просеивание муки. Это процесс целью которого является удаление посторонних частиц, отличающихся по размерам от частиц муки. Вы просеиваете через несколько фильтров муку, так как вам не нужны крупные комочки, осколки и другие посторонние частицы, вам нужна именно мука определенного качества. И в зависимости от выставленных фильтров вы будете перехватывать разные частицы, комочки и т.д. Эти частицы и есть исключения. И если выставляется мелкий фильтр, то вы словите как крупные частицы, так и мелкие.

Точно также и в Java, ставя фильтр на java.lang.RuntimeException вы ловите не только java.lang.RuntimeException, но и всех его наследников! Ведь эти потомки — это тоже runtime ошибки!

В блоке finally определяется код, который будет всегда выполнен, независимо от результата выполнения блоков try/catch. Этот блок будет выполняться независимо от того, выполнился или нет блок try до конца, было ли сгенерировано исключение или нет, и было ли оно обработано в блоке catch или нет.

Пример:

public class ExceptionHandling {
    public static void main(String[] args) {
        try {
             // some code
        } catch(FileNotFoundException fnf) {
            // обработчик 1
        } catch(RuntimeException re) {
            // обработчик 2
        } finally {
            System.out.println("Hello from finally block.");
        }
    }
}

В примере выше объявлен try блок с кодом, который потенциально может сгенерировать исключения, после try блока описаны два обработчика исключений, на случай генерации FileNotFoundException и на случай генерации любого RuntimeException.
Объект исключения доступен по ссылке exception.

Правила try/catch/finally

  1. Блок try находится перед блоком catch или finally. При этом должен присутствовать хотя бы один из этих блоков.

  2. Между try, catch и finally не может быть никаких операторов.

  3. Один блок try может иметь несколько catch блоков. В таком случае будет выполняться первый подходящий блок.

    Поэтому сначала должны идти более специальные блоки обработки исключений, а потом уже более общие.

  4. Блок finally будет выполнен всегда, кроме случая, когда JVM преждевременно завершит работу или будет сгенерировано исключение непосредственно в самом finally блоке.

  5. Допускается использование вложенных конструкций try/catch/finally.

    public class ExceptionHandling {
        public static void main(String[] args) {
            try {
                 try {
                    // some code
                } catch(FileNotFoundException fnf) {
                    // обработчик 1
                }
            } catch(RuntimeException re) {
                // обработчик 2
            } finally {
                System.out.println("Hello from finally block.");
            }
        }
    }

Вопрос:

Каков результат выполнения примера выше, если в блоке try не будет сгенерировано ни одного исключения?

Ответ:

Будет выведено на экран: «Hello from finally block.».

Так как блок finally выполняется всегда.


Вопрос:

Теперь немного видоизменим код, каков результат выполнения будет теперь?

public class ExceptionHandling {
  public static void main(String[] args) {
    try {
         return;
    } finally {
         System.out.println("Hello from finally block");
    }
  }
}

Ответ:

На экран будет выведено: Hello from finally block.


Вопрос:

Плохим тоном считается прямое наследование от java.lang.Throwable.
Это строго не рекомендуется делать, почему?

Ответ:

Наследование от наиболее общего класса, а в данном случае от корневого класса иерархии, усложняет обработку ваших исключений. Проблему надо стараться локализовать, а не делать ее описание/объявление максимально общим. Согласитесь, что java.lang.IllegalArgumentException говорит гораздо больше, чем java.lang.RuntimeException. А значит и реакция на первое исключение будет более точная, чем на второе.


Далее приводится несколько примеров перехвата исключений разных типов:

Обработка java.lang.RuntimeException:

try {
    String numberAsString = "one";
    Double res = Double.valueOf(numberAsString);
} catch (RuntimeException re) {
    System.err.println("Error while convert string to double!");
}

Результатом будет печать на экран: Error while convert string to double!.

Обработка java.lang.Error:

try {
    throw new Error();
} catch (RuntimeException re) {
    System.out.println("RuntimeException");
} catch (Error error) {
    System.out.println("ERROR");
}

Результатом будет печать на экран: ERROR.

Расположение catch блоков

Как уже было сказано, один блок try может иметь несколько catch блоков. В таком случае будет выполняться первый подходящий блок.

Это значит, что порядок расположения catch блоков важен.

Рассмотрим ситуацию, когда некоторый используемый нами метод может выбросить два разных исключения:

void method() throws Exception {
    if (new Random((System.currentTimeMillis())).nextBoolean()) {
        throw new Exception();
    } else {
       throw new IOException();
    }
}

Конструкция new Random((System.currentTimeMillis())).nextBoolean() генерирует нам случайное значение false или true.

Для обработки исключений этого метода написан следующий код:

try {
  method();
} catch (Exception e) {
  // Обработчик 1
} catch (IOException e) {
  // Обработчик 2
}

Все ли хорошо с приведенным выше кодом?
Нет, код выше неверен, так как обработчик java.io.IOException в данном случае недостижим. Все дело в том, что первый обработчик, ответсвенный за Exception, перехватит все исключения, а значит не может быть ситуации, когда мы сможем попасть во второй обработчик.

Снова вспомним пример с мукой, приведенный в начале.

Так вот песчинка, которую мы ищем, это и есть наше исключение, а каждый фильтр это catch блок.

Если первым установлен фильтр ловить все, что является Exception и его потомков, то до фильтра ловить все, что является IOException и его потомков ничего не дойдет, так как верхний фильтр уже перехватит все песчинки.

Отсюда следует правило:

Сначала должны идти более специальные блоки обработки исключений, а потом уже более общие.

А что если на два разных исключения предусмотрена одна и та же реакция? Написание двух одинаковых catch блоков не приветствуется, ведь дублирование кода — это зло.

Поэтому допускается объединить два catch блока с помощью |:

try {
    method2();
} catch (IllegalArgumentException | IndexOutOfBoundsException e) {
    // Обработчик
}

Вопрос:

Есть ли способ перехватить все возможные исключения?

Ответ:

Есть! Если взглянуть еще раз на иерархию, то можно отметить, что java.lang.Throwable является родительским классом для всех исключений, а значит, чтобы поймать все, необходимо написать что-то в виде:

try {
  method();
} catch (Throwable t) {
  // Обработчик
}

Однако, делать так не рекомендуется, что наталкивает на следующий вопрос.


Вопрос:

Почему перехватывать java.lang.Throwable — плохо?

Ответ:

Дело в том, что написав:

try {
  method();
} catch (Throwable t) {
  // catch all
}

Будут перехвачены абсолютно все исключения: и java.lang.Exception, и java.lang.RuntimeException, и java.lang.Error, и все их потомки.

И как реагировать на все? При этом надо учесть, что обычно на java.lang.Error исключений вообще не ясно как реагировать. А значит, мы можем неверно отреагировать на исключение и вообще потерять данные. А ловить то, что не можешь и не собирался обрабатывать — плохо.

Поэтому перехватывать все исключения — плохая практика.


Вопрос-Тест:

Что будет выведено на экран при запуске данного куска кода?

public static void main(String[] args) {
    try {
        try {
            throw new Exception("0");
        } finally {
            if (true) {
                throw new IOException("1");
            }

            System.err.println("2");
        }
    } catch (IOException ex) {
        System.err.println(ex.getMessage());
    } catch (Exception ex) {
        System.err.println("3");
        System.err.println(ex.getMessage());
    }
}

Ответ:

При выполнении данного кода выведется «1».
Давайте разберем почему.

Мы кидаем исключение во вложенном try блоке: throw new Exception("0");.

После этого поток программы ломается и мы попадаем в finally блок:

if (true) {
    throw new IOException("1");
}

System.err.println("2");

Здесь мы гарантированно зайдем в if и кинем уже новое исключение: throw new IOException("1");.
При этом вся информация о первом исключении будет потеряна! Ведь мы никак не отреагировали на него, а в finally блоке и вовсе ‘перезатерли’ новым исключением.

На try, оборачивающий наш код, настроено два фильтра: первый на IOException, второй на Exception.

Так как порядок расположения задан так, что мы прежде всего смотрим на IOException, то и сработает этот фильтр, который выполнит следующий код:

System.err.println(ex.getMessage());

Именно поэтому выведется 1.


Транзакционность

Важным моментом, который нельзя пропустить, является то, что try блок не транзакционный.

Под термином транзакционность я имею в виду то, что либо действия будут выполнены целиком и успешно, либо не будут выполнены вовсе.

Что это значит?

Это значит, что при возникновении исключения в try блоке все совершенные действия не откатываются к изначальному состоянию, а так и остаются совершенными.
Все выделенные ресурсы так и остаются занятыми, в том числе и при возникновении исключения.

По сути именно поэтому и существует finally блок, так как туда, как уже было сказано выше, мы зайдем в любом случае, то там и освобождают выделенные ресурсы.


Вопрос:

Работа с объектами из try блока в других блоках невозможна:

public class ExceptionExample {
    public static void main(String[] args) {
        try {
            String line = "hello";
        } catch (Exception e) {
            System.err.println(e);
        }

        // Compile error
        System.out.println(line); // Cannot resolve symbol `line`
    }
}

Почему?

Ответ:

Потому что компилятор не может нам гарантировать, что объекты, объявленные в try-блоке, были созданы.

Ведь могло быть сгенерировано исключение. Тогда после места, где было сгенерировано исключение, оставшиеся действия не будут выполнены, а значит возможна ситуация, когда объект не будет создан. Следовательно и работать с ним нельзя.


Вернемся к примеру с грузовиком, чтобы объяснить все вышесказанное.

Объездная

Объездная здесь — это catch блок, реакция на исключительную ситуацию. Если добавить еще несколько объездных дорог, несколько catch блоков, то водитель выберет наиболее подходящий путь, наиболее подходящий и удобный catch блок, что объясняет важность расположения этих блоков.

Транзакционность на этом примере объясняется тем, что если до этого водитель где-то оплатил проезд по мосту, то деньги ему автоматически не вернутся, необходимо будет написать в поддержку или куда-то пожаловаться на управляющую компанию.

Делегирование

Выше было разобрано то, как обрабатывать исключения. Однако, иногда возникают ситуации, когда в нет конкретного понимания того, как обрабатывать возникшее исключение. В таком случае имеет смысл делегировать задачу обработки исключения коду, который вызвал ваш метод, так как вызывающий код чаще всего обладает более обширными сведениями об источнике проблемы или об операции, которая сейчас выполняется.

Делегирование исключения производится с помощью ключевого слова throws, которое добавляется после сигнатуры метода.

Пример:

// Код написан только для ознакомительной цели, не стоит с него брать пример!
String readLine(String path) throws IOException {
    BufferedReader br = new BufferedReader(...);
    String line = br.readLine();

    return line;
}

Таким образом обеспечивается передача объявленного исключения в место вызова метода. И то, как на него реагировать уже становится заботой вызывающего этот метод.
Поэтому реагировать и писать обработчики на те исключения, которые мы делегировали, внутри метода уже не надо.

Механизм throws введен для проброса проверяемых исключений.

Разумеется, с помощью throws можно описывать делегирование как проверяемых, так и непроверяемых исключений.
Однако перечислять непроверяемые не стоит, такие исключения не контролируются в compile time.

Перечисление непроверяемых исключений бессмысленно, так как это примерно то же самое, что перечислять все, что может с вами случиться на улице.

Теперь пришла пора рассмотреть методы обработки исключительных ситуаций.

Методы и практики работы с исключительными ситуацими

Главное и основное правило при работе с исключениями звучит так:

На исключения надо либо реагировать, либо делегировать, но ни в коем случае не игнорировать.

Определить когда надо реагировать, а когда делегировать проще простого. Задайте вопрос: «Знаю ли я как реагировать на это исключение?».

Если ответ «да, знаю», то реагируйте, пишите обработчик и код, отвечающий за эту реакцию, если не знаете что делать с исключением, то делегируйте вызывающему коду.

Собственные исключения

Выше мы уже затронули то, что исключения это те же классы и объекты.
И иногда удобно выстроить свою иерархию исключений, заточенных под конкретную задачу. Дабы более гибко обрабатывать и реагировать на те исключительные ситуации, которые специфичны решаемой задаче.

Например, пусть есть некоторый справочник:

class Catalog {
    Person findPerson(String name);
}

В данном случае нам надо обработать ситуации, когда name является null, когда в каталоге нет пользователя с таким именем.

Если генерировать на все ситуации java.lang.Exception, то обработка ошибок будет крайне неудобной.
Более того, хотелось бы явно выделить ошибку, связанную с тем, что пользователя такого не существует.
Очевидно, что стандартное исключение для этого случая не существует, а значит вполне логично создать свое.

class PersonNotFoundException extends RuntimeException {
    private String name;

    // some code
}

Обратите внимание, что имя Person, по которому в каталоге не смогли его найти, выделено в свойство класса name.

Теперь при использовании этого метода проще реагировать на различные ситуации, такие как null вместо имени, а проблему с отсутствием Person в каталоге можно отдельно вынести в свой catch блок.

Реагирование через re-throw

Часто бывает необходимо перехватить исключение, сделать запись о том, что случилось (в файл лога, например) и делегировать его вызывающему коду.
Как уже было сказано выше, в рамках конструкции try/catch/finally можно сгенерировать другое исключение.

Такой подход называется re-throw.

Исключение перехватывается в catch блоке, совершаются необходимые действия, например, запись в лог или создание нового, более конкретного для контекста задачи, исключения и повторная генерация исключения.

Как это выглядит на практике:

try {
    Reader readerConf = ....
    readerConf.readConfig();
} catch(IOException ex) {
    System.err.println("Log exception: " + ex);
    throw new ConfigException(ex);
}

Во время чтения конфигурационного файла произошло исключение java.io.IOException, в catch блоке оно было перехвачено, сделана запись в консоль о проблеме, после чего было создано новое, более конкретное, исключение ConfigException, с указанием причины (перехваченное исключение, ссылка на которое ex) и оно было проброшено дальше.

По итогу, из метода с приведенным кодом, в случае ошибки чтения конфигурации, будет выброшено ConfigException.

Для чего мы здесь так поступили?

Это полезно для более гибкой обработки исключений.
В примере выше чтение конфигурации генерирует слишком общее исключение, так как java.io.IOException это довольно общее исключение, но проблема в примере выше понятна: работа с этим конфигурационным файлом невозможна.

Значит и сообщить лучше именно как о том, что это не абстрактный java.io.IOException, а именно ConfigException. При этом, так как перехваченное исключение было передано новому в конструкторе, т.е. указалась причина возникновения (cause) ConfigException, то при выводе на консоль или обработке в вызывающем коде будет понятно почему ConfigException был создан.

Также, можно было добавить еще и текстовое описание к сгенерированному ConfigException, более подробно описывающее произошедшую ситуацию.

Еще одной важной областью применения re-throw бывает преобразование проверяемых исключений в непроверяемые.
В Java 8 даже добавили исключение java.io.UncheckedIOException, которое предназначено как раз для того, чтобы сделать java.io.IOException непроверяемым, обернуть в unchecked обертку.

Пример:

try {
    Reader readerConf = ....
    readerConf.readConfig();
} catch(IOException ex) {
    System.err.println("Log exception: " + ex);
    throw new UncheckedIOException(ex);
}

Не забывайте указывать причину возникновения исключения

В предыдущем пункте мы создали собственное исключение, которому указали причину: перехваченное исключение, java.io.IOException.

Чтобы понять как это работает, давайте рассмотрим наиболее важные поля класса java.lang.Throwable:

public class Throwable implements Serializable {

    /**
     * Specific details about the Throwable.  For example, for
     * {@code FileNotFoundException}, this contains the name of
     * the file that could not be found.
     *
     * @serial
     */
    private String detailMessage;

    // ...


    /**
     * The throwable that caused this throwable to get thrown, or null if this
     * throwable was not caused by another throwable, or if the causative
     * throwable is unknown.  If this field is equal to this throwable itself,
     * it indicates that the cause of this throwable has not yet been
     * initialized.
     *
     * @serial
     * @since 1.4
     */
    private Throwable cause = this;

    // ...
}

Все исключения, будь то java.lang.RuntimeException, либо java.lang.Exception имеют необходимые конструкторы для инициализации этих полей.

При создании собственного исключения не пренебрегайте этими конструкторами!

Поле cause используются для указания родительского исключения, причины. Например, выше мы перехватили java.io.IOException, прокинув свое исключение вместо него. Но причиной того, что наш код выкинул ConfigException было именно исключение java.io.IOException. И эту причину нельзя игнорировать.

Представьте, что код, использующий ваш метод также перехватил ConfigException, пробросив какое-то своё исключение, а это исключение снова кто-то перехватил и пробросил свое. Получается, что истинная причина будет просто потеряна! Однако, если каждый будет указывать cause, истинного виновника возникновения исключения, то вы всегда сможете обнаружить по этому стеку виновника.

Для получения причины возникновения исключения существует метод getCause.

public class ExceptionExample {
    public Config readConfig() throws ConfigException { // (1)
      try {
        Reader readerConf = ....;
        readerConf.readConfig();
      } catch (IOException ex) {
          System.err.println("Log exception: " + ex);
          throw new ConfigException(ex); // (2)
      }
    }

    public void run() {
        try {
            Config config = readConfig(); // (3)
        } catch (ConfigException e) {
            Throwable t = e.getCause(); // (4)
        }
    }
}

В коде выше:

  1. В строке (1) объявлен метод readConfig, который может выбросить ConfigException.
  2. В строке (2) создаётся исключение ConfigException, в конструктор которого передается IOException — причина возникновения.
  3. readConfig вызывается в (3) строке кода.
  4. А в (4) вызван метод getCause который и вернёт причину возникновения ConfigExceptionIOException.

Сохранение исключения

Исключения необязательно генерировать, пробрасывать и так далее.
Выше уже упоминалось, что исключение — это Java-объект. А значит, его вполне можно присвоить переменной или свойству класса, передать по ссылке в метод и т.д.

class Reader {
    // A holder of the last IOException encountered
    private IOException lastException;

    // some code
    
    public void read() {
        try {
            Reader readerConf = ....
            readerConf.readConfig();
        } catch(IOException ex) {
            System.err.println("Log exception: " + ex);
            lastException = ex;
        }
    }
}

Генерация исключения это довольно дорогостоящая операция. Кроме того, исключения ломают поток выполнения программы. Чтобы не ломать поток выполнения, но при этом иметь возможность в дальнейшем отреагировать на исключительную ситуацию можно присвоить ее свойству класса или переменой.

Подобный прием использован в java.util.Scanner, где генерируемое исключение чтения потока сохраняется в свойство класса lastException.

Еще одним способом применения сохранения исключения может являться ситуация, когда надо сделать N операций, какие-то из них могут быть не выполнены и будет сгенерировано исключение, но реагировать на эти исключения будут позже, скопом.

Например, идет запись в базу данных тысячу строк построчно.
Из них 100 записей происходит с ошибкой.
Эти исключения складываются в список, а после этот список передается специальному методу, который по каждой ситуации из списка как-то отреагирует.
Т.е пока делаете операцию, копите ошибки, а потом уже реагируете.

Это похоже на то, как опрашивают 1000 человек, а негативные отзывы/голоса записывают, после чего реагируют на них. Согласитесь, было бы глупо после каждого негативного отзыва осуществлять реакцию, а потом снова возвращаться к толпе и продолжать опрос.

class Example {
    private List<Exception> exceptions;

    // some code
    
    public void parse(String s) {
        try {
            // do smth
        } catch(Exception ex) {
            exceptions.add(ex);
        }
    }

    private void handleExceptions()  {
        for(Exception e : exceptions) {
            System.err.println("Log exception: " + e);
        }
    }
}

Логирование

Когда логировать исключение?

В большинстве случаев лучше всего логировать исключение в месте его обработки. Это связано с тем, что именно в данном месте кода достаточно информации для описания возникшей проблемы — реакции на исключение. Кроме этого, одно и то же исключение при вызове одного и того же метода можно перехватывать в разных местах программы.

Также, исключение может быть частью ожидаемого поведения. В этом случае нет необходимости его логировать.

Поэтому не стоит преждевременно логировать исключение, например:

/**
 * Parse date from string to java.util.Date.
 * @param date as string 
 * @return Date object.
 */
public static Date from(String date) {
    try {
        DateFormat format = new SimpleDateFormat("MMMM d, yyyy", Locale.ENGLISH);
        return format.parse(date);
    }  catch (ParseException e) {
        logger.error("Can't parse ")
        throw e;
    }
}

Здесь ParseException является частью ожидаемой работы, в ситуациях, когда строка содержит невалидные данные.
Раз происходит делегирование исключения выше (с помощью throw), то и там, где его будут обрабатывать и лучше всего логировать, а эта запись в лог будет избыточной. Хотя бы потому, что в месте обработки исключения его тоже залогируют!

Подробнее о логировании.

Чего нельзя делать при обработке исключений

  1. Старайтесь не игнорировать исключения.

    В частности, никогда не пишите подобный код:

        try {
            Reader readerConf = ....
            readerConf.readConfig();
        } catch(IOException e) {
            e.printStackTrace();
        }
  2. Не следует писать ‘универсальные’ блоки обработки исключений.

    Ведь очень трудно представить себе метод, который одинаково реагировал бы на все возникающие проблемы.

    Также программный код может измениться, а ‘универсальный’ обработчик исключений будет продолжать обрабатывать новые типы исключений одинаково.

    Поэтому таких ситуаций лучше не допускать.

  3. Старайтесь не преобразовывать более конкретные исключения в более общие.

    В частности, например, не следует java.io.IOException преобразовывать в java.lang.Exception или в java.lang.Throwable.

    Чем с более конкретными исключениями идет работа, тем проще реагировать и принимать решения об их обработке.

  4. Старайтесь не злоупотреблять исключениями.

    Если исключение можно не допустить, например, дополнительной проверкой, то лучше так и сделать.

    Например, можно обезопасить себя от java.lang.NullPointerException простой проверкой:

      if(ref != null) {
          // some code
      }

Try-with-resources или try-с-ресурсами

Как уже говорилось выше про finally блок, код в нем выполняется в любом случае, что делает его отличным кандидатом на место по освобождению ресурсов, учитывая нетранзакционность блока try.

Чаще всего за закрытие ресурса будет отвечать код, наподобие этого:

try {
    // code
} finally {
    resource.close();
}

Освобождение ресурса (например, освобождение файлового дескриптора) — это поведение.

А за поведение в Java отвечают интерфейсы.

Это наталкивает на мысль, что нужен некоторый общий интерфейс, который бы реализовывали все классы, для которых необходимо выполнить какой-то код по освобождению ресурсов, т.е выполнить ‘закрытие’ в finally блоке и еще удобнее, если бы этот однообразный finally блок не нужно было писать каждый раз.

Поэтому, начиная с Java 7, была введена конструкция try-with-resources или TWR.

Для этого объявили специальный интерфейс java.lang.AutoCloseable, у которого один метод:

void close() throws Exception;

Все классы, которые будут использоваться так, как было описано выше, должны реализовать или java.lang.Closable, или java.lang.AutoCloseable.

В качестве примера, напишем код чтения содержимого файла и представим две реализации этой задачи: используя и не используя try-with-resources.

Без использования try-with-resources (пример ниже плох и служит только для демонстрации объема необходимого кода):

BufferedReader br = null;
try {
    br = new BufferedReader(new FileReader(path));
    // read from file
} catch (IOException e) {
    // catch and do smth
} finally {
    try {
        if (br != null) {
            br.close();
        }
    } catch (IOException ex) {
        // catch and do smth
    }
}

А теперь то же самое, но в Java 7+:

try (FileReader fr = new FileReader(path);
    BufferedReader br = new BufferedReader(fr)) {
         // read from file
} catch (IOException e) {
         // catch and do smth
}

По возможности пользуйтесь только try-with-resources.

Помните, что без реализации java.lang.Closable или java.lang.AutoCloseable ваш класс не будет работать с try-with-resources так, как показано выше.


Вопрос:

Получается, что используя TWR мы не пишем код для закрытия ресурсов, но при их закрытии может же тоже быть исключение! Что произойдет?

Ответ:

Точно так же, как и без TWR, исключение выбросится так, будто оно было в finally-блоке.

Помните, что TWR, грубо говоря, просто добавляет вам блок кода вида:

finally {
    resource.close();
}

Вопрос:

Является ли безопасной конструкция следующего вида?

try (BufferedWriter bufferedWriter
        = new BufferedWriter(new OutputStreamWriter(new FileOutputStream("a")))) {
}

Ответ:

Не совсем, если конструктор OutputStreamWriter или BufferedWriter выбросит исключение, то FileOutputStream закрыт не будет.

Пример, демонстрирующий это:

public class Main {
    public static void main(String[] args) throws Exception {
        try (ThrowingAutoCloseable throwingAutoCloseable
                     = new ThrowingAutoCloseable(new PrintingAutoCloseable())) { // (1)
        }
    }

    private static class ThrowingAutoCloseable implements AutoCloseable { // (2)
        private final AutoCloseable other;

        public ThrowingAutoCloseable(AutoCloseable other) {
            this.other = other;
            throw new IllegalStateException("I always throw"); // (3)
        }

        @Override
        public void close() throws Exception {
            try {
                other.close(); // (4)
            } finally {
                System.out.println("ThrowingAutoCloseable is closed");
            }
        }
    }

    private static class PrintingAutoCloseable implements AutoCloseable { // (5)
        public PrintingAutoCloseable() {
            System.out.println("PrintingAutoCloseable created"); // (6)
        }

        @Override
        public void close() {
            System.out.println("PrintingAutoCloseable is closed"); // (7)
        }
    }
}
  1. В строке (1) происходит заворачивание одного ресурса в другой, аналогично new BufferedWriter(new OutputStreamWriter(new FileOutputStream("a"))).
  2. ThrowingAutoCloseable (2) — такой AutoCloseable, который всегда бросает исключение (3), в (4) производится попытка закрыть полученный в конструкторе AutoCloseable.
  3. PrintingAutoCloseable (5) — AutoCloseable, который печатает сообщения о своём создании (6) и закрытии (7).

В результате выполнения этой программы вывод будет примерно следующим:

PrintingAutoCloseable created
Exception in thread "main" java.lang.IllegalStateException: I always throw
    at ru.misc.Main$ThrowingAutoCloseable.<init>(Main.java:19)
    at ru.misc.Main.main(Main.java:9)

Как видно, PrintingAutoCloseable закрыт не был!


Вопрос:

В каком порядке закрываются ресурсы, объявленные в try-with-resources?

Ответ:

В обратном.

Пример:

public class Main {
    public static void main(String[] args) throws Exception {
        try (PrintingAutoCloseable printingAutoCloseable1 = new PrintingAutoCloseable("1");
             PrintingAutoCloseable printingAutoCloseable2 = new PrintingAutoCloseable("2");
             PrintingAutoCloseable printingAutoCloseable3 = new PrintingAutoCloseable("3")) {
        }
    }

    private static class PrintingAutoCloseable implements AutoCloseable {
        private final String id;

        public PrintingAutoCloseable(String id) {
            this.id = id;
        }

        @Override
        public void close() {
            System.out.println("Closed " + id);
        }
    }
}

Вывод:

Closed 3
Closed 2
Closed 1

Общие советы

Избегайте генерации исключений, если их можно избежать простой проверкой

Как уже было сказано выше, исключения ломают поток выполнения программы. Если же на сгенерированное исключение не найдется обработчика, не будет подходящего catch блока, то программа и вовсе будет завершена. Кроме того, генерация исключения это довольно дорогостоящая операция.

Помните, что если исключение можно не допустить, то лучше так и сделать.

Отсюда следует первый совет: не брезгуйте дополнительными проверками.

  1. Не ловите IllegalArgumentException, NullPointerException, ArrayIndexOutOfBoundsException и подобные.
    Потому что эти ошибки — это явная отсылка к тому, что где-то недостает проверки.
    Обращение по индексу за пределами массива, NullPointerException, все эти исключения — это ошибка разработчика.
  2. Вводите дополнительные проверки на данные, дабы избежать возникновения непроверяемых исключения

Например, запретите вводить в поле возраста не числовые значения, проверяйте ссылки на null перед обращением и т.д.

Предпочитайте Optional, если отсутствие значения — не исключительная ситуация

При написании API к каким-то хранилищам или коллекциям очень часто на отсутствие элемента генерируется исключение, как например в разделе собственные исключения.

class Catalog {
    Person findPerson(String name);
}

Но и в этом случае генерации исключения можно избежать, если воспользоваться java.util.Optional:

Optional<Person> findPerson(String name);

Класс java.util.Optional был добавлен в Java 8 и предназначен как раз для подобных ситуаций, когда возвращаемого значения может не быть. В зависимости от задачи и контекста можно как генерировать исключение, как это сделано в примере с PersonNotFoundException, так и изменить сигнатуру метода, воспользовавшись java.util.Optional.

Отсюда следует второй совет: думайте над API ваших классов, исключений можно избежать воспользовавшись другим подходом.

Заранее обдумывайте контракты методов

Важным моментом, который нельзя не упомянуть, является то, что если в методе объявляется, что он может сгенерировать исключение (с помощью throws), то при переопределении такого метода нельзя указать более общее исключение в качестве выбрасываемого.

class Person {
    void hello() throws RuntimeException {
        // some code
    }
}

// Compile Error
class PPerson extends Person {
    @Override
    void hello() throws Exception {
        // some code
    }
}

Если было явно указано, что метод может сгенерировать java.lang.RuntimeException, то нельзя объявить более общее бросаемое исключение при переопределении. Но можно указать потомка:

// IllegalArgumentException - потомок RuntimeException!
class PPerson extends Person {
    @Override
    void hello() throws IllegalArgumentException {
        // some code
    }
}

Что, в целом логично.

Если объявляется, что метод может сгенерировать java.lang.RuntimeException, а он выбрасывает java.io.IOException, то это было бы как минимум странно.

Это объясняется и с помощью полимофризма. Пусть есть интерфейс, в котором объявлен метод, генерирующий исключение. Если полиморфно работать с объектом через общий интерфейс, то разработчик обязан обработать исключение, объявленное в интерфейсе, а если одна из реализаций интерфейса генерирует более общее исключение, то это нарушает полиморфизм. Поэтому такой код даже не скомпилируется.

При этом при переопределении можно вообще не объявлять бросаемые исключения, таким образом сообщив, что все проблемы будут решены в методе:

class PPerson extends Person {
    @Override
    void hello() {
        // some code
    }
}

Отсюда следует третий совет: необходимо думать о тех исключениях, которые делегирует метод, если класс может участвовать в наследовании.

Предпочитайте исключения кодам ошибок и boolean флагам-признакам успеха

  1. Исключения более информативны: они позволяют передать сообщение с описанием ошибки
  2. Исключение практически невозможно проигнорировать
  3. Исключение может быть обработано кодом, находящимся выше по стеку, а boolean-флаг или код ошибки необходимо обрабатывать здесь и сейчас

Исключения и статические блоки

Еще интересно поговорить про то, что происходит, если исключение возникает в статическом блоке.

Так вот, такие исключения оборачиваются в java.lang.ExceptionInInitializerError:

public class ExceptionHandling {
    static {
        throwRuntimeException();
    }

    private static void throwRuntimeException()  {
        throw new NullPointerException();
    }

    public static void main(String[] args)  {
        System.out.println("Hello World");
    }
}

Результатом будет падение со следующим стектрейсом:

java.lang.ExceptionInInitializerError Caused by: java.lang.NullPointerException at exception.test.ExceptionHandling.throwRuntimeException(ExceptionHandling.java:13) at exception.test.ExceptionHandling. (ExceptionHandling.java:8)

Многопоточность и исключения

Код в Java потоке выполняется в методе со следующей сигнатурой:

Что делает невозможным пробрасывание проверяемых исключений, т.е разработчик должен обрабатывать все проверяемые исключения внутри метода run.

Непроверяемые исключения обрабатывать необязательно, однако необработанное исключение, выброшенное из run, завершит работу потока.

Например:

public class ExceptionHandling4 {
  public static void main(String[] args) throws InterruptedException {
    Thread t = new Thread() {
        @Override
        public void run() {
                throw new RuntimeException("Testing unhandled exception processing.");
         }
    };
    t.start();
  }
}

Результатом выполнения этого кода будет то, что возникшее исключение прервет поток исполнения (interrupt thread):

Exception in threadThread-0java.lang.RuntimeException: Testing unhandled exception processing. at exception.test. ExceptionHandling4$1.run(ExceptionHandling4.java:27)

При использовании нескольких потоков бывают ситуации, когда надо знать, как поток завершился, из-за какого именно исключения. И, разумеется, отреагировать на это.

В таких ситуациях рекомендуется использовать Thread.UncaughtExceptionHandler.

t.setUncaughtExceptionHandler(new Thread.UncaughtExceptionHandler() {
          public void uncaughtException(Thread t, Throwable e)   {
             System.out.println("Handled uncaught exception in thread :" + t + " Exception : " + e);
         }
  });

И вывод уже будет:

Handled uncaught exception in thread :Thread[Thread-0,5,main] Exception : java.lang.RuntimeException: Testing unhandled exception processing.

Необработанное исключение RuntimeException("Testing unhandled exception processing."), убившее поток, было перехвачено специальным зарегистрированным обработчиком.

Проверяемые исключения и их необходимость

В большинстве языков программирования, таких как C#, Scala, Groovy, Python и т.д., нет такого разделения, как в Java, на проверяемые и непроверяемые исключения.
Почему оно введено в Java было разобрано выше, а вот почему проверяемые исключения недолюбливают разработчики?

Основных причин две, это причины с: версионированием и масштабируемостью.

Представим, что вы, как разработчик библиотеки, объявили некоторый условный метод foo, бросающий исключения A, B и C:

void foo() throws A, B, C;

В следующей версии библиотеки в метод foo добавили функциональности и теперь он бросает еще новое исключение D:

void foo() throws A, B, C, D;

В таком случае новая версия библиотеки сломает код тех, кто ей пользуется. Это сравнимо с тем, что добавляется новый метод в интерфейс.

И с одной стороны, это правильно, так как в новой версии добавляется еще одно исключение и те, кто использует библиотеку должны отреагировать на все новые исключения. С другой стороны, чаще всего такие исключения будут также проброшены дальше. Все дело в том, что случаев, когда можно обработать специфический тип исключения, например тот же D или A в примере выше, и сделать в обработчике что-то интеллектуальное, можно пересчитать по пальцам одной руки.

Проблема с масштабируемостью начинается тогда, когда происходит вызов не одного, а нескольких API, каждый из которых также несет с собой проверяемые исключения. Представьте, что помимо foo, бросающего A, B, C и D, в методе hello вызывается еще и bar, который также бросает E и T исключения. Как сказано выше, как реагировать чаще всего непонятно, поэтому эти исключения делегируются вызывающему коду, из-за чего объявление метода hello выглядит совсем уж угрожающе:

void hello() throws A, B, C, D, E, T {
    try {
        foo();
        bar();
    } finally {
        // clear resources if needed
    }
}

Все это настолько раздражающе, что чаще всего разработчики просто объявляют наиболее общее исключение в throws:

void hello() throws Exception {
    try {
        foo();
        bar();
    } finally {
        // clear resources if needed
    }
}

А в таком случае это все равно, что сказать «метод может выбросить исключение» — это настолько общие и абстрактные слова, что смысла в throws Exception практически нет.

Также есть еще одна проблема с проверяемыми исключениями. Это то, что с проверяемыми исключениями крайне неудобно работать в lambda-ах и stream-ах:

// compilation error
    Lists.newArrayList("a", "asg").stream().map(e -> {throw new Exception();});

Так как с Java 8 использование lambda и stream-ов распространенная практика, то накладываемые ограничения вызовут дополнительные трудности при использовании проверяемых исключений.

Поэтому многие разработчики недолюбливают проверяемые исключения, например, оборачивая их в непроверяемые аналоги с помощью re-throw.

Мое мнение таково: на проверяемых исключениях очень хорошо учиться. Компилятор и язык сами подсказывают вам, что нельзя игнорировать исключения и требуют от вас реакции. Опять же, логическое разделение на проверяемые и непроверяемые помогает в понимании исключений, в понимании того, как и на что реагировать. В промышленной же разработке это становится уже больше раздражающим фактором.

В своей работе я стараюсь чаще использовать непроверяемые исключения, а проверяемые оборачивать в unchecked аналоги, как, например, java.io.IOException и java.io.UncheckedIOException.

Заключение

Иерархия исключений в Java.

Exception Hierarchy

Исключения делятся на два типа: непроверяемые(unchecked) и проверяемые(checked). Проверяемые исключения — это исключения, которые проверяются на этапе компиляции, мы обязаны на них отреагировать.

Проверяемые исключения в Java используются тогда, когда разработчик никак не может предотвратить их возникновение. Причину возникновения java.lang.RuntimeException можно проверить и устранить заранее, например, проверить ссылку на null перед вызовом метода, на объекте по ссылке. А вот с причинами проверяемых исключений так сделать не получится, так как ошибка при чтении файла может возникнуть непосредственно в момент чтения, потому что другая программа его удалила. Соответственно, при чтении файла требуется обрабатывать java.io.IOException, который является потомком java.lang.Exception.

Допускается создание собственных исключений, признак проверяемости или непроверяемости наследуется от родителя. Исключения — это такие же классы, со своим поведением и состоянием, поэтому при наследовании вполне допускается добавить дополнительное поведение или свойства классу.

Обработка исключений происходит с помощью конструкции try/catch/finally. Один блок try может иметь несколько catch блоков. В таком случае будет выполняться первый подходящий блок.

Помните, что try блок не транзакционен, все ресурсы, занятые в try ДО исключения остаются в памяти. Их надо освобождать и очищать вручную.
Если вы используете Java версии 7 и выше, то отдавайте предпочтение конструкции try-with-resources.

Основное правило:

На исключения можно реагировать, их обработку можно делегировать, но ни в коем случае нельзя их игнорировать.

Определить когда надо реагировать, а когда делегировать проще простого. Задайте вопрос: «Знаю ли я как реагировать на это исключение?».
Если ответ «да, знаю», то реагируйте, пишите обработчик и код, отвечающий за эту реакцию, если не знаете что делать с исключением, то делегируйте вызывающему коду.

Помните, что перехват java.lang.Error стоит делать только если вы точно знаете, что делаете. Восстановление после таких ошибок не всегда возможно и почти всегда нетривиально.
Не забывайте, что большинство ошибок java.lang.RuntimeException и его потомков можно избежать.

Не бойтесь создавать собственные исключения, так как это позволит писать более гибкие обработчики, а значит более точно реагировать на проблемы.

Представьте себе, что существуют пять причин, по которым может быть выброшено исключение, и во всех пяти случаях бросается java.lang.Exception. Вы же спятите разбираться, чем именно это исключение вызвано.

(c) Евгений Матюшкин.

Помните, что исключения ломают поток выполнения программы, поэтому чем раньше вы обработаете возникшую проблему, тем лучше. Отсюда же следует совет, что лучше не разбрасываться исключениями, так как помимо того, что это ломает поток выполнения, это еще и дорогостоящая операция.

Постарайтесь не создавать ‘универсальных’ обработчиков, так как это чревато трудноуловимыми ошибками.

Если исключение можно не генерировать, то лучше так и сделать. Не пренебрегайте проверками.

Старайтесь продумывать то, как вы будете реагировать на исключения, не игнорировать их, использовать только try-с-ресурсами.

Помните:

In Java you can ignore exceptions, but you have to willfully do it. You can’t accidentally say, «I don’t care.» You have to explicitly say, «I don’t care.»

(c) James Gosling.

Для закрепления материала рекомендую ознакомиться с ссылками ниже и этим материалом.

Полезные ссылки

  1. Книга С. Стелтинг ‘Java без сбоев: обработка исключений, тестирование, отладка’
  2. Oracle Java Tutorials
  3. Лекция Технострим Исключения
  4. Лекция OTUS Исключения в Java
  5. Лекция Ивана Пономарёва по исключениям
  6. Заметка Евгения Матюшкина про Исключения
  7. Failure and Exceptions by James Gosling
  8. The Trouble with Checked Exceptions by Bill Venners with Bruce Eckel
  9. Никто не умеет обрабатывать ошибки
  10. Исключения и обобщенные типы в Java
  11. Вопросы для закрепления

Исключение в Java — представляет проблему, которая возникает в ходе выполнения программы. В случае возникновения в Java исключения (exception), или исключительного события, имеет место прекращение нормального течения программы, и программа/приложение завершаются в аварийном режиме, что не является рекомендованным, и, как следствие, подобные случаи требуют в Java обработку исключений.

Причины возникновения исключения

Существует множество причин, которые могут повлечь за собой возникновение исключения. Далее рассмотрен ряд подобных сценариев, в контексте которых может произойти исключение:

  • Пользователь ввел недопустимые данные.
  • Файл, который необходимо открыть, не найден.
  • Соединение с сетью потеряно в процессе передачи данных либо JVM исчерпала имеющийся объем памяти.

Некоторые из данных исключений вызваны пользовательской ошибкой, другие — программной ошибкой, в некоторых случаях, причиной тому может послужить сбой в материальных ресурсах.

Исходя из приведенных сведений, мы можем обозначить три типа исключений. Знание данных типов позволит вам в дальнейшем разрешать проблемные ситуации, связанные с исключениями. Ниже рассмотрим список исключений в Java с примерами.

  • Контролируемые исключения — контролируемое исключение представляет собой вид исключения, которое происходит на стадии компиляции, их также именуют исключениями периода компиляции. Обозначенные исключения не следует игнорировать в ходе компиляции, они требуют должного обращения (разрешения) со стороны программиста.

К примеру, если вы используете класс FileReader в вашей программе для считывания данных из файла, в случае, если указанный в конструкторе файл не существует, происходит FileNotFoundException, и компилятор подсказывает программисту обработку данного исключения.

Пример 1

import java.io.File;
import java.io.FileReader;

public class Test {

   public static void main(String args[]) {		
      File f = new File("D://java/file.txt");
      FileReader fr = new FileReader(f); 
   }
}

При попытке компиляции обозначенной выше программы будут выведены следующие исключения:

C:>javac Test.java
Test.java:8: error: unreported exception FileNotFoundException; must be caught or declared to be thrown
      FileReader fr = new FileReader(f);
                      ^
1 error

Примечание. В виду того, что методы read() и close() класса FileReader вызывают IOException, компилятор может уведомить вас об обработке IOException, совместно с FileNotFoundException.

  • Неконтролируемые исключения — неконтролируемое исключение представляет собой исключение, которое происходит во время выполнения. Они также носят название исключения на этапе выполнения. Данная категория может включать погрешности программирования, такие как логические ошибки либо неверный способ использования API. Исключения на этапе выполнения игнорируются в ходе компиляции.

К примеру, если вами в вашей программе был объявлен массив из 5 элементов, попытка вызова 6-го элемента массива повлечет за собой возникновение ArrayIndexOutOfBoundsExceptionexception.

Пример 2

public class Test {
   
   public static void main(String args[]) {
      int array[] = {1, 2, 3};
      System.out.println(array[4]);
   }
}

При компиляции и выполнении обозначенной выше программы будет получено следующее исключение:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 5
	at Exceptions.Test.main(Test.java:8)

  • Ошибки — не являются исключениями, однако представляют проблемы, которые возникают независимо от пользователя либо программиста. Ошибки в вашем коде обычно игнорируются в виду того, что в редких случаях их обработка окажется результативной. К примеру, ошибка возникнет при переполнении стека. На этапе компиляции они также игнорируются.

Иерархия исключений

Все классы исключений в Java представляют подтипы класса java.lang.Exception. Класс исключений является подклассом класса Throwable. Помимо класса исключений существует также подкласс ошибок, образовавшихся из класса Throwable.

Ошибки представляют аварийное состояние вследствие значительных сбоев, которые не обрабатываются программами Java. Генерирование ошибок предназначено для отображения ошибок, выявленных средой выполнения. Примеры: JVM исчерпал имеющийся объем памяти. Обычно, программы не могут восстановить неполадки, вызванные ошибками.

Класс исключений делится на два основных подкласса: класс IOException и класс RuntimeException.

Исключения

По ссылке представлен перечень наиболее распространенных контролируемых (checked) и неконтролируемых (unchecked) встроенных исключений в Java.

Методы исключений

Далее представлен список важных методов, доступных в классе Throwable.

Метод и описание
1 public String getMessage()
Возврат подробного сообщения о произошедшем исключении. Инициализация данного сообщения производится в конструкторе Throwable.
2 public Throwable getCause()
Возврат причины исключения, представленной объектом Throwable.
3 public String toString()
Возврат имени класса, соединенного с результатом getMessage().
4 public void printStackTrace()
Выведение результата toString() совместно с трассировкой стека в System.err, поток вывода ошибок.
5 public StackTraceElement [] getStackTrace()
Возврат массива, содержащего каждый элемент в трассировке стека. Элемент с номером 0 представляет вершину стека вызовов, последний элемент массива отображает метод на дне стека вызовов.
6 public Throwable fillInStackTrace()
Заполняет трассировку стека данного объекта Throwable текущей трассировкой стека, дополняя какую-либо предшествующую информацию в трассировке стека.

Обработка исключений — try и catch

Метод производит обработку исключения при использовании ключевых слов try и catch.

Описание

Блок try/catch размещается в начале и конце кода, который может сгенерировать исключение. Код в составе блока try/catch является защищенным кодом, синтаксис использования try/catch выглядит следующим образом:

try {
   // Защищенный код
}catch(НазваниеИсключения e1) {
   // Блок catch
}

Код, предрасположенный к исключениям, размещается в блоке try. В случае возникновения исключения, обработка данного исключения будет производиться соответствующим блоком catch. За каждым блоком try должен немедленно следовать блок catch либо блок finally.

Оператор catch включает объявление типа исключения, которое предстоит обработать. При возникновении исключения в защищенном коде, блок catch (либо блоки), следующий за try, будет проверен. В случае, если тип произошедшего исключения представлен в блоке catch, исключение передается в блок catch аналогично тому, как аргумент передается в параметр метода.

Пример

Ниже представлен массив с заявленными двумя элементами. Попытка кода получить доступ к третьему элементу массива повлечет за собой генерацию исключения.

import java.io.*;

public class Test {

   public static void main(String args[]) {
      try {
         int array[] = new int[2];
         System.out.println("Доступ к третьему элементу:" + array[3]);
      }catch(ArrayIndexOutOfBoundsException e) {
         System.out.println("Исключение:" + e);
      }
      System.out.println("Вне блока");
   }
}

Вследствие этого будет получен следующий результат:

Исключение:java.lang.ArrayIndexOutOfBoundsException: 3
Вне блока

Многократные блоки catch

За блоком try могут следовать несколько блоков catch. Синтаксис многократных блоков catch выглядит следующим образом:

try {
   // Защищенный код
}catch(ИсключениеТип1 e1) {
   // Блок catch
}catch(ИсключениеТип2 e2) {
   // Блок catch
}catch(ИсключениеТип3 e3) {
   // Блок catch
}

Представленные выше операторы демонстрируют три блока catch, однако, после однократного try количество данных используемых блоков может быть произвольным. В случае возникновения исключения в защищенном коде, исключение выводится в первый блок catch в списке. Если тип данных генерируемого исключения совпадает с ИсключениеТип1, он перехватывается в указанной области. В обратном случае, исключение переходит ко второму оператору catch. Это продолжается до тех пор, пока не будет произведен перехват исключения, либо оно не пройдет через все операторы, в случае чего выполнение текущего метода будет прекращено, и исключение будет перенесено к предшествующему методу в стеке вызовов.

Пример

Далее представлен сегмент кода, демонстрирующий использование многократных операторов try/catch.

try {
   file = new FileInputStream(fileName);
   x = (byte) file.read();
}catch(IOException e1) {
   e1.printStackTrace();
   return -1;
}catch(FileNotFoundException e2) // Недействительно! {
   e2.printStackTrace();
   return -1;
}

Перехват многотипных исключений

В среде Java 7, Вы можете произвести обработку более чем одного исключения при использовании одного блока catch, данное свойство упрощает код. Ниже представлена модель реализации:

catch (IOException|FileNotFoundException ex) {
   logger.log(ex);
   throw ex;

Ключевые слова throws/throw

В случае если метод не может осуществить обработку контролируемого исключения, производится соответствующее уведомление при использовании ключевого слова throws в Java. Ключевое слово throws появляется в конце сигнатуры метода.

При использовании ключевого слова throw вы можете произвести обработку вновь выявленного исключения либо исключения, которое было только что перехвачено.

Следует внимательно различать ключевые слова throw и throws в Java, так как throws используется для отложенной обработки контролируемого исключения, а throw, в свою очередь, используется для вызова заданного исключения.

Представленный ниже метод отображает, что им генерируется RemoteException:

Пример 1

import java.rmi.RemoteException;
public class Test {

   public void deposit(double amount) throws RemoteException {
      // Реализация метода
      throw new RemoteException();
   }
   // Остаток определения класса
}

Метод также может объявить о том, что им генерируется более чем одно исключение, в случае чего исключения представляются в виде перечня, отделенные друг от друга запятыми. К примеру, следующий метод оповещает о том, что им генерируются RemoteException и InsufficientFundsException:

Пример 2

import java.rmi.RemoteException;
public class Test {

   public void withdraw(double amount) throws RemoteException, 
      InsufficientFundsException {
      // Реализация метода
   }
   // Остаток определения класса
}

Блок finally

В Java finally следует за блоком try либо блоком catch. Блок finally в коде выполняется всегда независимо от наличия исключения.

Использование блока finally позволяет запустить какой-либо оператор, предназначенный для очистки, не зависимо от того, что происходит в защищенном коде.

Блок finally в Java появляется по окончании блоков catch, его синтаксис выглядит следующим образом:

Синтаксис

try {
   // Защищенный код
}catch(ИсключениеТип1 e1) {
   // Блок catch
}catch(ИсключениеТип2 e2) {
   // Блок catch
}catch(ИсключениеТип3 e3) {
   // Блок catch
}finally {
   // Блок finally всегда выполняется.
}

Пример

public class Test {

   public static void main(String args[]) {
      int array[] = new int[2];
      try {
         System.out.println("Доступ к третьему элементу:" + array[3]);
      }catch(ArrayIndexOutOfBoundsException e) {
         System.out.println("Исключение:" + e);
      }finally {
         array[0] = 6;
         System.out.println("Значение первого элемента: " + array[0]);
         System.out.println("Оператор finally выполнен.");
      }
   }
}

Вследствие этого будет получен следующий результат:

Исключение:java.lang.ArrayIndexOutOfBoundsException: 3
Значение первого элемента: 6
Оператор finally выполнен.

Следует помнить, что:

  • Выражение catch не может существовать без оператора try.
  • При наличии блока try/catch, выражение finally не является обязательным.
  • Блок try не может существовать при отсутствии выражения catch либо выражения finally.
  • Существование какого-либо кода в промежутке между блоками try, catch, finally является невозможным.

Конструкция try-with-resources

В норме, при использовании различных видов ресурсов, таких как потоки, соединения и др., нам предстоит закрыть их непосредственно при использовании блока finally. В программе, представленной ниже, нами производится считывание данных из файла при использовании FileReader, после чего он закрывается блоком finally.

Пример 1

import java.io.FileReader;
import java.io.File;
import java.io.IOException;

public class Test {

   public static void main(String args[]) {
      FileReader fr = null;		
      try {
         File f = new File("file.txt");
         fr = new FileReader(f); 
         char [] array = new char[10];
         fr.read(array);   // чтение содержимого массива
         for(char c : array)
         System.out.print(c);   // вывод символов на экран, один за одним
      }catch(IOException e1) {
         e1.printStackTrace();
      }finally {
         try {
            fr.close();
         }catch(IOException e2) {		
            e2.printStackTrace();
         }
      }
   }
}

Конструкция try-with-resources, также именуемая как автоматическое управление ресурсами, представляет новый механизм обработки исключений, который был представлен в 7-ой версии Java, осуществляя автоматическое закрытие всех ресурсов, используемых в рамках блока try catch.

Чтобы воспользоваться данным оператором, вам всего лишь нужно разместить заданные ресурсы в круглых скобках, после чего созданный ресурс будет автоматически закрыт по окончании блока. Ниже представлен синтаксис конструкции try-with-resources.

Синтаксис

try(FileReader fr = new FileReader("Путь к файлу")) {
   // использование ресурса
   }catch() {
      // тело catch 
   }
}

Программа ниже производит считывание данных в файле, используя конструкцию try-with-resources.

Пример 2

import java.io.FileReader;
import java.io.IOException;

public class Test {

   public static void main(String args[]) {
      try(FileReader fr = new FileReader("E://Soft/NetBeans 8.2/Projects/test/test/file.txt")) {
         char [] array = new char[10];
         fr.read(array);   // чтение содержимого массива
         for(char c : array)
         System.out.print(c);   // вывод символов на экран, один за одним
      }catch(IOException e) {
         e.printStackTrace();
      }
   }
}

При работе с конструкцией try-with-resources следует принимать во внимание следующие нюансы:

  • С целью использования конструкции try-with-resources следует реализовать интерфейс AutoCloseable, после чего соответствующий метод close() будет вызван автоматически во время выполнения.
  • В конструкции try-with-resources возможно указание одного и более классов.
  • При указании нескольких классов в блоке try конструкции try-with-resources, закрытие данных классов будет производиться в обратном порядке.
  • За исключением внесения ресурсов в скобки, все элементы являются равными аналогично нормальному блоку try/catch в составе блока try.
  • Ресурсы, внесенные в try, конкретизируются до запуска блока try.
  • Ресурсы непосредственно в составе блока try указываются как окончательные.

Создание своих собственных исключений

Вы можете создать свои собственные исключения в среде Java. При записи собственных классов исключений следует принимать во внимание следующие аспекты:

  • Все исключения должны быть дочерними элементами Throwable.
  • Если вы планируете произвести запись контролируемого исключения с автоматическим использованием за счет правила обработки или объявления, вам следует расширить класс Exception.
  • Если вы хотите произвести запись исключения на этапе выполнения, вам следует расширить класс RuntimeException.

Вы можете определить собственный класс исключений, как показано ниже:

class MyException extends Exception {
}

Вам лишь необходимо расширить предопределенный класс Exception с целью создания собственного исключения. Данная категория относится к контролируемым исключениям. Следующий класс InsufficientFundsException исключительных ситуаций, определяемых пользователем, расширяет класс Exception, делая его контролируемым исключением. Класс исключений, подобно всем остальным классам, содержит используемые области и методы.

Пример

// Название файла InsufficientFundsException.java
import java.io.*;

public class InsufficientFundsException extends Exception {
   private double amount;
   
   public InsufficientFundsException(double amount) {
      this.amount = amount;
   }
   
   public double getAmount() {
      return amount;
   }
}

С целью демонстрации наших исключений, определяемых пользователем, следующий класс Checking содержит метод withdraw(), генерирующий InsufficientFundsException.

// Название файла Checking.java
import java.io.*;

public class Checking {
   private int number;
   private double balance;
   
   public Checking(int number) {
      this.number = number;
   }
   
   public void deposit(double amount) {
      balance += amount;
   }
   
   public void withdraw(double amount) throws InsufficientFundsException {
      if(amount <= balance) {
         balance -= amount;
      }else {
         double needs = amount - balance;
         throw new InsufficientFundsException(needs);
      }
   }
   
   public double getBalance() {
      return balance;
   }
   
   public int getNumber() {
      return number;
   }
}

Следующая программа Bank демонстрирует вызов методов deposit() и withdraw() класса Checking.

// Название файла Bank.java
public class Bank {

   public static void main(String [] args) {
      Checking c = new Checking(101);
      System.out.println("Депозит $300...");
      c.deposit(300.00);
      
      try {
         System.out.println("nСнятие $100...");
         c.withdraw(100.00);
         System.out.println("nСнятие $400...");
         c.withdraw(400.00);
      }catch(InsufficientFundsException e) {
         System.out.println("Извините, но у Вас $" + e.getAmount());
         e.printStackTrace();
      }
   }
}

Скомпилируйте все три выше обозначенные файла и произведите запуск Bank. Вследствие этого будет получен следующий результат:

Депозит $300...

Снятие $100...

Снятие $400...
Извините, но у Вас $200.0
InsufficientFundsException
         at Checking.withdraw(Checking.java:25)
         at Bank.main(Bank.java:13)

Общие исключения

В Java можно выделить две категории исключений и ошибок.

  • Исключения JVM — данная группа представлена исключениями/ошибками, которые вызываются непосредственно и логически со стороны JVM. Примеры: NullPointerException, ArrayIndexOutOfBoundsException, ClassCastException.
  • Программные исключения — данные исключения вызываются непосредственно приложением либо программистами API. Примеры: IllegalArgumentException, IllegalStateException.

Исключение — ошибка, которая нарушает нормальную работу программы. Java обеспечивает надежный объектно-ориентированный способ обработки исключений. Именно его мы и будем изучать в этом руководстве. 

Исключение может возникнуть в разного рода ситуациях: неправильные входные данные, аппаратный сбой, сбоя сетевого соединения, ошибка при работе с базой данных и т.д. Именно поэтому любой Java программист должен уметь правильно обрабатывать исключения, понимать причины их появления и следовать лучшим практикам работы с исключениями даже в небольших проектах.

Java — объектно-ориентированный язык программирования, поэтому всякий раз, когда происходит ошибка при выполнении инструкции, создается объект-исключение, а затем нормальный ход выполнения программы останавливается и JRE пытается найти кого-то, кто может справиться (обработать) это исключение. Объект-исключение содержит много информации об отладке, а именно номер строки, где произошло исключение, тип исключения и т.д.

Что и как происходит, когда появляется ошибка

Когда в методе происходит исключение, то процесс создания объекта-исключения и передачи его в Runtime Environment называется «бросать исключение».

После создания исключения, Java Runtime Environment пытается найти обработчик исключения.

Обработчик исключения — блок кода, который может обрабатывать объект-исключение.

Логика нахождения обработчика исключений проста — прежде всего начинается поиск в методе, где возникла ошибка, если соответствующий обработчик не найден, то происходит переход к тому методу, который вызывает этот метод и так далее.

Пример

У нас есть 3 метода, каждый из которых вызывает друг-друга: А -> В -> С (А вызывает В, а В вызывает С). Если исключение появляется в методе C, то поиск соответствующего обработчика будет происходить в обратном порядке: С -> В -> А (сначала там, где было исключение — в С, если там нет обработчика, то идем в метод В — если тут тоже нет, то идем в А).

Если соответствующий обработчик исключений будет найден, то объект-исключение передаётся обработчику.

Обработать исключение — значит «поймать исключение».

Если обработчик исключений не был найден, то программа завершает работу и печатает информации об исключении.

Обратите внимание, что обработка исключений в Java — это фреймворк, который используется только для обработки ошибок времени выполнения. Ошибки компиляции не обрабатываются рамках обработки исключений.

Основные элементы обработки исключений в Java

Мы используем определенные ключевые слова в для создания блока обработки исключений. Давайте рассмотрим их на примере. Также мы напишем простую программу для обработки исключений.

  • Бросить исключение (throw) — ключевое слово, которое используется для того, чтобы бросить исключение во время выполнения. Мы знаем, что Java Runtime начинает поиск обработчика исключений как только оно будет брошено, но часто нам самим нужно генерировать исключение в нашем коде, например, в программе авторизации, если какое-то поле null. Именно для таких случаем и существует возможность бросить исключение.
  • throws — когда мы бросаем исключение в методе и не обрабатываем его, то мы должны использовать ключевое слово throws в сигнатуре метода для того, чтобы пробросить исключение для обработки в другом методе. Вызывающий метод может обработать это исключение или пробросить его еще дальше с помощью throws в сигнатуре метода. Следует отметить, что пробрасывать можно сразу несколько исключений.
  • Блок try-catch используется для обработки исключений в коде. Слово try — это начало блока обработки, catch — конец блока для обработки исключений. Мы можем использовать сразу несколько блоков catch при одном try. catch в качестве параметра принимает тип исключения для обработки.
  • finally — необязательная завершающая конструкция блока try-catch. Как только исключение остановило процесс исполнения программы, в finally мы можем безопасно освободить какие-то открытые ресурсы. Следует отметить, что finally блок выполняется всегда — не смотря на появление исключительной ситуации.

Давайте посмотрим простую программу обработки исключений в Java.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

package ua.com.prologistic;

import java.io.FileNotFoundException;

import java.io.IOException;

public class ExceptionHandling {

    // в методе main() пробрасывается сразу несколько исключений

    public static void main(String[] args) throws FileNotFoundException, IOException {

        // в блоке try-catch перехватываются сразу несколько исключений вызовом дополнительного catch(…)

        try{

            testException(5);

            testException(10);

        }catch(FileNotFoundException e){

            e.printStackTrace();

        }catch(IOException e){

            e.printStackTrace();

        }finally{

            System.out.println(«Необязательный блок, но раз уже написан, то выполнятся будет не зависимо от того было исключение или нет»);          

        }

        testException(15);

    }

    // тестовый метод создания, обработки и пробрасывания исключения

    public static void testException(int i) throws FileNotFoundException, IOException{

        if(i < 0){

            FileNotFoundException myException = new FileNotFoundException(«число меньше 0: « + i);

            throw myException;

        }else if(i > 10){

            throw new IOException(«Число должно быть в пределах от 0 до 10»);

        }

    }

}

А в консоле эта программа напишет такое:

java.io.FileNotFoundException: число меньше 0: 5

    at ua.com.prologistic.ExceptionHandling.testException(ExceptionHandling.java:24)

    at ua.com.prologistic.ExceptionHandling.main(ExceptionHandling.java:10)

Необязательный блок, но раз уже написан, то выполнятся будет не зависимо от того было исключение или нет

Exception in thread «main» java.io.IOException: Число должно быть в пределах от 0 до 10

    at ua.com.prologistic.ExceptionHandling.testException(ExceptionHandling.java:27)

    at ua.com.prologistic.ExceptionHandling.main(ExceptionHandling.java:19)

Обратите внимание, что метод testException() бросает исключение, используя ключевое слово throw, а в сигнатуре метода используется ключевое слово throws, чтобы дать понять вызывающему методу тип исключений, которые может бросить testException().

Важные моменты в обработке исключений:

  • Нельзя использовать блоки catch или finally без блока try.
  • Блок try также может быть использован только с catch блоком, или только с finally блоком, или с тем и другим блоком.
  • Мы можем использовать несколько блоков catch только с одним try.
  • try-catch блоки могут быть вложенными — этим они очень похожи на if-else конструкции.
  • Мы можем использовать только один, блок finally в одном try-catch.

Иерархия исключений в Java

Java исключения являются иерархическими, а наследование используется для категоризации различных типов исключений. Throwable — родительский класс в иерархии Java исключений. Он имеет два дочерних объекта — Error и Exception. Исключения далее разделены на проверяемые исключения и исключения времени выполнения.

  1. Error — это тип ошибок, которые выходят за рамки вашей программы, их невозможно предвидеть или обработать. Это может быть аппаратный сбой, «поломка» JVM или ошибка памяти. Именно для таких необычных ситуаций есть отдельная иерархия ошибок. Мы должны просто знать, что такие ошибки есть и не можем справиться с такими ситуациями. Примеры Error: OutOfMemoryError и StackOverflowError.
  2. Проверяемые исключения (Checked Exceptions) — тип исключений, которые мы можем предвидеть в программе и попытаться обработать, например, FileNotFoundException. Мы должны поймать это исключение и написать внятное и полезное сообщение пользователю о том, что произошло (также желательно логировать ошибки). Exception — родительский класс всех проверяемых исключений (Checked Exceptions). Если мы бросили проверяемое исключение, то должны поймать его в том же методе или должны пробросить его с помощью ключевого слова throws.
  3. Runtime Exception — это ошибки программиста. Например, пытаясь получить элемент из массива, мы должны проверить длину массива, прежде чем пытаться получить элемент — в противном случае это может быть брошен ArrayIndexOutOfBoundException. RuntimeException — родительский класс для всех Runtime исключений. Если мы сами бросаем Runtime Exception в методе, то не обязательно указывать в сигнатуре метода ключевое слово throws.

На рисунке 1 представлена иерархия исключений в Java:

иерархия исключений в Java

Рисунок 1 — Иерархия исключений в Java

 Полезные методы в обработке исключений

Класс Exception и все его подклассы не содержат какие-либо методы для обработки исключений. Все предоставляемые методы находятся в базовом классе Throwable. Подклассы класса Exception созданы для того, чтобы определять различные виды исключений. Именно поэтому при обработке исключений мы можем легко определить причину и обработать исключение в соответствии с его типом.

Полезные методы класса Throwable:

  1. public String getMessage() — этот метод возвращает сообщение, которое было создано при создании исключения через конструктор.
  2. public String getLocalizedMessage() — метод, который переопределяют подклассы для локализации конкретное сообщение об исключении. В реализации Throwable класса этот метод просто использует метод getMessage(), чтобы вернуть сообщение об исключении (Throwable на вершине иерархии — ему нечего локализировать, поэтому он вызывает getMessage()).
  3. public synchronized Throwable getCause() — этот метод возвращает причину исключения или идентификатор в виде null, если причина неизвестна.
  4. public String toString() — этот метод возвращает информацию о Throwable в формате String.
  5. public void printStackTrace() — этот метод выводит информацию трассировки стека в стандартный поток ошибок, этот метод перегружен и мы можем передать PrintStream или PrintWriter в качестве аргумента, чтобы написать информацию трассировки стека в файл или поток.

Автоматическое управление ресурсами и улучшения блока перехвата ошибок в Java 7

Если вам нужно перехватывать много исключений в одном блоке try-catch, то блок перехвата будет выглядеть очень некрасиво и в основном будет состоять из избыточного кода. Именно поэтому в Java 7 это было значительно улучшено и теперь мы можем перехватывать несколько исключений в одном блоке catch.

Это выглядит следующим образом:

catch(IOException | SQLException | Exception ex){

     //что-то сделать с перехваченной ошибкой…

}

Как видим, здесь блок catch перехватывает сразу несколько исключений — это очень красиво, компактно и удобно.

В большинстве случаев мы используем блок finally для того, чтобы закрыть открытые потоки, подключения или освободить другие ресурсы. Очень часто мы забываем закрыть и получаем runtime исключения. Такие исключения трудно отлаживать. Поэтому в Java 7 был введен try с ресурсами, где мы можем открыть ресурс в самом try и использовать его внутри блока try-catch. Когда программа заканчивает выполнение блока try-catch, то среда выполнения автоматически закрывает эти ресурсы. Вот пример try-catch блока с ресурсами:

// try c ресурсами

try (MyResource mr = new MyResource()) {

            System.out.println(«Красивый и компактный код в try c ресурсами»);

        } catch (Exception e) {

            e.printStackTrace();

        }

Создание своих классов исключений

Java предоставляет много классов исключений, но иногда нам может понадобиться создать свои «кастомные» классы исключений. Это может понадобиться для того, чтобы уведомить абонента о конкретном типе исключения с соответствующим сообщением. Например, мы напишем метод для обработки только текстовых файлов, поэтому мы можем написать свой класс исключений и передавать соответствующий код ошибки, когда кто-то передает неподходящий тип файла в качестве входных данных.

Вот пример своего класса исключений и его использование:

package ua.com.prologistic;

// наследуемся от класс Exception

public class MyException extends Exception {

    private String errorCode = «Unknown_Exception»;

    public MyException(String message, String errorCode){

        super(message);

        this.errorCode = errorCode;

    }

    public String getErrorCode(){

        return this.errorCode;

    }

}

А теперь проверим в работе наш класс MyException:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

package ua.com.prologistic;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.InputStream;

public class CustomExceptionExample {

    public static void main(String[] args) throws MyException {

        try {

            processFile(«file.txt»);

        } catch (MyException e) {

            processErrorCodes(e);

        }

    }

    // метод для обработки ошибок

    private static void processErrorCodes(MyException e) throws MyException {

        // здесь мы ищем указанный при выбросе исключения код ошибки и сообщаем пользователю что произошло

        switch(e.getErrorCode()){

        case «BAD_FILE_TYPE»:

            System.out.println(«Неподходящий тип файла»);

            throw e;

        case «FILE_NOT_FOUND_EXCEPTION»:

            System.out.println(«Файл не найден»);

            throw e;

        case «FILE_CLOSE_EXCEPTION»:

            System.out.println(«Ошибка при закрытии файла»);

            break;

        default:

            System.out.println(«Произошла неизвестная ошибка « + e.getMessage());

            e.printStackTrace();

        }

    }

    // метод для работы с файлом, который пробрасывает наш тип исключений

    private static void processFile(String file) throws MyException {      

        InputStream fis = null;

        try {

            fis = new FileInputStream(file);

        } catch (FileNotFoundException e) {

            // здесь мы бросаем исключение с указанием кода ошибки

            throw new MyException(e.getMessage(),«FILE_NOT_FOUND_EXCEPTION»);

        }finally{

            try {

                if(fis !=null)fis.close();

            } catch (IOException e) {

                // здесь мы бросаем исключение с указанием кода ошибки

                throw new MyException(e.getMessage(),«FILE_CLOSE_EXCEPTION»);

            }

        }

    }

}

Полезные советы по обработке исключений в Java

  1. Не используйте для перехвата исключений класс Exception. В иерархии исключений есть множество классов на все случаи жизни вашей программы, которые не только эффективно обработают конкретную ошибку, но и предоставят полезную для пользователя и отладки информацию.
  2. Бросайте исключение как можно раньше. Это является хорошей практикой программирования на Java.
  3. Ловите исключения только тогда, когда сможете эффективно для пользователя и отладки их обработать.
  4. Освобождайте ресурсы. Перехватывая исключение всегда закрывайте открытые ресурсы. Еще проще и эффективнее это делать с Java 7. Используйте try с ресурсами для лаконичного и красивого кода.
  5. Логируйте исключения. Логируйте сообщения, которые предоставляет исключение. В большинстве случаев это даст вам четкое понимание причин и поможет в отладке. Не оставляйте пустым блок catch, иначе он будет просто поглощать исключение без каких-либо значимых деталей для отладки.
  6. Один catch для нескольких исключений. Используйте преимущества Java 7 для удобства и красоты вашего кода.
  7. Используйте свои исключения. Это позволит вам лучше чувствовать свою программу и эффективнее с ней работать.
  8. Соглашения об именовании. Когда вы создать свои классы исключений, следите за тем, что из самого названия класса будет ясно, что это исключение.
  9. Используйте исключения с умом. Бросить исключение — достаточно дорогостоящая в Java операция. Возможно, в некоторых случаях будем уместно не бросать исключений, а вернуть, например, логическую переменную, которая обозначала успешное или не успешное выполнение метода.
  10. Документируйте исключения. Желательно писать javadoc @throws для ваших исключений. Это будет особенно полезно в тех случаях, когда ваша программа предоставляет интерфейс для работы с другими приложениями.

Вот и все, что нужно знать об обработке исключений в Java.

Исключения

Exception

try
Оператор throw
Оператор throws
Оператор finally
Встроенные исключения Java
Создание собственных классов исключений

Исключение — это нештатная ситуация, ошибка во время выполнения программы. Самый простой пример — деление на ноль. Можно вручную отслеживать возникновение подобных ошибок, а можно воспользоваться специальным механизмом исключений, который упрощает создание больших надёжных программ, уменьшает объём необходимого кода и повышает уверенность в том, что в приложении не будет необработанной ошибки.

В методе, в котором происходит ошибка, создаётся и передаётся специальный объект. Метод может либо обработать исключение самостоятельно, либо пропустить его. В любом случае исключение ловится и обрабатывается. Исключение может появиться благодаря самой системе, либо вы сами можете создать его вручную. Системные исключения возникают при неправильном использовании языка Java или запрещённых приёмов доступа к системе. Ваши собственные исключения обрабатывают специфические ошибки вашей программы.

Вернёмся к примеру с делением. Деление на нуль может предотвратить проверкой соответствующего условия. Но что делать, если знаменатель оказался нулём? Возможно, в контексте вашей задачи известно, как следует поступить в такой ситуации. Но, если нулевой знаменатель возник неожиданно, деление в принципе невозможно, и тогда необходимо возбудить исключение, а не продолжать исполнение программы.

Существует пять ключевых слов, используемых в исключениях: try, catch, throw, throws, finally. Порядок обработки исключений следующий.

Операторы программы, которые вы хотите отслеживать, помещаются в блок try. Если исключение произошло, то оно создаётся и передаётся дальше. Ваш код может перехватить исключение при помощи блока catch и обработать его. Системные исключения автоматически передаются самой системой. Чтобы передать исключение вручную, используется throw. Любое исключение, созданное и передаваемое внутри метода, должно быть указано в его интерфейсе ключевым словом throws. Любой код, который следует выполнить обязательно после завершения блока try, помещается в блок finally

Схематически код выглядит так:


try {
    // блок кода, где отслеживаются ошибки
}
catch (тип_исключения_1 exceptionObject) {
    // обрабатываем ошибку
}
catch (тип_исключения_2 exceptionObject) {
    // обрабатываем ошибку
}
finally {
    // код, который нужно выполнить после завершения блока try
}

Существует специальный класс для исключений Trowable. В него входят два класса Exception и Error.

Класс Exception используется для обработки исключений вашей программой. Вы можете наследоваться от него для создания собственных типов исключений. Для распространённых ошибок уже существует класс RuntimeException, который может обрабатывать деление на ноль или определять ошибочную индексацию массива.

Класс Error служит для обработки ошибок в самом языке Java и на практике вам не придётся иметь с ним дело.

Прежде чем научиться обрабатывать исключения, нам (как и нормальному любопытному коту) хочется посмотреть, а что происходит, если ошибку не обработать. Давайте разделим число котов в вашей квартире на ноль, хотя мы и знаем, что котов на ноль делить нельзя!


int catNumber;
int zero;
catNumber = 1; // у меня один кот
zero = 0; // ноль, он и в Африке ноль
int result = catNumber / zero;

Я поместил код в обработчик щелчка кнопки. Когда система времени выполнения Java обнаруживает попытку деления на ноль, она создаёт объект исключения и передаёт его. Да вот незадача, никто не перехватывает его, хотя это должны были сделать вы. Видя вашу бездеятельность, объект перехватывает стандартный системный обработчик Java, который отличается вредных характером. Он останавливает вашу программу и выводит сообщение об ошибке, которое можно увидеть в журнале LogCat:

Caused by: java.lang.ArithmeticException: divide by zero at ru.alexanderklimov.test.MainActivity.onClick(MainActivity.java:79)

Как видно, созданный объект исключения принадлежит к классу ArithmeticException, далее системный обработчик любезно вывел краткое описание ошибки и место возникновения.

Вряд ли пользователи вашей программы будут довольны, если вы так и оставите обработку ошибки системе. Если программа будет завершаться с такой ошибкой, то скорее всего вашу программу просто удалят. Посмотрим, как мы можем исправить ситуацию.

Поместим проблемный код в блок try, а в блоке catch обработаем исключение.


int catNumber;
int zero;

try { // мониторим код
    catNumber = 1; // у меня один кот
    zero = 0; // ноль, он и в Африке ноль
    int result = catNumber / zero;
    Toast.makeText(this, "Не увидите это сообщение!", Toast.LENGTH_LONG).show();
} catch (ArithmeticException e) {
    Toast.makeText(this, "Нельзя котов делить на ноль!", Toast.LENGTH_LONG).show();
}
Toast.makeText(this, "Жизнь продолжается", Toast.LENGTH_LONG).show();

Теперь программа аварийно не закрывается, так как мы обрабатываем ситуацию с делением на ноль.

В данном случае мы уже знали, к какому классу принадлежит получаемая ошибка, поэтому в блоке catch сразу указали конкретный тип. Обратите внимание, что последний оператор в блоке try не срабатывает, так как ошибка происходит раньше строчкой выше. Далее выполнение передаётся в блок catch, далее выполняются следующие операторы в обычном порядке.

Операторы try и catch работают совместно в паре. Хотя возможны ситуации, когда catch может обрабатывать несколько вложенных операторов try.

Если вы хотите увидеть описание ошибки, то параметр e и поможет увидеть ёго.


catch (ArithmeticException e) {
	Toast.makeText(this, e + ": Нельзя котов делить на ноль!", Toast.LENGTH_LONG).show();
}

По умолчанию, класс Trowable, к которому относится ArithmeticException возвращает строку, содержащую описание исключения. Но вы можете и явно указать метод e.toString.

Несколько исключений

Фрагмент кода может содержать несколько проблемных мест. Например, кроме деления на ноль, возможна ошибка индексации массива. В таком случае вам нужно создать два или более операторов catch для каждого типа исключения. Причём они проверяются по порядку. Если исключение будет обнаружено у первого блока обработки, то он будет выполнен, а остальные проверки пропускаются и выполнение программы продолжается с места, который следует за блоком try/catch.


int catNumber;
int zero;

try { // мониторим код
    catNumber = 1; // у меня один кот
    zero = 1; // ноль, он и в Африке ноль
    int result = catNumber / zero;
    // Создадим массив из трёх котов
    String[] catNames = {"Васька", "Барсик", "Мурзик"};
    catNames[3] = "Рыжик";
    Toast.makeText(this, "Не увидите это сообщение!", Toast.LENGTH_LONG).show();
} catch (ArithmeticException e) {
    Toast.makeText(this, e.toString() + ": Нельзя котов делить на ноль!", Toast.LENGTH_LONG).show();
}
catch (ArrayIndexOutOfBoundsException e) {
	Toast.makeText(this, "Ошибка: " + e.toString(), Toast.LENGTH_LONG).show();
}
Toast.makeText(this, "Жизнь продолжается", Toast.LENGTH_LONG).show();

В примере мы добавили массив с тремя элементами, но обращаемся к четвёртому элементу, так как забыли, что отсчёт у массива начинается с нуля. Если оставить значение переменной zero равным нулю, то сработает обработка первого исключения деления на ноль, и мы даже не узнаем о существовании второй ошибки. Но допустим, что в результате каких-то вычислений значение переменной стало равно единице. Тогда наше исключение ArithmeticException не сработает. Но сработает новое добавленное исключение ArrayIndexOutOfBoundsException. А дальше всё пойдёт как раньше.

Тут всегда нужно помнить одну особенность. При использовании множественных операторов catch обработчики подклассов исключений должные находиться выше, чем обработчики их суперклассов. Иначе, суперкласс будет перехватывать все исключения, имея большую область перехвата. Иными словами, Exception не должен находиться выше ArithmeticException и ArrayIndexOutOfBoundsException. К счастью, среда разработки сама замечает непорядок и предупреждает вас, что такой порядок не годится. Увидев такую ошибку, попробуйте перенести блок обработки исключений ниже.

Вложенные операторы try

Операторы try могут быть вложенными. Если вложенный оператор try не имеет своего обработчика catch для определения исключения, то идёт поиск обработчика catch у внешнего блока try и т.д. Если подходящий catch не будет найден, то исключение обработает сама система (что никуда не годится).

Оператор throw

Часть исключений может обрабатывать сама система. Но можно создать собственные исключения при помощи оператора throw. Код выглядит так:


throw экземпляр_Throwable

Вам нужно создать экземпляр класса Throwable или его наследников. Получить объект класса Throwable можно в операторе catch или стандартным способом через оператор new.

Мы могли бы написать такой код для кнопки:


Cat cat;

public void onClick(View view) {
    if(cat == null){
        throw new NullPointerException("Котик не инициализирован");
    }
}

Мы объявили объект класса Cat, но забыли его проинициализировать, например, в onCreate(). Теперь нажатие кнопки вызовет исключение, которое обработает система, а в логах мы можем прочитать сообщение об ошибке. Возможно, вы захотите использовать другое исключение, например, throw new UnsupportedOperationException(«Котик не инициализирован»);.

В любом случае мы передали обработку ошибки системе. В реальном приложении вам нужно обработать ошибку самостоятельно.

Поток выполнения останавливается непосредственно после оператора throw и другие операторы не выполняются. При этом ищется ближайший блок try/catch соответствующего исключению типа.

Перепишем пример с обработкой ошибки.


public void onClick(View view) {
    if (cat == null) {
        try {
            throw new NullPointerException("Кота не существует");
        } catch (NullPointerException e) {
            Toast.makeText(this, e.getMessage(), Toast.LENGTH_LONG).show();
        }
    }
}

Мы создали новый объект класса NullPointerException. Многие классы исключений кроме стандартного конструктора по умолчанию с пустыми скобками имеют второй конструктор с строковым параметром, в котором можно разместить подходящую информацию об исключении. Получить текст из него можно через метод getMessage(), что мы и сделали в блоке catch.

Теперь программа не закроется аварийно, а будет просто выводить сообщения в всплывающих Toast.

Оператор throws

Если метод может породить исключение, которое он сам не обрабатывает, он должен задать это поведение так, чтобы вызывающий его код мог позаботиться об этом исключении. Для этого к объявлению метода добавляется конструкция throws, которая перечисляет типы исключений (кроме исключений Error и RuntimeException и их подклассов).

Общая форма объявления метода с оператором throws:


тип имя_метода(список_параметров) throws список_исключений {
    // код внутри метода
}

В фрагменте список_исключений можно указать список исключений через запятую.

Создадим метод, который может породить исключение, но не обрабатывает его. А в щелчке кнопки вызовем его.


// Метод без обработки исключения
public void createCat(){
	Toast.makeText(this, "Вы создали котёнка", Toast.LENGTH_LONG).show();
	throw new NullPointerException("Кота не существует");
}

// Щелчок кнопки
public void onClick(View v) {
	createCat();
}

Если вы запустите пример, то получите ошибку. Исправим код.


// Без изменений
public void createCat() throws NullPointerException {
	Toast.makeText(this, "Вы создали котёнка", Toast.LENGTH_LONG).show();
	throw new NullPointerException("Кота не существует");
}

// Щелчок кнопки
public void onClick(View v) {
	try {
		createCat();
	} catch (NullPointerException e) {
		// TODO: handle exception
		Toast.makeText(this, e.getMessage(), Toast.LENGTH_LONG).show();
	}
}

Мы поместили вызов метода в блок try и вызвали блок catch с нужным типом исключения. Теперь ошибки не будет.

Оператор finally

Когда исключение передано, выполнение метода направляется по нелинейному пути. Это может стать источником проблем. Например, при входе метод открывает файл и закрывает при выходе. Чтобы закрытие файла не было пропущено из-за обработки исключения, был предложен механизм finally.

Ключевое слово finally создаёт блок кода, который будет выполнен после завершения блока try/catch, но перед кодом, следующим за ним. Блок будет выполнен, независимо от того, передано исключение или нет. Оператор finally не обязателен, однако каждый оператор try требует наличия либо catch, либо finally.

Существуют несколько готовых системных исключений. Большинство из них являются подклассами типа RuntimeException и их не нужно включать в список throws. Вот небольшой список непроверяемых исключений.

  • ArithmeticException — арифметическая ошибка, например, деление на нуль
  • ArrayIndexOutOfBoundsException — выход индекса за границу массива
  • ArrayStoreException — присваивание элементу массива объекта несовместимого типа
  • ClassCastException — неверное приведение
  • EnumConstantNotPresentException — попытка использования неопределённого значения перечисления
  • IllegalArgumentException — неверный аргумент при вызове метода
  • IllegalMonitorStateException — неверная операция мониторинга
  • IllegalStateException — некорректное состояние приложения
  • IllegalThreadStateException — запрашиваемая операция несовместима с текущим потоком
  • IndexOutofBoundsException — тип индекса вышел за допустимые пределы
  • NegativeArraySizeException — создан массив отрицательного размера
  • NullPointerException — неверное использование пустой ссылки
  • NumberFormatException — неверное преобразование строки в числовой формат
  • SecurityException — попытка нарушения безопасности
  • StringIndexOutOfBounds — попытка использования индекса за пределами строки
  • TypeNotPresentException — тип не найден
  • UnsupportedOperationException — обнаружена неподдерживаемая операция

Список проверяемых системных исключений, которые можно включать в список throws.

  • ClassNotFoundException — класс не найден
  • CloneNotSupportedException — попытка клонировать объект, который не реализует интерфейс Cloneable
  • IllegalAccessException — запрещен доступ к классу
  • InstantiationException — попытка создать объект абстрактного класса или интерфейса
  • InterruptedException — поток прерван другим потоком
  • NoSuchFieldException — запрашиваемое поле не существует
  • NoSuchMethodException — запрашиваемый метод не существует
  • ReflectiveOperationException — исключение, связанное с рефлексией

Создание собственных классов исключений

Система не может предусмотреть все исключения, иногда вам придётся создать собственный тип исключения для вашего приложения. Вам нужно наследоваться от Exception (напомню, что этот класс наследуется от Trowable) и переопределить нужные методы класса Throwable. Либо вы можете наследоваться от уже существующего типа, который наиболее близок по логике с вашим исключением.

  • final void addSuppressed(Throwable exception) — добавляет исключение в список подавляемых исключений (JDK 7)
  • Throwable fillInStackTrace() — возвращает объект класса Throwable, содержащий полную трассировку стека.
  • Throwable getCause() — возвращает исключение, лежащее под текущим исключение или null
  • String getLocalizedMessage() — возвращает локализованное описание исключения
  • String getMessage() — возвращает описание исключения
  • StackTraceElement[] getStackTrace() — возвращает массив, содержащий трассировку стека и состояний из элементов класса StackTraceElement
  • final Throwable[] getSuppressed() — получает подавленные исключения (JDK 7)
  • Throwable initCause(Throwable exception) — ассоциирует исключение с вызывающим исключением. Возвращает ссылку на исключение.
  • void printStackTrace() — отображает трассировку стека
  • void printStackTrace(PrintStream stream) — посылает трассировку стека в заданный поток
  • void printStackTrace(PrintWriter stream) — посылает трассировку стека в заданный поток
  • void setStackTrace(StackTraceElement elements[]) — устанавливает трассировку стека для элементов (для специализированных приложений)
  • String toString() — возвращает объект класса String, содержащий описание исключения.

Самый простой способ — создать класс с конструктором по умолчанию.


// Если этот код работает, его написал Александр Климов,
// а если нет, то не знаю, кто его писал.

package ru.alexanderklimov.exception;

import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.View;

public class MainActivity extends AppCompatActivity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
    }

    public void testMethod() throws HungryCatException{
        System.out.println("Возбуждаем HungryCatException из метода testMethod()");
        throw new HungryCatException(); // конструктор по умолчанию
    }

    public void onClick(View view) {
        try {
            testMethod();
        } catch (HungryCatException e) {
            e.printStackTrace();
            System.out.println("Наше исключение перехвачено");
        }
    }

    class HungryCatException extends Exception{
    }
}

Мы создали собственный класс HungryCatException, в методе testMethod() его возбуждаем, а по нажатию кнопки вызываем этот метод. В результате наше исключение сработает.

Создать класс исключения с конструктором, который получает аргумент-строку, также просто.


// Если этот код работает, его написал Александр Климов,
// а если нет, то не знаю, кто его писал.

package ru.alexanderklimov.exception;

import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.View;

public class MainActivity extends AppCompatActivity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
    }

    public void testMethod() throws HungryCatException {
        System.out.println("Возбуждаем HungryCatException из метода testMethod()");
        throw new HungryCatException(); // конструктор по умолчанию
    }

    public void testMethod2() throws HungryCatException {
        System.out.println("Возбуждаем HungryCatException из метода testMethod2()");
        throw new HungryCatException("Создано во втором методе");
    }

    public void onClick(View view) {
        try {
            testMethod();
        } catch (HungryCatException e) {
            e.printStackTrace();
            System.out.println("Наше исключение перехвачено");
        }

        try {
            testMethod2();
        } catch (HungryCatException e) {
            e.printStackTrace();
        }
    }

    class HungryCatException extends Exception {
        HungryCatException() {
        }

        HungryCatException(String msg) {
            super(msg);
        }
    }
}

Ещё вариант. Добавим также метод toString().


class CustomException extends Exception {
    String message;

    CustomException(String str) {
        message = str;
    }

    public String toString() {
        return ("Custom Exception Occurred: " + message);
    }
}

// где-то вызываем
try {
    throw new CustomException("This is a custom message");
} catch (CustomException e) {
    System.out.println(e);
}

Теперь класс содержит два конструктора. Во втором конструкторе используется конструктор родительского класса с аргументом String, вызываемый ключевым словом super.

Перехват произвольных исключений

Можно создать универсальный обработчик, перехватывающий любые типы исключения. Осуществляется это перехватом базового класса всех исключений Exception:

cacth(Exception e) {
    Log.w("Log", "Перехвачено исключение");
}

Подобная конструкция не упустит ни одного исключения, поэтому её следует размещать в самом конце списка обработчиков, во избежание блокировки следующих за ней обработчиков исключений.

Основные правила обработки исключений

Используйте исключения для того, чтобы:

  • обработать ошибку на текущем уровне (избегайте перехватывать исключения, если не знаете, как с ними поступить)
  • исправить проблему и снова вызвать метод, возбудивший исключение
  • предпринять все необходимые действия и продолжить выполнение без повторного вызова действия
  • попытаться найти альтернативный результат вместо того, который должен был бы произвести вызванный метод
  • сделать все возможное в текущем контексте и заново возбудить это же исключение, перенаправив его на более высокий уровень
  • сделать все, что можно в текущем контексте, и возбудить новое исключение, перенаправив его на более высокий уровень
  • завершить работу программы
  • упростить программу (если используемая схема обработки исключений делает все только сложнее, значит, она никуда не годится)
  • добавить вашей библиотеке и программе безопасности
Реклама

#База знаний

  • 24 фев 2021

  • 13

Разбираемся, что такое исключения, зачем они нужны и как с ними работать.

 vlada_maestro / shutterstock

Мария Помазкина

Хлебом не корми — дай кому-нибудь про Java рассказать.

Из этой статьи вы узнаете:

  • что такое исключения (Exceptions);
  • как они возникают и чем отличаются от ошибок (Errors);
  • зачем нужна конструкция try-catch;
  • как разобраться в полученном исключении
  • и как вызвать исключение самому.

Код вашей программы исправно компилируется и запускается, только вот вместо желанного результата вы видите непонятный текст. Строчки его будто кричат на вас, аж побагровели.

За примером далеко ходить не надо: сделаем то, что нам запрещали ещё в школе, — поделим на ноль.

public static void main(String[] args) {
    hereWillBeTrouble(42, 0);
}

public static void hereWillBeTrouble(int a, int b) {
    int oops = a / b;
    System.out.println(oops);
}

А получим вот что:

Это и есть исключение.

«Исключение» — сокращение от слов «исключительный случай». Это ситуация, в которой программа не может продолжить работу или её работа становится бессмысленной. Причём речь не только о нештатных ситуациях — исключения бывают и намеренными, такие разработчик вызывает сам.

Это интересно. Исключения в Java появились уже в первой версии языка. А вот в языках, где их нет, вместо них возвращают коды ошибок.

У всех классов исключений есть общий класс-предок Throwable, от него наследуются классы Error и Exception, базовые для всех прочих.

Верхушка иерархии исключений Java

Error — это критические условия, в которых работа программы должна быть завершена. Например, когда при выполнении программы закончилась память, произошёл сбой в системе или виртуальной машине. Не будем задерживаться на этой ветке, поскольку документация Java говорит:

Error is the superclass of all the exceptions from which ordinary programs are not ordinarily expected to recover.

Что в переводе означает: ошибки (Error) — это такие исключительные ситуации, в которых восстанавливать работу программы не предполагается.

То есть это проблемы, которые нельзя (недопустимо) исправлять на ходу. Всё, что нам остаётся, — извиниться перед пользователем и впредь писать программы, где возникнет меньше подобных ситуаций. Например, не допускать такой глубокой рекурсии, как в коде ниже:

static void notGood() {
    System.out.println("Только не снова!");
    notGood();
}

При работе этого метода у нас возникнет ошибка: Exception in thread «main» java.lang.StackOverflowError — стек вызовов переполнился, так как мы не указали условие выхода из рекурсии.

А теперь об Exception. Эти исключительные ситуации возникают, если разработчик допустил невыполнимую операцию, не предусмотрел особые случаи в бизнес-логике программы (или сообщает о них с помощью исключений).

1. Невыполнимая операция

Мир не рухнул, как в случае с Error, просто Java не знает, что делать дальше. Как раз из этого разряда деление на ноль в начале статьи: и правда, какое значение тогда присвоить переменной oops?

Убедитесь сами, что исключение класса ArithmeticException наследуется как раз от Exception.

Стоит запомнить. В IntelliJ IDEA, чтобы увидеть положение класса в иерархии, выберите его и нажмите Ctrl + H (или на пункт Type Hierarchy в меню Navigate).

Другая частая ситуация — обращение к несуществующему элементу массива. Например, у нас в нём десять элементов, а мы пытаемся обратиться к одиннадцатому.

2. Особый случай в бизнес-логике программы

Классика. Программируем задачу о перевозке волка, козы и капусты через реку: в лодке может быть только два пассажира, но волка с козой и козу с капустой нельзя оставлять на берегу вместе. Это и есть особый случай в бизнес-логике, который нельзя нарушать.

Или пользователь вводит дату начала некоторого периода и дату его окончания. Вторая дата не может быть раньше первой.

Или, допустим, у нас есть метод, который читает файл. Сам метод написан верно. Пользователь передал в него корректный путь. Только вот у этого работника нет права читать этот файл (его роль и права обусловлены предметной областью). Что же тогда методу возвращать? Вернуть-то нечего, ведь метод не отработал. Самое очевидное решение — выдать исключение.

В дерево исключений мы ещё углубимся, а сейчас посмотрим, что и как с ними делают.

Простейший вариант — ничего; возникает исключение — программа просто прекращает работать.

Чтобы убедиться в этом, выполним код:

public static void main(String[] args) {
    hereWillBeTrouble(42, 0);
}

public static void hereWillBeTrouble(int a, int b) {
    System.out.println("Всё, что было до...");
    int oops = a / b;
    System.out.println(oops);
    System.out.println("Всё, что будет после...");
}

Так и есть: до деления на ноль код выполнялся, а после — нет.

Это интересно: когда возникает исключение, программисты выдают что-то вроде «код [вы]бросил исключение» или «код кинул исключение». А глагол таков потому, что все исключения — наследники класса Throwable, что значит «бросаемый» / «который можно бросить».

Второе, что можно делать с исключениями, — это их обрабатывать.

Для этого нужно заключить кусок кода, который может вызвать исключение, в конструкцию try-catch.

Как это работает: если в блоке try возникает исключение, которое указано в блоке catch, то исполнение блока try прервётся и выполнится код из блока catch.

Например:

public static void main(String[] args) {
    hereWillBeTrouble();
}

private static void hereWillBeTrouble(int a, int b) {
    int oops;
    try {
        System.out.println("Всё, что было до...");
        oops = a / b;
        System.out.println(oops);
        System.out.println("Всё, что будет после...");
    } catch (ArithmeticException e) {
        System.out.println("Говорили же не делить на ноль!");
        oops = 0;
    }
    System.out.println("Метод отработал");
}

Разберём этот код.

Если блок try кинет исключение ArithmeticException, то управление перехватит блок catch, который выведет строку «Говорили же не делить на ноль!», а значение oops станет равным 0.

После этого программа продолжит работать как ни в чём не бывало: выполнится код после блока try-catch, который сообщит: «Метод отработал».

Проверьте сами: запустите код выше. Вызовите метод hereWillBeTrouble с любыми значениями аргументов кроме нулевого b. Если в блоке try не возникнет исключений, то его код выполнится целиком, а в блок catch мы даже не попадём.

Есть ещё и третий вариант — пробросить исключение наверх. Но об этом в следующей статье.

Вернёмся к первой картинке. Посмотрим, что нам сказала Java, когда произошло исключение:

Начинаем разбирать сверху вниз:

— это указание на поток, в котором произошло исключение. В нашей простой однопоточной программе это поток main.

— какое исключение брошено. У нас это ArithmeticException. А java.lang.ArithmeticException — полное название класса вместе с пакетом, в котором он размещается.

— весточка, которую принесло исключение. Дело в том, что одно и то же исключение нередко возникает по разным причинам. И тут мы видим стандартное пояснение «/ by zero» — из-за деления на ноль.

— это самое интересное: стектрейс.

Стектрейс (Stack trace) — это упорядоченный список методов, сквозь которые исключение пронырнуло.

У нас оно возникло в методе hereWillBeTrouble на 8-й строке в классе Main (номер строки и класс указаны в скобках синим). А этот метод, в свою очередь, вызван методом main на 3-й строке класса Main.

Стектрейсы могут быть довольно длинными — из десятков методов, которые вызывают друг друга по цепочке. И они здорово помогают расследовать неожиданно кинутое исключение.

Советую закреплять теорию на практике. Поэтому вернитесь в блок про Error и вызовите метод notGood — увидите любопытный стектрейс.

Всё это время мы имели дело с исключением, которое бросает Java-машина — при делении на ноль. Но как вызвать исключение самим?

Раз исключение — это объект класса, то программисту всего-то и нужно, что создать объект с нужным классом исключения и бросить его с помощью оператора throw.

public static void main(String[] args) {
    hereWillBeTrouble(42, 0);
}

private static void hereWillBeTrouble(int a, int b) {
    if (b == 0) {
        throw new ArithmeticException("ты опять делишь на ноль?");
    }
    int oops = a / b;
    System.out.println(oops);
}

При создании большинства исключений первым параметром в конструктор можно передать сообщение — мы как раз сделали так выше.

А получим мы то же самое, что и в самом первом примере, только вместо стандартной фразы «/by zero» теперь выдаётся наш вопрос-пояснение «ты опять делишь на ноль?»:

В следующей статье мы углубимся в иерархию исключений Java, узнаем про их разделение на checked и unchecked, а также о том, что ещё интересного можно с ними делать.

Научитесь: Профессия Java-разработчик PRO
Узнать больше

  • Как объяснить пунктуационную ошибку
  • Как объяснить пословицу на ошибках учатся
  • Как объяснить начальнику причину ошибки
  • Как образовалось слово ошибка
  • Как обработать ошибку python