Как определяется приборная инструментальная ошибка

Свойства физического объекта (явления, процесса) определяются набором
количественных характеристик — физических величин.
Как правило, результат измерения представляет
собой число, задающее отношение измеряемой величины к некоторому эталону.
Сравнение с эталоном может быть как
прямым (проводится непосредственно
экспериментатором), так и косвенным (проводится с помощью некоторого
прибора, которому экспериментатор доверяет).
Полученные таким образом величины имеют размерность, определяемую выбором эталона.

Замечание. Результатом измерения может также служить количество отсчётов некоторого
события, логическое утверждение (да/нет) или даже качественная оценка
(сильно/слабо/умеренно). Мы ограничимся наиболее типичным для физики случаем,
когда результат измерения может быть представлен в виде числа или набора чисел.

Взаимосвязь между различными физическими величинами может быть описана
физическими законами, представляющими собой идеализированную
модель действительности. Конечной целью любого физического
эксперимента (в том числе и учебного) является проверка адекватности или
уточнение параметров таких моделей.

1.1 Результат измерения

Рассмотрим простейший пример: измерение длины стержня
с помощью линейки. Линейка проградуирована производителем с помощью
некоторого эталона длины — таким образом, сравнивая длину
стержня с ценой деления линейки, мы выполняем косвенное сравнение с
общепринятым стандартным эталоном.

Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат
x=xизм. Можно ли утверждать, что xизм — это длина
стержня?

Во-первых, значение x не может быть задано точно, хотя бы
потому, что оно обязательно округлено до некоторой значащей
цифры: если линейка «обычная», то у неё
есть цена деления; а если линейка, к примеру, «лазерная»
— у неё высвечивается конечное число значащих цифр
на дисплее.

Во-вторых, мы никак не можем быть уверенны, что длина стержня на
самом деле
такова хотя бы с точностью до ошибки округления. Действительно,
мы могли приложить линейку не вполне ровно; сама линейка могла быть
изготовлена не вполне точно; стержень может быть не идеально цилиндрическим
и т.п.

И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной
точности измерения, теряет смысл само понятие «длины стержня». Ведь
на масштабах атомов у стержня нет чётких границ, а значит говорить о его
геометрических размерах в таком случае крайне затруднительно!

Итак, из нашего примера видно, что никакое физическое измерение не может быть
произведено абсолютно точно, то есть
у любого измерения есть погрешность.

Замечание. Также используют эквивалентный термин ошибка измерения
(от англ. error). Подчеркнём, что смысл этого термина отличается от
общеупотребительного бытового: если физик говорит «в измерении есть ошибка»,
— это не означает, что оно неправильно и его надо переделать.
Имеется ввиду лишь, что это измерение неточно, то есть имеет
погрешность.

Количественно погрешность можно было бы определить как разность между
измеренным и «истинным» значением длины стержня:
δ⁢x=xизм-xист. Однако на практике такое определение
использовать нельзя: во-первых, из-за неизбежного наличия
погрешностей «истинное» значение измерить невозможно, и во-вторых, само
«истинное» значение может отличаться в разных измерениях (например, стержень
неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).
Поэтому говорят обычно об оценке погрешности.

Об измеренной величине также часто говорят как об оценке, подчеркивая,
что эта величина не точна и зависит не только от физических свойств
исследуемого объекта, но и от процедуры измерения.

Замечание. 
Термин оценка имеет и более формальное значение. Оценкой называют результат процедуры получения значения параметра или параметров физической модели, а также иногда саму процедуру. Теория оценок является подразделом математической статистики. Некоторые ее положения изложены в главе 3, но для более серьезного понимания следует обратиться к [5].

Для оценки значения физической величины корректно использовать
не просто некоторое фиксированное число xизм, а интервал (или
диапазон) значений, в пределах которого может лежать её
«истинное» значение. В простейшем случае этот интервал
может быть записан как

где δ⁢x — абсолютная величина погрешности.
Эта запись означает, что исследуемая величина лежит в интервале
x∈(xизм-δ⁢x;xизм+δ⁢x)
с некоторой достаточно большой долей вероятности (более подробно о
вероятностном содержании интервалов см. п. 2.2).
Для наглядной оценки точности измерения удобно также использовать
относительную величину погрешности:

Она показывает, насколько погрешность мала по сравнению с
самой измеряемой величиной (её также можно выразить в процентах:
ε=δ⁢xx⋅100%).

Пример. Штангенциркуль —
прибор для измерения длин с ценой деления 0,1⁢мм. Пусть
диаметр некоторой проволоки равен 0,37 мм. Считая, что абсолютная
ошибка составляет половину цены деления прибора, результат измерения
можно будет записать как d=0,40±0,05⁢мм (или
d=(40±5)⋅10-5⁢м).
Относительная погрешность составляет ε≈13%, то
есть точность измерения весьма посредственная — поскольку
размер объекта близок к пределу точности прибора.

О необходимости оценки погрешностей.

Измерим длины двух стержней x1 и x2 и сравним результаты.
Можно ли сказать, что стержни одинаковы или различны?

Казалось бы,
достаточно проверить, справедливо ли x1=x2. Но никакие
два результата измерения не равны друг другу с абсолютной точностью! Таким
образом, без указания погрешности измерения ответ на этот вопрос дать
невозможно.

С другой стороны, если погрешность δ⁢x известна, то можно
утверждать, что если измеренные длины одинаковы
в пределах погрешности опыта, если |x2-x1|<δ⁢x
(и различны в противоположном случае).

Итак, без знания погрешностей невозможно сравнить между собой никакие
два измерения, и, следовательно, невозможно сделать никаких
значимых выводов по результатам эксперимента: ни о наличии зависимостей
между величинами, ни о практической применимости какой-либо теории,
и т. п. В связи с этим задача правильной оценки погрешностей является крайне
важной, поскольку существенное занижение или завышение значения погрешности
(по сравнению с реальной точностью измерений) ведёт к неправильным выводам.

В физическом эксперименте (в том числе лабораторном практикуме) оценка
погрешностей должна проводиться всегда
(даже когда составители задания забыли упомянуть об этом).

1.2 Многократные измерения

Проведём серию из n одинаковых (однотипных) измерений одной
и той же физической величины (например, многократно приложим линейку к стержню) и получим
ряд значений

Что можно сказать о данном наборе чисел и о длине стержня?
И можно ли увеличивая число измерений улучшить конечный результат?

Если цена деления самой линейки достаточно мала, то как нетрудно убедиться
на практике, величины {xi} почти наверняка окажутся
различными. Причиной тому могут быть
самые разные обстоятельства, например: у нас недостаточно остроты
зрения и точности рук, чтобы каждый раз прикладывать линейку одинаково;
стенки стержня могут быть слегка неровными; у стержня может и не быть
определённой длины, например, если в нём возбуждены звуковые волны,
из-за чего его торцы колеблются, и т. д.

В такой ситуации результат измерения интерпретируется как
случайная величина, описываемая некоторым вероятностным законом
(распределением).
Подробнее о случайных величинах и методах работы с ними см. гл. 2.

По набору результатов 𝐱 можно вычислить их среднее арифметическое:

⟨x⟩=x1+x2+…+xnn≡1n⁢∑i=1nxi. (1.1)

Это значение, вычисленное по результатам конечного числа n измерений,
принято называть выборочным средним. Здесь и далее для обозначения
выборочных средних будем использовать угловые скобки.

Кроме среднего представляет интерес и то, насколько сильно варьируются
результаты от опыта к опыту. Определим отклонение каждого измерения от среднего как

Разброс данных относительно среднего принято характеризовать
среднеквадратичным отклонением:

s=Δ⁢x12+Δ⁢x22+…+Δ⁢xn2n=1n⁢∑i=1nΔ⁢xi2 (1.2)

или кратко

Значение среднего квадрата отклонения s2 называют
выборочной дисперсией.

Будем увеличивать число измерений n (n→∞). Если объект измерения и методика
достаточно стабильны, то отклонения от среднего Δ⁢xi будут, во-первых,
относительно малы, а во-вторых, положительные и отрицательные отклонения будут
встречаться примерно одинаково часто. Тогда при вычислении (1.1)
почти все отклонения Δ⁢xi скомпенсируются и можно ожидать,
что выборочное среднее при n≫1 будет стремиться к некоторому пределу:

Тогда предельное значение x¯ можно отождествить с «истинным» средним
для исследуемой величины.

Предельную величину среднеквадратичного отклонения при n→∞
обозначим как

Замечание. В общем случае указанные пределы могут и не существовать. Например, если измеряемый параметр
меняется во времени или в результате самого измерения, либо испытывает слишком большие
случайные скачки и т. п. Такие ситуации требуют особого рассмотрения и мы на них не
останавливаемся.


Замечание. Если n мало (n<10), для оценки среднеквадратичного отклонения
математическая статистика рекомендует вместо формулы (1.3) использовать
исправленную формулу (подробнее см. п. 5.2):



sn-12=1n-1⁢∑i=1nΔ⁢xi2,

(1.4)

где произведена замена n→n-1. Величину sn-1
часто называют стандартным отклонением.

Итак, можно по крайней мере надеяться на то, что результаты небольшого числа
измерений имеют не слишком большой разброс, так что величина ⟨x⟩
может быть использована как приближенное значение (оценка) истинного значения
⟨x⟩≈x¯,
а увеличение числа измерений позволит уточнить результат.

Многие случайные величины подчиняются так называемому нормальному закону
распределения (подробнее см. Главу 2). Для таких величин
могут быть строго доказаны следующие свойства:

  • при многократном повторении эксперимента бо́льшая часть измерений
    (∼68%) попадает в интервал x¯-σ<x<x¯+σ
    (см. п. 2.2).

  • выборочное среднее значение ⟨x⟩ оказывается с большей
    вероятностью ближе к истинному значению x¯, чем каждое из измерений
    {xi} в отдельности. При этом ошибка вычисления среднего
    убывает пропорционально корню из числа опытов n
    (см. п. 2.4).


Упражнение. Показать, что



s2=⟨x2⟩-⟨x⟩2.

(1.5)

то есть дисперсия равна разности среднего значения квадрата
⟨x2⟩=1n⁢∑i=1nxi2
и квадрата среднего ⟨x⟩2=(1n⁢∑i=1nxi)2.

1.3 Классификация погрешностей

Чтобы лучше разобраться в том, нужно ли многократно повторять измерения,
и в каком случае это позволит улучшить результаты опыта,
проанализируем источники и виды погрешностей.

В первую очередь, многократные измерения позволяют проверить
воспроизводимость результатов: повторные измерения в одинаковых
условиях, должны давать близкие результаты. В противном случае
исследование будет существенно затруднено, если вообще возможно.
Таким образом, многократные измерения необходимы для того,
чтобы убедиться как в надёжности методики, так и в существовании измеряемой
величины как таковой.

При любых измерениях возможны грубые ошибки — промахи
(англ. miss). Это «ошибки» в стандартном
понимании этого слова — возникающие по вине экспериментатора
или в силу других непредвиденных обстоятельств (например, из-за сбоя
аппаратуры). Промахов, конечно, нужно избегать, а результаты таких
измерений должны быть по возможности исключены из рассмотрения.

Как понять, является ли «аномальный» результат промахом? Вопрос этот весьма
непрост. В литературе существуют статистические
критерии отбора промахов, которыми мы, однако, настоятельно не рекомендуем
пользоваться (по крайней мере, без серьезного понимания последствий
такого отбора). Отбрасывание аномальных данных может, во-первых, привести
к тенденциозному искажению результата исследований, а во-вторых, так
можно упустить открытие неизвестного эффекта. Поэтому при научных
исследованиях необходимо максимально тщательно проанализировать причину
каждого промаха, в частности, многократно повторив эксперимент. Лишь
только если факт и причина промаха установлены вполне достоверно,
соответствующий результат можно отбросить.

Замечание. Часто причины аномальных отклонений невозможно установить на этапе
обработки данных, поскольку часть информации о проведении измерений к этому моменту
утеряна. Единственным способ борьбы с этим — это максимально подробное описание всего
процесса измерений в лабораторном журнале. Подробнее об этом
см. п. 4.1.1.

При многократном повторении измерении одной и той же физической величины
погрешности могут иметь систематический либо случайный
характер. Назовём погрешность систематической, если она повторяется
от опыта к опыту, сохраняя свой знак и величину, либо закономерно
меняется в процессе измерений. Случайные (или статистические)
погрешности меняются хаотично при повторении измерений как по величине,
так и по знаку, и в изменениях не прослеживается какой-либо закономерности.

Кроме того, удобно разделять погрешности по их происхождению. Можно
выделить

  • инструментальные (или приборные) погрешности,
    связанные с несовершенством конструкции (неточности, допущенные при
    изготовлении или вследствие старения), ошибками калибровки или ненормативными
    условиями эксплуатации измерительных приборов;

  • методические погрешности, связанные с несовершенством
    теоретической модели явления (использование приближенных формул и
    моделей явления) или с несовершенством методики измерения (например,
    влиянием взаимодействия прибора и объекта измерения на результат измерения);

  • естественные погрешности, связанные со случайным
    характером
    измеряемой физической величины — они являются не столько
    «ошибками» измерения, сколько характеризуют
    природу изучаемого объекта или явления.

Замечание. Разделение погрешностей на систематические и случайные
не является однозначным и зависит от постановки опыта. Например, производя
измерения не одним, а несколькими однотипными приборами, мы переводим
систематическую приборную ошибку, связанную с неточностью шкалы и
калибровки, в случайную. Разделение по происхождению также условно,
поскольку любой прибор подвержен воздействию «естественных»
случайных и систематических ошибок (шумы и наводки, тряска, атмосферные
условия и т. п.), а в основе работы прибора всегда лежит некоторое
физическое явление, описываемое не вполне совершенной теорией.

1.3.1 Случайные погрешности

Случайный характер присущ большому количеству различных физических
явлений, и в той или иной степени проявляется в работе всех без исключения
приборов. Случайные погрешности обнаруживаются просто при многократном
повторении опыта — в виде хаотичных изменений (флуктуаций)
значений {xi}.

Если случайные отклонения от среднего в большую или меньшую стороны
примерно равновероятны, можно рассчитывать, что при вычислении среднего
арифметического (1.1) эти отклонения скомпенсируются,
и погрешность результирующего значения ⟨x⟩ будем меньше,
чем погрешность отдельного измерения.

Случайные погрешности бывают связаны, например,

  • с особенностями используемых приборов: техническими
    недостатками
    (люфт в механических приспособлениях, сухое трение в креплении стрелки
    прибора), с естественными (тепловой и дробовой шумы в электрических
    цепях, тепловые флуктуации и колебания измерительных устройств из-за
    хаотического движения молекул, космическое излучение) или техногенными
    факторами (тряска, электромагнитные помехи и наводки);

  • с особенностями и несовершенством методики измерения (ошибка
    при отсчёте по шкале, ошибка времени реакции при измерениях с секундомером);

  • с несовершенством объекта измерений (неровная поверхность,
    неоднородность состава);

  • со случайным характером исследуемого явления (радиоактивный
    распад, броуновское движение).

Остановимся несколько подробнее на двух последних случаях. Они отличаются
тем, что случайный разброс данных в них порождён непосредственно объектом
измерения. Если при этом приборные погрешности малы, то «ошибка»
эксперимента возникает лишь в тот момент, когда мы по своей
воле
совершаем замену ряда измеренных значений на некоторое среднее
{xi}→⟨x⟩. Разброс данных при этом
характеризует не точность измерения, а сам исследуемый объект или
явление. Однако с математической точки зрения приборные и
«естественные»
погрешности неразличимы — глядя на одни только
экспериментальные данные невозможно выяснить, что именно явилось причиной
их флуктуаций: сам объект исследования или иные, внешние причины.
Таким образом, для исследования естественных случайных процессов необходимо
сперва отдельно исследовать и оценить случайные инструментальные погрешности
и убедиться, что они достаточно малы.

1.3.2 Систематические погрешности

Систематические погрешности, в отличие от случайных, невозможно обнаружить,
исключить или уменьшить просто многократным повторением измерений.
Они могут быть обусловлены, во-первых, неправильной работой приборов
(инструментальная погрешность), например, сдвигом нуля отсчёта
по шкале, деформацией шкалы, неправильной калибровкой, искажениями
из-за не нормативных условий эксплуатации, искажениями из-за износа
или деформации деталей прибора, изменением параметров прибора во времени
из-за нагрева и т.п. Во-вторых, их причиной может быть ошибка в интерпретации
результатов (методическая погрешность), например, из-за использования
слишком идеализированной физической модели явления, которая не учитывает
некоторые значимые факторы (так, при взвешивании тел малой плотности
в атмосфере необходимо учитывать силу Архимеда; при измерениях в электрических
цепях может быть необходим учет неидеальности амперметров и вольтметров
и т. д.).

Систематические погрешности условно можно разделить на следующие категории.

  1. 1.

    Известные погрешности, которые могут быть достаточно точно вычислены
    или измерены. При необходимости они могут быть учтены непосредственно:
    внесением поправок в расчётные формулы или в результаты измерений.
    Если они малы, их можно отбросить, чтобы упростить вычисления.

  2. 2.

    Погрешности известной природы, конкретная величина которых неизвестна,
    но максимальное значение вносимой ошибки может быть оценено теоретически
    или экспериментально. Такие погрешности неизбежно присутствуют в любом
    опыте, и задача экспериментатора — свести их к минимуму,
    совершенствуя методики измерения и выбирая более совершенные приборы.

    Чтобы оценить величину систематических погрешностей опыта, необходимо
    учесть паспортную точность приборов (производитель, как правило, гарантирует,
    что погрешность прибора не превосходит некоторой величины), проанализировать
    особенности методики измерения, и по возможности, провести контрольные
    опыты.

  3. 3.

    Погрешности известной природы, оценка величины которых по каким-либо
    причинам затруднена (например, сопротивление контактов при подключении
    электронных приборов). Такие погрешности должны быть обязательно исключены
    посредством модификации методики измерения или замены приборов.

  4. 4.

    Наконец, нельзя забывать о возможности существования ошибок, о
    которых мы не подозреваем, но которые могут существенно искажать результаты
    измерений. Такие погрешности самые опасные, а исключить их можно только
    многократной независимой проверкой измерений, разными методами
    и в разных условиях.

В учебном практикуме учёт систематических погрешностей ограничивается,
как правило, паспортными погрешностями приборов и теоретическими поправками
к упрощенной модели исследуемого явления.

Точный учет систематической ошибки возможен только при учете специфики конкретного эксперимента. Особенное внимание надо обратить на зависимость (корреляцию) систематических смещений при повторных измерениях. Одна и та же погрешность в разных случаях может быть интерпретирована и как случайная, и как систематическая.


Пример. 
Калибровка электромагнита производится при помощи внесения в него датчика Холла или другого измерителя магнитного потока. При последовательных измерениях с разными токами (и соотственно полями в зазоре) калибровку можно учитыать двумя различными способами:




Измерить значение поля для разных токов, построить линейную калибровочную кривую и потом использовать значения, восстановленные по этой кривой для вычисления поля по току, используемому в измерениях.



Для каждого измерения проводить допольнительное измерения поля и вообще не испльзовать значения тока.


В первом случае погрешность полученного значения будет меньше, поскльку при проведении прямой, отдельные отклонения усреднятся. При этом погрешность измерения поля будет носить систематический харрактер и при обработке данных ее надо будет учитывать в последний момент. Во втором случае погрешность будет носить статистический (случайный) харрактер и ее надо будет добавить к погрешности каждой измеряемой точки. При этом сама погрешность будет больше. Выбор той или иной методики зависит от конретной ситуации. При большом количестве измерений, второй способ более надежный, поскольку статистическая ошибка при усреднении уменьшается пропорционально корню из количества измерений. Кроме того, такой способ повзоляет избежать методической ошибки, связанной с тем, что зависимость поля от тока не является линейной.


Пример. 
Рассмотрим измерение напряжения по стрелочному вольтметру. В показаниях прибора будет присутствовать три типа погрешности:


1.

Статистическая погрешность, связанная с дрожанием стрелки и ошибкой визуального наблюдения, примерно равная половине цены деления.

2.

Систематическая погрешность, связанная с неправильной установкой нуля.

3.

Систематическая погрешность, связанная с неправильным коэффициентом пропорциональности между напряжением и отклонением стрелки. Как правило приборы сконструированы таким образом, чтобы максимальное значение этой погрешности было так же равно половине цены деления (хотя это и не гарантируется).


Неотъемлемой частью любого измерения является погрешность измерений. С развитием приборостроения и методик измерений человечество стремиться снизить влияние данного явления на конечный результат измерений. Предлагаю более детально разобраться в вопросе, что же это такое погрешность измерений.

Погрешность измерения – это отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерений представляет собой сумму погрешностей, каждая из которых имеет свою причину.

По форме числового выражения погрешности измерений подразделяются на абсолютные и относительные

Абсолютная погрешность – это погрешность, выраженная в единицах измеряемой величины. Она определяется выражением.

 Абсолютная погрешность(1.2), где X — результат измерения; Х0 — истинное значение этой величины.

Поскольку истинное значение измеряемой величины остается неизвестным, на практике пользуются лишь приближенной оценкой абсолютной погрешности измерения, определяемой выражением

Абсолютная погрешность(1.3), где Хд — действительное значение этой измеряемой величины, которое с погрешностью ее определения принимают за истинное значение.

Относительная погрешность – это отношение абсолютной погрешности измерения к действительному значению измеряемой величины:

Относительная погрешность(1.4)

По закономерности появления погрешности измерения подразделяются на систематические, прогрессирующие, и случайные.

Систематическая погрешность – это погрешность измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины.

Прогрессирующая погрешность – это непредсказуемая погрешность, медленно меняющаяся во времени.

Систематические и прогрессирующие погрешности средств измерений вызываются:

  • первые — погрешностью градуировки шкалы или ее небольшим сдвигом;
  • вторые — старением элементов средства измерения.

Систематическая погрешность остается постоянной или закономерно изменяющейся при многократных измерениях одной и той же величины. Особенность систематической погрешности состоит в том, что она может быть полностью устранена введением поправок. Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы только в данный момент времени. Они требуют непрерывной коррекции.

Случайная погрешность – это погрешность измерения изменяется случайным образом. При повторных измерениях одной и той же величины. Случайные погрешности можно обнаружить только при многократных измерениях. В отличии от систематических погрешностей случайные нельзя устранить из результатов измерений.

По происхождению различают инструментальные и методические погрешности средств измерений.

Инструментальные погрешности — это погрешности, вызываемые особенностями свойств средств измерений. Они возникают вследствие недостаточно высокого качества элементов средств измерений. К данным погрешностям можно отнести изготовление и сборку элементов средств измерений; погрешности из-за трения в механизме прибора, недостаточной жесткости его элементов и деталей и др. Подчеркнем, что инструментальная погрешность индивидуальна для каждого средства измерений.

Методическая погрешность — это погрешность средства измерения, возникающая из-за несовершенства метода измерения, неточности соотношения, используемого для оценки измеряемой величины.

Погрешности средств измерений.

Абсолютная погрешность меры – это разность между номинальным ее значением и истинным (действительным) значением воспроизводимой ею величины:

Абсолютная погрешность меры(1.5), где Xн – номинальное значение меры; Хд – действительное значение меры

Абсолютная погрешность измерительного прибора – это разность между показанием прибора и истинным (действительным) значением измеряемой величины:

Абсолютная погрешность измерительного прибора(1.6), где Xп – показания прибора; Хд – действительное значение измеряемой величины.

Относительная погрешность меры или измерительного прибора – это отношение абсолютной погрешности меры или измерительного прибора к истинному

(действительному) значению воспроизводимой или измеряемой величины. Относительная погрешность меры или измерительного прибора может быть выражена в ( % ).

Относительная погрешность меры или измерительного прибора(1.7)

Приведенная погрешность измерительного прибора – отношение погрешности измерительного прибора к нормирующему значению. Нормирующие значение XN – это условно принятое значение, равное или верхнему пределу измерений, или диапазону измерений, или длине шкалы. Приведенная погрешность обычно выражается в ( % ).

Приведенная погрешность измерительного прибора(1.8)

Предел допускаемой погрешности средств измерений – наибольшая без учета знака погрешность средства измерений, при которой оно может быть признано и допущено к применению. Данное определение применяют к основной и дополнительной погрешности, а также к вариации показаний. Поскольку свойства средств измерений зависят от внешних условий, их погрешности также зависят от этих условий, поэтому погрешности средств измерений принято делить на основные и дополнительные.

Основная – это погрешность средства измерений, используемого в нормальных условиях, которые обычно определены в нормативно-технических документах на данное средство измерений.

Дополнительная – это изменение погрешности средства измерений вследствии отклонения влияющих величин от нормальных значений.

Погрешности средств измерений подразделяются также на статические и динамические.

Статическая – это погрешность средства измерений, используемого для измерения постоянной величины. Если измеряемая величина является функцией времени, то вследствие инерционности средств измерений возникает составляющая общей погрешности, называется динамической погрешностью средств измерений.

Также существуют систематические и случайные погрешности средств измерений они аналогичны с такими же погрешностями измерений.

Факторы влияющие на погрешность измерений.

Погрешности возникают по разным причинам: это могут быть ошибки экспериментатора или ошибки из-за применения прибора не по назначению и т.д. Существует ряд понятий которые определяют факторы влияющие на погрешность измерений

Вариация показаний прибора – это наибольшая разность показаний полученных при прямом и обратном ходе при одном и том же действительном значении измеряемой величины и неизменных внешних условиях.

Класс точности прибора – это обобщенная характеристика средств измерений (прибора), определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на точность, значение которой устанавливаются на отдельные виды средств измерений.

Классы точности прибора устанавливают при выпуске, градуируя его по образцовому прибору в нормальных условиях.

Прецизионность — показывает, как точно или отчетливо можно произвести отсчет. Она определяется, тем насколько близки друг к другу результаты двух идентичных измерений.

Разрешение прибора — это наименьшее изменение измеряемого значения, на которое прибор будет реагировать.

Диапазон прибора — определяется минимальным и максимальным значением входного сигнала, для которого он предназначен.

Полоса пропускания прибора — это разность между минимальной и максимальной частотой, для которых он предназначен.

Чувствительность прибора — определяется, как отношение выходного сигнала или показания прибора к входному сигналу или измеряемой величине.

Шумы — любой сигнал не несущий полезной информации.

Инструментальные погрешности

Инструментальными называют погрешности, причина которых заключается в свойствах применяемых средств измерений. Эти свойства могут вызывать погрешности различного характера.

В общем случае инструментальные погрешности можно разделить на: инструментальные погрешности, являющиеся следствием несовершенства или неправильности технологии изготовления средств измерений; инструментальные погрешности, присущие данной конструкции; инструментальные погрешности, являющиеся следствием износа, старения или неисправности средств измерений.

Инструментальные погрешности, присущие данной конструкции

Одним из характерных источников погрешностей рассматриваемого вида, присущих почти всем средствам измерений, которые имеют подвижные части, является некоторая свобода перемещения этих частей, помимо движения, соответствующего принципу действия устройства. В зависимости от конструкции узла, в котором возникает такая свобода перемещения, а также от традиций той или иной отрасли приборостроения говорят о наличие «люфта», «зазора», «мертвого», «свободного» или «холостого хода» и т. д.

Еще одной причиной инструментальных погрешностей является трение в сочленениях подвижных деталей приборов.

Так, в средствах измерений, в которых при измерении приходится вращать или перемещать отдельные детали (например, в микрометрах), большое трение затрудняет правильную установку вращаемой детали и может привести к возникновению чрезмерно большого или чрезмерно малого давления на измеряемый объект.

Инструментальные погрешности, являющиеся следствием несовершенства или неправильности технологии изготовления средств измерений

Всем средствам измерений, имеющим шкалу, в большей или меньшей степени присущи погрешности, возникшие в результате неточности нанесения отметок шкалы, так называемые погрешности градуировки. В тех случаях, когда деления шкалы строго равномерны, как, например, в устройствах для измерения длины, отметки на шкалы наносятся механически при помощи соответствующих приспособлений. Несовершенство конструкции, износ или неисправности этих приспособлений могут привести к тому, что некоторые или все отметки окажутся смещенными в ту или иную сторону. При этом в процессе измерения результаты всегда будут содержать одну и ту же погрешность.

Более или менее точные измерительные приборы, шкалы которых неравномерны, градуируют нередко вручную. Процесс градуировки осуществляется следующим образом. Градуируемый измерительный прибор с основанием, подготовленным для нанесения шкалы, и образцовый измерительный прибор, погрешности которого значительно меньше предельно допускаемых для градуируемо, подключают к регулируемому источнику измеряемой величины. Устанавливая различные значения измеряемой величины показаниям образцового измерительного прибора, одновременно наносят отметки на шкалу градуируемого измерительного прибора. Уже на этом этапе возможно появление погрешностей, например, вследствие того, что исполнитель при нанесении отметки дет смотреть не строго перпендикулярно к плоскости шкалы, результате нанесенная им отметка окажется смещенной влево :и вправо от правильного положения (погрешность от параллакса). При градуировке на шкалу наносят только основные отметки, т. е. отметки, против которых ставят числовые значения (называть их «оцифрованными» не рекомендуется).

Промежуточные отметки в соответствии с характером шкалы наносят на глаз или при помощи приспособлений различной степени сложности. На этом этапе возможно появление погрешностей градуировки вследствие глазомерных ошибок или несовершенства приспособления, недостаточно точно воспроизводящего малых делениях характер неравномерности шкалы. Эти погрешности опасны тем, что при поверке средств измерений, как правило, ограничиваются сличением их показаний с показаниями образцового измерительного устройства также только на числовых метках.

Таким образом, систематические погрешности на промежуточных отметках могут остаться незамеченными.

Числовые, а иногда и промежуточные отметки при описанном особе градуировки наносят предварительно «вчерне», например виде карандашных точек, после чего вычерчивают шкалу тушью или иным способом. На этом этапе может возникнуть дополни-льная градуировочная погрешность, например, от того, что при нанесении штриха определенной ширины (а не толщины, как иногда говорят) его середина может оказаться смещенной по отношению к точке, поставленной при градуировке.

Таким образом, возможность появления инструментальных погрешностей в результате градуировки весьма значительна. Принимаются меры к тому, чтобы погрешности градуировки были меньше погрешностей, допускаемых для данного средства измерения, однако в какой-то степени они все же остаются. Их отрицательное влияние становится особенно заметно в процессе эксплуатации средств измерений, когда возрастают другие погрешности, например, вследствие износа деталей, старения материала, нарушения регулировки. Тогда суммарная погрешность может выйти за допускаемые пределы раньше срока естественного износа.

В последнее время стремятся изготовлять печатные шкалы (типографским, фотографическим и другими способами) не только для средств измерений массового выпуска, но и для более точных. В этом случае при конструировании предусматривают способы регулирования средств измерений, позволяющие «подогнать» их показания к шкале. Разумеется, и при этом способе неизбежны градуировочные погрешности.

Инструментальные погрешности, являющиеся следствием износа, старения или неисправности средств измерений.

Износ и старение материалов могут быть причиной появления погрешностей, имеющих некоторые характерные особенности. Так, совершенно очевидно, что средства измерений изнашиваются непрерывно и постепенно в процессе эксплуатации со скоростью, зависящей от интенсивности эксплуатации. Следовательно, и погрешности, появляющиеся в результате износа, как правило, возрастают постепенно. Однако рост этот происходит настолько медленно, что в определенный отрезок времени мы можем принимать погрешности, явившиеся следствием износа, постоянными и даже пользоваться соответствующими поправками. Только тогда, когда эти погрешности достигнут установленного предела, дальнейшее применение данного средства измерений считается недопустимым.

Типичным примером в этом отношении являются гири. Их износ всегда идет в одном направлении — постепенно уменьшается их масса. Характер износа гирь заставляет изготовлять их с положительным запасом массы. Масса новой гири всегда больше номинальной в пределах, допускаемых для данного класса гирь.

Другим примером являются концевые меры длины — плитки. В процессе эксплуатации и при ремонтах их размер постепенно уменьшается. Плитками пользуются до тех пор, пока их размер не достигнет установленного для них предела, после чего их или переводят в другой класс, или переаттестовывают, или, наконец, изымают из применения в качестве мер.

Несколько иначе обстоит дело со старением. Под старением понимают изменение каких-либо свойств материалов с течением времени, а иногда и в зависимости от условий применения или хранения.

Процесс старения может протекать различно. Старение может привести к потере каких-либо свойств, имеющих значение для средства измерений, или к постепенной их стабилизации. Одним из характерных примеров старения второго вида является старение манганина. Манганин—это сплав меди, марганца, никеля и некоторых других компонентов, добавляемых иногда в небольших количествах. Обладая сравнительно большим удельным электрическим сопротивлением, манганин в то же время имеет незначительный температурный коэффициент сопротивления. Термоэлектродвижущая сила (т. э. д. с), которая возникает в спае манганина с медью при его нагревании, относительно невелика. Благодаря этим качествам манганин широко применяется в электроприборостроении. Однако манганин имеет одно отрицательное свойство — с течением времени его сопротивление хотя и медленно, но изменяется. По истечении двух-трех лет процесс этот практически прекращается и сопротивление изделия из манганина стабилизируется.

Были разработаны приемы искусственного ускорения процесса старения манганина, стабилизации его свойств. Так как полной стабилизации все же достичь не удается, то для более точных приборов, в которых эта остаточная нестабильность влияет на показания, в первые годы эксплуатации проводят более частые поверки.

В особо ответственных случаях готовое изделие выдерживают годами без применения — до полной стабилизации его свойств, например, катушки сопротивления высшей точности. Во время выдержки ведутся периодические наблюдения за изменением их сопротивления.

Как видим, в данном случае процесс старения обратен процессу износа — с течением времени качество и надежность измерительного устройства улучшаются.

Манганин — не единственный пример старения материала в области измерительной техники. Так, в некоторых концевых мерах длины, изготовляемых из стали, также была обнаружена тенденция к изменению с течением времени их размеров, причем в сторону увеличения. Это явление назвали «ростом» плиток. Меры борьбы с этим явлением те же, что и в отношении манганина — искусственная стабилизация и более частая поверка до наступления надежной естественной стабилизации.

Неисправностей, которые являются или точнее могут являться причиной появления систематических погрешностей, множество. Перечислить их нет никакой возможности. Можно указать на деформации или коррозию деталей измерительного механизма, не прекращающих, но изменяющих характер взаимодействия отдельных его частей. Часто неисправность измерительного устройства является следствием его перегрузки. Перегрузка — механическая, электрическая, тепловая или какая-либо иная — может вызвать устойчивое «остаточное» изменение в материале или в механизме средства измерений и явиться причиной появления или изменения систематической погрешности.

Неисправности, ведущие к появлению небольших систематических погрешностей, гораздо опаснее тех, которые вызывают большие погрешности. Большие систематические погрешности сравнительно быстро обнаруживаются «на глаз», например, по значительному несоответствию результатов измерения ожидаемым. Небольшие систематические погрешности, в два — четыре раза превышающие допускаемые, могут в течение более или менее длительного времени оставаться незамеченными. Такие незамеченные погрешности могут принести огромный вред, особенно при большом числе измерений.

Особую опасность представляет появление или изменение систематических погрешностей в образцовых средствах измерений, применяемых для поверки других средств измерений. Мало того, что каждое средство измерений, поверенное или отградуированное по такому образцовому средству измерений, с самого начала будет нести в себе скрытую погрешность, оно будет передавать эту погрешность всем объектам, которые с его помощью будут измеряться или поверяться. Если вред, приносимый скрытой систематической погрешностью рабочего средства измерений, можно было бы выразить математически, то для выражения вреда, приносимого скрытой систематической погрешностью образцового средства измерений, это выражение следовало бы возвести в квадрат или даже в четвертую степень для случая поверки образцового средства измерений следующего, более низкого, разряда.

Из этого сопоставления роли систематических погрешностей рабочих и образцовых средств измерений наглядно видна важность особой тщательности проведения поверки образцовых средств измерений.

Данный обзор инструментальных погрешностей не является исчерпывающим. Его цель — подсказать читателю необходимость и пути анализа возможных систематических погрешностей, которые могут внести в результаты измерения применяемые измерительные устройства.

Похожие материалы

Инструментальные погрешности

Инструментальными называют погрешности, причина которых заключается в свойствах применяемых средств измерений. Эти свойства могут вызывать погрешности различного характера.

В общем случае инструментальные погрешности можно разделить на: инструментальные погрешности, являющиеся следствием несовершенства или неправильности технологии изготовления средств измерений; инструментальные погрешности, присущие данной конструкции; инструментальные погрешности, являющиеся следствием износа, старения или неисправности средств измерений.

Инструментальные погрешности, присущие данной конструкции

Одним из характерных источников погрешностей рассматриваемого вида, присущих почти всем средствам измерений, которые имеют подвижные части, является некоторая свобода перемещения этих частей, помимо движения, соответствующего принципу действия устройства. В зависимости от конструкции узла, в котором возникает такая свобода перемещения, а также от традиций той или иной отрасли приборостроения говорят о наличие «люфта», «зазора», «мертвого», «свободного» или «холостого хода» и т. д.

Еще одной причиной инструментальных погрешностей является трение в сочленениях подвижных деталей приборов.

Так, в средствах измерений, в которых при измерении приходится вращать или перемещать отдельные детали (например, в микрометрах), большое трение затрудняет правильную установку вращаемой детали и может привести к возникновению чрезмерно большого или чрезмерно малого давления на измеряемый объект.

Инструментальные погрешности, являющиеся следствием несовершенства или неправильности технологии изготовления средств измерений

Всем средствам измерений, имеющим шкалу, в большей или меньшей степени присущи погрешности, возникшие в результате неточности нанесения отметок шкалы, так называемые погрешности градуировки. В тех случаях, когда деления шкалы строго равномерны, как, например, в устройствах для измерения длины, отметки на шкалы наносятся механически при помощи соответствующих приспособлений. Несовершенство конструкции, износ или неисправности этих приспособлений могут привести к тому, что некоторые или все отметки окажутся смещенными в ту или иную сторону. При этом в процессе измерения результаты всегда будут содержать одну и ту же погрешность.

Более или менее точные измерительные приборы, шкалы которых неравномерны, градуируют нередко вручную. Процесс градуировки осуществляется следующим образом. Градуируемый измерительный прибор с основанием, подготовленным для нанесения шкалы, и образцовый измерительный прибор, погрешности которого значительно меньше предельно допускаемых для градуируемо, подключают к регулируемому источнику измеряемой величины. Устанавливая различные значения измеряемой величины показаниям образцового измерительного прибора, одновременно наносят отметки на шкалу градуируемого измерительного прибора. Уже на этом этапе возможно появление погрешностей, например, вследствие того, что исполнитель при нанесении отметки дет смотреть не строго перпендикулярно к плоскости шкалы, результате нанесенная им отметка окажется смещенной влево :и вправо от правильного положения (погрешность от параллакса). При градуировке на шкалу наносят только основные отметки, т. е. отметки, против которых ставят числовые значения (называть их «оцифрованными» не рекомендуется).

Промежуточные отметки в соответствии с характером шкалы наносят на глаз или при помощи приспособлений различной степени сложности. На этом этапе возможно появление погрешностей градуировки вследствие глазомерных ошибок или несовершенства приспособления, недостаточно точно воспроизводящего малых делениях характер неравномерности шкалы. Эти погрешности опасны тем, что при поверке средств измерений, как правило, ограничиваются сличением их показаний с показаниями образцового измерительного устройства также только на числовых метках.

Таким образом, систематические погрешности на промежуточных отметках могут остаться незамеченными.

Числовые, а иногда и промежуточные отметки при описанном особе градуировки наносят предварительно «вчерне», например виде карандашных точек, после чего вычерчивают шкалу тушью или иным способом. На этом этапе может возникнуть дополни-льная градуировочная погрешность, например, от того, что при нанесении штриха определенной ширины (а не толщины, как иногда говорят) его середина может оказаться смещенной по отношению к точке, поставленной при градуировке.

Таким образом, возможность появления инструментальных погрешностей в результате градуировки весьма значительна. Принимаются меры к тому, чтобы погрешности градуировки были меньше погрешностей, допускаемых для данного средства измерения, однако в какой-то степени они все же остаются. Их отрицательное влияние становится особенно заметно в процессе эксплуатации средств измерений, когда возрастают другие погрешности, например, вследствие износа деталей, старения материала, нарушения регулировки. Тогда суммарная погрешность может выйти за допускаемые пределы раньше срока естественного износа.

В последнее время стремятся изготовлять печатные шкалы (типографским, фотографическим и другими способами) не только для средств измерений массового выпуска, но и для более точных. В этом случае при конструировании предусматривают способы регулирования средств измерений, позволяющие «подогнать» их показания к шкале. Разумеется, и при этом способе неизбежны градуировочные погрешности.

Инструментальные погрешности, являющиеся следствием износа, старения или неисправности средств измерений.

Износ и старение материалов могут быть причиной появления погрешностей, имеющих некоторые характерные особенности. Так, совершенно очевидно, что средства измерений изнашиваются непрерывно и постепенно в процессе эксплуатации со скоростью, зависящей от интенсивности эксплуатации. Следовательно, и погрешности, появляющиеся в результате износа, как правило, возрастают постепенно. Однако рост этот происходит настолько медленно, что в определенный отрезок времени мы можем принимать погрешности, явившиеся следствием износа, постоянными и даже пользоваться соответствующими поправками. Только тогда, когда эти погрешности достигнут установленного предела, дальнейшее применение данного средства измерений считается недопустимым.

Типичным примером в этом отношении являются гири. Их износ всегда идет в одном направлении — постепенно уменьшается их масса. Характер износа гирь заставляет изготовлять их с положительным запасом массы. Масса новой гири всегда больше номинальной в пределах, допускаемых для данного класса гирь.

Другим примером являются концевые меры длины — плитки. В процессе эксплуатации и при ремонтах их размер постепенно уменьшается. Плитками пользуются до тех пор, пока их размер не достигнет установленного для них предела, после чего их или переводят в другой класс, или переаттестовывают, или, наконец, изымают из применения в качестве мер.

Несколько иначе обстоит дело со старением. Под старением понимают изменение каких-либо свойств материалов с течением времени, а иногда и в зависимости от условий применения или хранения.

Процесс старения может протекать различно. Старение может привести к потере каких-либо свойств, имеющих значение для средства измерений, или к постепенной их стабилизации. Одним из характерных примеров старения второго вида является старение манганина. Манганин—это сплав меди, марганца, никеля и некоторых других компонентов, добавляемых иногда в небольших количествах. Обладая сравнительно большим удельным электрическим сопротивлением, манганин в то же время имеет незначительный температурный коэффициент сопротивления. Термоэлектродвижущая сила (т. э. д. с), которая возникает в спае манганина с медью при его нагревании, относительно невелика. Благодаря этим качествам манганин широко применяется в электроприборостроении. Однако манганин имеет одно отрицательное свойство — с течением времени его сопротивление хотя и медленно, но изменяется. По истечении двух-трех лет процесс этот практически прекращается и сопротивление изделия из манганина стабилизируется.

Были разработаны приемы искусственного ускорения процесса старения манганина, стабилизации его свойств. Так как полной стабилизации все же достичь не удается, то для более точных приборов, в которых эта остаточная нестабильность влияет на показания, в первые годы эксплуатации проводят более частые поверки.

В особо ответственных случаях готовое изделие выдерживают годами без применения — до полной стабилизации его свойств, например, катушки сопротивления высшей точности. Во время выдержки ведутся периодические наблюдения за изменением их сопротивления.

Как видим, в данном случае процесс старения обратен процессу износа — с течением времени качество и надежность измерительного устройства улучшаются.

Манганин — не единственный пример старения материала в области измерительной техники. Так, в некоторых концевых мерах длины, изготовляемых из стали, также была обнаружена тенденция к изменению с течением времени их размеров, причем в сторону увеличения. Это явление назвали «ростом» плиток. Меры борьбы с этим явлением те же, что и в отношении манганина — искусственная стабилизация и более частая поверка до наступления надежной естественной стабилизации.

Неисправностей, которые являются или точнее могут являться причиной появления систематических погрешностей, множество. Перечислить их нет никакой возможности. Можно указать на деформации или коррозию деталей измерительного механизма, не прекращающих, но изменяющих характер взаимодействия отдельных его частей. Часто неисправность измерительного устройства является следствием его перегрузки. Перегрузка — механическая, электрическая, тепловая или какая-либо иная — может вызвать устойчивое «остаточное» изменение в материале или в механизме средства измерений и явиться причиной появления или изменения систематической погрешности.

Неисправности, ведущие к появлению небольших систематических погрешностей, гораздо опаснее тех, которые вызывают большие погрешности. Большие систематические погрешности сравнительно быстро обнаруживаются «на глаз», например, по значительному несоответствию результатов измерения ожидаемым. Небольшие систематические погрешности, в два — четыре раза превышающие допускаемые, могут в течение более или менее длительного времени оставаться незамеченными. Такие незамеченные погрешности могут принести огромный вред, особенно при большом числе измерений.

Особую опасность представляет появление или изменение систематических погрешностей в образцовых средствах измерений, применяемых для поверки других средств измерений. Мало того, что каждое средство измерений, поверенное или отградуированное по такому образцовому средству измерений, с самого начала будет нести в себе скрытую погрешность, оно будет передавать эту погрешность всем объектам, которые с его помощью будут измеряться или поверяться. Если вред, приносимый скрытой систематической погрешностью рабочего средства измерений, можно было бы выразить математически, то для выражения вреда, приносимого скрытой систематической погрешностью образцового средства измерений, это выражение следовало бы возвести в квадрат или даже в четвертую степень для случая поверки образцового средства измерений следующего, более низкого, разряда.

Из этого сопоставления роли систематических погрешностей рабочих и образцовых средств измерений наглядно видна важность особой тщательности проведения поверки образцовых средств измерений.

Данный обзор инструментальных погрешностей не является исчерпывающим. Его цель — подсказать читателю необходимость и пути анализа возможных систематических погрешностей, которые могут внести в результаты измерения применяемые измерительные устройства.

Похожие материалы

Как Определить Погрешность Измерения Прибора
Измерение физических величин основано на том, что физика исследует объективные закономерности, которые происходят в природе. Найти значение физической величины — умножить конкретное число на единицу измерения данной величины, которая стандартизирована ( эталоны ).

расположение наблюдателя относительно измерительного прибора: если на линейку смотреть сбоку, погрешность измерений произойдёт по причине неточного определения полученного значения;деформация измерительного прибора: металлические и пластиковые линейки могут изогнуться, сантиметровая лента растягивается со временем;несоответствие шкалы прибора эталонным значениям: при множественном копировании эталонов может произойти ошибка, которая будет множиться;физический износ шкалы измерений, что приводит к невозможности распознавания значений.

Рассмотрим на примере измерения длины бруска линейкой с сантиметровой шкалой. Рис. (1). Линейка и брусок Внимательно рассмотрим шкалу. Расстояние между двумя соседними метками составляет (1) см. Если этой линейкой измерять брусок, который изображён на рисунке, то правый конец бруска будет находиться между (9) и (10) метками.

  • У нас есть два варианта определения длины этого бруска. (1).
  • Если мы заявим, что длина бруска — (9) сантиметров, то недостаток длины от истинной составит более половины сантиметра ((0,5) см (= 5) мм). (2).
  • Если мы заявим, что длина бруска — (10) сантиметров, то избыток длины от истинной составит менее половины сантиметра ((0,5) см (= 5) мм).

Погрешность измерений — это отклонение полученного значения измерения от истинного. Погрешность измерительного прибора равна цене деления прибора. Для первой линейки цена деления составляет (1) сантиметр. Значит, погрешность этой линейки (1) см. Если нам необходимо произвести более точные измерения, то следует поменять линейку на другую, например, с миллиметровыми делениями. Рис. (2). Деревянная линейка Если же необходимы ещё более точные измерения, то нужно найти прибор с меньшей ценой деления, например, штангенциркуль. Существуют штангенциркули с ценой деления (0,1) мм и (0,05) мм, Рис. (3). Штангенциркуль На процесс измерения влияют следующие факторы: масштаб шкалы прибора, который определяет значения делений и расстояние между ними; уровень экспериментальных умений. Считается, что погрешность прибора превосходит по величине погрешность метода вычисления, поэтому за абсолютную погрешность принимают погрешность прибора.

Что такое погрешность измерительного прибора?

Погре́шность измере́ния — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения. Выяснить с абсолютной точностью истинное значение измеряемой величины, как правило, невозможно, поэтому невозможно и указать величину отклонения измеренного значения от истинного.

Это отклонение принято называть ошибкой измерения, Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов, На практике вместо истинного значения используют действительное значение величины х д, то есть значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него,

Такое значение обычно вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому при записи результатов измерений необходимо указывать их точность,

  • Например, запись T = 2,8 ± 0,1 с; P = 0,95 означает, что истинное значение величины T лежит в интервале от 2,7 с до 2,9 с с доверительной вероятностью 95 %.
  • Количественная оценка величины погрешности измерения — мера «сомнения в измеряемой величине» — приводит к такому понятию, как « неопределённость измерения ».

В то же время иногда, особенно в физике, термин «погрешность измерения» ( англ. measurement error ) используется как синоним термина «неопределённость измерения» ( англ. measurement uncertainty ),

Как оценить погрешность измерения?

1.1 Результат измерения — Рассмотрим простейший пример: измерение длины стержня с помощью линейки. Линейка проградуирована производителем с помощью некоторого эталона длины — таким образом, сравнивая длину стержня с ценой деления линейки, мы выполняем косвенное сравнение с общепринятым стандартным эталоном.

  1. Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат x = x изм,
  2. Можно ли утверждать, что x изм — это длина стержня? Во-первых, значение x не может быть задано точно, хотя бы потому, что оно обязательно округлено до некоторой значащей цифры: если линейка «обычная», то у неё есть цена деления ; а если линейка, к примеру, «лазерная» — у неё высвечивается конечное число значащих цифр на дисплее.

Во-вторых, мы никак не можем быть уверенны, что длина стержня на самом деле такова хотя бы с точностью до ошибки округления. Действительно, мы могли приложить линейку не вполне ровно; сама линейка могла быть изготовлена не вполне точно; стержень может быть не идеально цилиндрическим и т.п.

  • И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной точности измерения, теряет смысл само понятие «длины стержня».
  • Ведь на масштабах атомов у стержня нет чётких границ, а значит говорить о его геометрических размерах в таком случае крайне затруднительно! Итак, из нашего примера видно, что никакое физическое измерение не может быть произведено абсолютно точно, то есть у любого измерения есть погрешность,

Замечание. Также используют эквивалентный термин ошибка измерения (от англ. error). Подчеркнём, что смысл этого термина отличается от общеупотребительного бытового: если физик говорит «в измерении есть ошибка», — это не означает, что оно неправильно и его надо переделать.

Имеется ввиду лишь, что это измерение неточно, то есть имеет погрешность, Количественно погрешность можно было бы определить как разность между измеренным и «истинным» значением длины стержня: δ ⁢ x = x изм — x ист, Однако на практике такое определение использовать нельзя: во-первых, из-за неизбежного наличия погрешностей «истинное» значение измерить невозможно, и во-вторых, само «истинное» значение может отличаться в разных измерениях (например, стержень неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).

Поэтому говорят обычно об оценке погрешности. Об измеренной величине также часто говорят как об оценке, подчеркивая, что эта величина не точна и зависит не только от физических свойств исследуемого объекта, но и от процедуры измерения. Замечание. Термин оценка имеет и более формальное значение.

В чем измеряется погрешность измерений?

Погрешность средств измерения и результатов измерения. Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).

Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины. Инструментальные и методические погрешности. Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений.

Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели. Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета.

Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены. Инструментальная погрешность обусловлена несовершенством применяемых средств измерений.

Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы. Статическая и динамическая погрешности.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей. Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях. Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Чему равна приведенная погрешность прибора?

Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона.

Как определить инструментальную погрешность прибора?

Вычисление погрешностей измерений Выполнение лабораторных работ связано с измерением физических величин, т.е. определением значений величин опытным путём с помощью измерительных приборов (средств измерения), и обработкой результатов измерений. Различают прямые и косвенные измерения.

При этом результат любого измерения является приблизительным, т.е. содержит погрешность измерения. Точность измерения физической величины характеризуют абсолютная и относительная погрешности. Прямое измерение — определение значения физической величины непосредственно с помощью измерительного прибора. Абсолютную погрешность прямых измерений определяют суммой абсолютной инструментальной погрешности и абсолютной погрешности отсчёта Δ x = Δ и x + Δ о x при условии, что случайная погрешность и погрешность вычисления или отсутствуют, или незначительны и ими можно пренебречь.

Абсолютная инструментальная погрешность Δ и x связана с классом точности прибора. Абсолютные инструментальные погрешности некоторых средств измерений представлены в таблице 1.

Таблица 1

Средства измерений Диапазон измерений Абсолютная инструментальная погрешность
Линейки: металлические деревянные пластмассовые 150, 300, 500 мм 400, 500, 750 мм 200, 250, 300 мм 0,1 мм 0,5 мм 1 мм
Лента измерительная 150 см 0,5 см
Мензурки 2-го класса 100, 200, 250 см 3 5 см 3
Амперметр школьный 2 А 0,05 А
Миллиамперметр от 0 до I max 4 % максимального предела измерений I max
Вольтметр школьный 6 В 0,15 В
Термометр лабораторный 100 °С 1 °С
Барометр-анероид 720–780 мм рт. ст. 3 мм рт. ст.
Штангенциркули с ценой деления 0,1; 0,05 мм 155, 250, 350 мм 0,1; 0,05 мм в соответствии с ценой деления нониуса
Микрометры с ценой деления 0,01 мм 0–25, 25–50, 50–75 мм 0,004 мм

Абсолютная погрешность отсчёта Δ о x связана с дискретностью шкалы прибора. Если величину измеряют с точностью до целого деления шкалы прибора, то погрешность отсчёта принимают равной цене деления. Если при измерении значение величины округляют до половины деления шкалы, то погрешность отсчёта принимают равной половине цены деления. Относительную погрешность прямого измерения определяют отношением абсолютной погрешности к значению измеряемой величины: Относительная погрешность характеризует точность измерения: чем она меньше, тем точность измерения выше.

Как оценивается приборная погрешность?

Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм. Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора.

Как определить абсолютную погрешность измерительного прибора?

Абсолютная погрешность косвенных измерений определяется по формуле ΔA=A пр ε (ε выражается десятичной дробью).

Как найти абсолютную погрешность пример?

Абсолютная погрешность — Абсолютной погрешностью числа называют разницу между этим числом и его точным значением. Рассмотрим пример : в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26. Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

  1. Существует формула абсолютной погрешности.
  2. Обозначим точное число буквой А, а буквой а – приближение к точному числу.
  3. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях.
  4. Тогда формула будет выглядеть следующим образом: Δа=А-а.
  5. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой.

Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения. Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см.

Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Для чего нужна погрешность измерений?

Каждое физическое измерение в исследованиях и промышленности сопровождается определенной погрешностью. Даже незначительные колебания в условиях окружающей среды могут влиять на измерение и вызывать отклонения, которые делают результат измерения ненадежным.

  1. Для получения правильных результатов измерений необходимо учитывать связанную с результатами погрешность.
  2. Погрешность измерений указывает на недостающую информацию о настоящем значении измеряемой величины.
  3. Она определяется параметром, выраженным в процентах и относящимся к результату измерения, который обозначает отклонение значений, которое обоснованно можно присвоить измеряемой величине на основе имеющейся информации.

Другими словами, это диапазон, в пределах которого с определенной вероятностью находится истинное значение измеряемой величины.

Для чего нужна погрешность измерения?

Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения. Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного.

  • Это отклонение принято называть ошибкой измерения.
  • В ряде источников, например, в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99 термин ошибка измерения не рекомендуется применять как менее удачный).
  • Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов,

На практике вместо истинного значения используют действительное значение величины х д, то есть значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него,

  1. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений.
  2. Это полученное значение не является точным, а лишь наиболее вероятным.
  3. Поэтому в измерениях необходимо указывать, какова их точность,
  4. Для этого вместе с полученным результатом указывается погрешность измерений.

Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. с некоторой оговорённой вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка). В 2004 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов.

Чему равна абсолютная погрешность?

При измерении каких-либо величин важным понятием является понятие о погрешности. Это связано с тем, что абсолютно точно измерить какую либо величину невозможно. Поэтому вводят понятие погрешности. Есть очень много видов погрешности, связанных с человеческим фактором или процессом измерения.

Как найти погрешность в математике?

Абсолютная погрешность — Абсолютной погрешностью числа называют разницу между этим числом и его точным значением. Рассмотрим пример : в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26. Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

  1. Существует формула абсолютной погрешности.
  2. Обозначим точное число буквой А, а буквой а – приближение к точному числу.
  3. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях.
  4. Тогда формула будет выглядеть следующим образом: Δа=А-а.
  5. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой.

Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения. Записывают абсолютную погрешность числа, используя знак ±. Например, длина рулона обоев составляет 30 м ± 3 см.

Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Как найти абсолютную погрешность в физике?

Абсолютную погрешность прямых измерений определяют суммой абсолютной инструментальной погрешности и абсолютной погрешности отсчёта Δx = Δ и x + Δ о x при условии, что случайная погрешность и погрешность вычисления или отсутствуют, или незначительны и ими можно пренебречь.

Как найти относительную погрешность математика?

Чтобы узнать, на сколько приближенное значение отличается от точного, надо из большего числа вычесть меньшее. Иначе говоря, надо найти модуль разности точного и приближенного значений. Этот модуль разности называют абсолютной погрешностью. Абсолютной погрешностью, или, короче, погрешностью приближенного числа, называется разность между этим числом и его точным значе нием (из большего числа вычитается меньшее).

Пример 1. На предприятии 1284 рабочих и служащих. При округлении этого числа до 1300 абсолютная погрешность составляет 1300 – 1284 = 16. При округлении до 1280 абсолютная погрешность составляет 1284 – 1280 = 4. Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому числу.

Пример 2. В школе 197 учащихся. Округляем это число до 200. Абсолютная погрешность составляет 200 – 197 = 3. Относительная погрешность равна (frac ) или, округленно, (frac ) = 1,5 %. В большинстве случаев невозможно узнать точное значение приближенного числа, а значит, и точную величину погрешности.

Чему равна относительная погрешность?

Относительная погрешность – это отношение абсолютной погрешности к самому числу. Относительную погрешность принято выражать в процентах, то есть, умножать полученное отношение на 100 %.

  • Как определяется остаточный коэффициент ошибки sdu
  • Как определяется абсолютная ошибка прямых измерений
  • Как определить тип ошибки
  • Как определить существенная или несущественная ошибка
  • Как определить стилистическую ошибку