Какие типовые программные ошибки наиболее распространены тестирование

Дефекты программного обеспечения можно обнаружить на каждом этапе разработки и тестирования продукта. Чтобы гарантировать исправление наиболее серьезных дефектов программного обеспечения, тестировщикам важно иметь хорошее представление о различных типах дефектов, которые могут возникнуть.

20 ВИДОВ ПРОГРАММНЫХ ДЕФЕКТОВ, КОТОРЫЕ ДОЛЖЕН ЗНАТЬ КАЖДЫЙ ТЕСТЕР

В этой статье мы обсудим самые распространенные типы ПО дефекты и способы их выявления.

Что такое дефект?

Дефект программного обеспечения — это ошибка, изъян, сбой или неисправность в компьютерной программе, из-за которой она выдает неправильный или неожиданный результат или ведет себя непреднамеренным образом. Программная ошибка возникает, когда фактические результаты не совпадают с ожидаемыми. Разработчики и программисты иногда допускают ошибки, которые создают ошибки, называемые дефектами. Большинство ошибок возникает из-за ошибок, которые допускают разработчики или программисты.

Обязательно прочтите: Разница между дефектом, ошибкой, ошибкой и сбоем

Типы программных ошибок при тестировании программного обеспечения

Существует множество различных типов дефектов программного обеспечения, и тестировщикам важно знать наиболее распространенные из них, чтобы они могут эффективно тестировать их.

Ошибки программного обеспечения подразделяются на три типа:

  1. Дефекты программного обеспечения по своей природе
  2. Дефекты программного обеспечения по их приоритету
  3. Дефекты программного обеспечения по их серьезности

Обычно мы можем видеть приоритет и серьезность классификаторов в большинстве инструментов отслеживания ошибок. Если мы настроим классификатор в соответствии с характером ошибки, а также приоритетом и серьезностью, это поможет легко управлять распределением обязанностей по исправлению ошибок соответствующим командам.

#1. Дефекты программного обеспечения по своей природе

Ошибки в программном обеспечении имеют широкий спектр природы, каждая из которых имеет свой собственный набор симптомов. Несмотря на то, что таких багов много, сталкиваться с ними можно не часто. Вот наиболее распространенные ошибки программного обеспечения, классифицированные по характеру, с которыми вы, скорее всего, столкнетесь при тестировании программного обеспечения.

#1. Функциональные ошибки

Как следует из названия, функциональные ошибки — это те, которые вызывают сбои в работе программного обеспечения. Хорошим примером этого может служить кнопка, при нажатии на которую должно открываться новое окно, но вместо этого ничего не происходит.

Функциональные ошибки можно исправить, выполнив функциональное тестирование.

#2. Ошибки на уровне модуля

Ошибки на уровне модуля — это дефекты, связанные с функциональностью отдельного программного модуля. Программный модуль — это наименьшая тестируемая часть приложения. Примеры программных модулей включают классы, методы и процедуры. Ошибки на уровне подразделения могут существенно повлиять на общее качество программного обеспечения.

Ошибки на уровне модуля можно исправить, выполнив модульное тестирование.

#3. Ошибки уровня интеграции

Ошибки уровня интеграции — это дефекты, возникающие при объединении двух или более программных модулей. Эти дефекты может быть трудно найти и исправить, потому что они часто требуют координации между несколькими командами. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки интеграции можно исправить, выполнив интеграционное тестирование.

#4. Дефекты юзабилити

Ошибки юзабилити — это дефекты, влияющие на работу пользователя с программным обеспечением и затрудняющие его использование. Дефект юзабилити — это дефект пользовательского опыта программного обеспечения, который затрудняет его использование. Ошибки юзабилити — это такие ошибки, как если веб-сайт сложен для доступа или обойти, или процесс регистрации сложен для прохождения.

Во время тестирования удобства использования тестировщики программного обеспечения проверяют приложения на соответствие требованиям пользователей и Руководству по доступности веб-контента (WCAG) для выявления таких проблем. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки, связанные с удобством использования, можно исправить, выполнив тестирование удобства использования.

#5. Дефекты производительности

Ошибки производительности — это дефекты, влияющие на производительность программного обеспечения. Это может включать в себя такие вещи, как скорость программного обеспечения, объем используемой памяти или количество потребляемых ресурсов. Ошибки уровня производительности сложно отследить и исправить, поскольку они могут быть вызваны рядом различных факторов.

Ошибки юзабилити можно исправить, выполнив тестирование производительности.

#6. Дефекты безопасности

Ошибки безопасности — это тип дефекта программного обеспечения, который может иметь серьезные последствия, если его не устранить. Эти дефекты могут позволить злоумышленникам получить доступ к конфиденциальным данным или системам или даже позволить им получить контроль над уязвимым программным обеспечением. Таким образом, очень важно, чтобы ошибкам уровня безопасности уделялось первоочередное внимание и устранялись как можно скорее.

Ошибки безопасности можно исправить, выполнив тестирование безопасности.

#7. Дефекты совместимости

Дефекты совместимости — это те ошибки, которые возникают, когда приложение несовместимо с оборудованием, на котором оно работает, или с другим программным обеспечением, с которым оно должно взаимодействовать. Несовместимость программного и аппаратного обеспечения может привести к сбоям, потере данных и другому непредсказуемому поведению. Тестировщики должны знать о проблемах совместимости и проводить соответствующие тесты. Программное приложение, имеющее проблемы с совместимостью, не работает последовательно на различных видах оборудования, операционных системах, веб-браузерах и устройствах при подключении к определенным программам или работе в определенных сетевых условиях.

Ошибки совместимости можно исправить, выполнение тестирования совместимости.

#8. Синтаксические ошибки

Синтаксические ошибки являются самым основным типом дефекта. Они возникают, когда код нарушает правила языка программирования. Например, использование неправильной пунктуации или забывание закрыть скобку может привести к синтаксической ошибке. Синтаксические ошибки обычно мешают запуску кода, поэтому их относительно легко обнаружить и исправить.

#9. Логические ошибки

Логические ошибки — это дефекты, из-за которых программа выдает неправильные результаты. Эти ошибки может быть трудно найти и исправить, потому что они часто не приводят к каким-либо видимым ошибкам. Логические ошибки могут возникать в любом типе программного обеспечения, но они особенно распространены в приложениях, требующих сложных вычислений или принятия решений.

Общие симптомы логических ошибок включают:

  • Неверные результаты или выходные данные
  • Неожиданное поведение
  • Сбой или зависание программного обеспечения

Чтобы найти и исправить логические ошибки, тестировщикам необходимо иметь четкое представление о коде программы и о том, как она должна работать. Часто лучший способ найти такие ошибки — использовать инструменты отладки или пошаговое выполнение, чтобы отслеживать выполнение программы и видеть, где что-то идет не так.

#2. Дефекты программного обеспечения по степени серьезности

Уровень серьезности присваивается дефекту по его влиянию. В результате серьезность проблемы отражает степень ее влияния на функциональность или работу программного продукта. Дефекты серьезности классифицируются как критические, серьезные, средние и незначительные в зависимости от степени серьезности.

#1. Критические дефекты

Критический дефект — это программная ошибка, имеющая серьезные или катастрофические последствия для работы приложения. Критические дефекты могут привести к сбою, зависанию или некорректной работе приложения. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение критическим дефектам, поскольку их необходимо исправить как можно скорее.

#2. Серьезные дефекты

Серьезный дефект — это программная ошибка, существенно влияющая на работу приложения. Серьезные дефекты могут привести к замедлению работы приложения или другому неожиданному поведению. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение серьезным дефектам, поскольку их необходимо исправить как можно скорее.

#3. Незначительные дефекты

Незначительный дефект — это программная ошибка, которая оказывает небольшое или незначительное влияние на работу приложения. Незначительные дефекты могут привести к тому, что приложение будет работать немного медленнее или демонстрировать другое неожиданное поведение. Разработчики и тестировщики часто не придают незначительным дефектам приоритет, потому что их можно исправить позже.

#4. Тривиальные дефекты

Тривиальный дефект – это программная ошибка, не влияющая на работу приложения. Тривиальные дефекты могут привести к тому, что приложение отобразит сообщение об ошибке или проявит другое неожиданное поведение. Разработчики и тестировщики часто присваивают тривиальным дефектам самый низкий приоритет, потому что они могут быть исправлены позже.

#3. Дефекты программного обеспечения по приоритету

#1. Дефекты с низким приоритетом

Дефекты с низким приоритетом, как правило, не оказывают серьезного влияния на работу программного обеспечения и могут быть отложены для исправления в следующей версии или выпуске. В эту категорию попадают косметические ошибки, такие как орфографические ошибки, неправильное выравнивание и т. д.

#2. Дефекты со средним приоритетом

Дефекты со средним приоритетом — это ошибки, которые могут быть исправлены после предстоящего выпуска или в следующем выпуске. Приложение, возвращающее ожидаемый результат, которое, однако, неправильно форматируется в конкретном браузере, является примером дефекта со средним приоритетом.

#3. Дефекты с высоким приоритетом

Как следует из названия, дефекты с высоким приоритетом — это те, которые сильно влияют на функционирование программного обеспечения. В большинстве случаев эти дефекты необходимо исправлять немедленно, так как они могут привести к серьезным нарушениям нормального рабочего процесса. Дефекты с высоким приоритетом обычно классифицируются как непреодолимые, так как они могут помешать пользователю продолжить выполнение поставленной задачи.

Некоторые распространенные примеры дефектов с высоким приоритетом включают:

  • Дефекты, из-за которых приложение не работает. сбой
  • Дефекты, препятствующие выполнению задачи пользователем
  • Дефекты, приводящие к потере или повреждению данных
  • Дефекты, раскрывающие конфиденциальную информацию неавторизованным пользователям
  • Дефекты, делающие возможным несанкционированный доступ к системе
  • Дефекты, приводящие к потере функциональности
  • Дефекты, приводящие к неправильным результатам или неточным данным
  • Дефекты, вызывающие проблемы с производительностью, такие как чрезмерное использование памяти или медленное время отклика

#4. Срочные дефекты

Срочные дефекты — это дефекты, которые необходимо устранить в течение 24 часов после сообщения о них. В эту категорию попадают дефекты со статусом критической серьезности. Однако дефекты с низким уровнем серьезности также могут быть классифицированы как высокоприоритетные. Например, опечатка в названии компании на домашней странице приложения не оказывает технического влияния на программное обеспечение, но оказывает существенное влияние на бизнес, поэтому считается срочной.

#4. Дополнительные дефекты

#1. Отсутствующие дефекты

Отсутствующие дефекты возникают из-за требований, которые не были включены в продукт. Они также считаются несоответствиями спецификации проекта и обычно негативно сказываются на пользовательском опыте или качестве программного обеспечения.

#2. Неправильные дефекты

Неправильные дефекты — это те дефекты, которые удовлетворяют требованиям, но не должным образом. Это означает, что хотя функциональность достигается в соответствии с требованиями, но не соответствует ожиданиям пользователя.

#3. Дефекты регрессии

Дефект регрессии возникает, когда изменение кода вызывает непреднамеренное воздействие на независимую часть программного обеспечения.

Часто задаваемые вопросы — Типы программных ошибок< /h2>

Почему так важна правильная классификация дефектов?

Правильная классификация дефектов важна, поскольку она помогает эффективно использовать ресурсы и управлять ими, правильно приоритизировать дефекты и поддерживать качество программного продукта.

Команды тестирования программного обеспечения в различных организациях используют различные инструменты отслеживания дефектов, такие как Jira, для отслеживания дефектов и управления ими. Несмотря на то, что в этих инструментах есть несколько вариантов классификации дефектов по умолчанию, они не всегда могут наилучшим образом соответствовать конкретным потребностям организации.

Следовательно, важно сначала определить и понять типы дефектов программного обеспечения, которые наиболее важны для организации, а затем соответствующим образом настроить инструмент управления дефектами.

Правильная классификация дефектов также гарантирует, что команда разработчиков сможет сосредоточиться на критических дефектах и ​​исправить их до того, как они повлияют на конечных пользователей.

Кроме того, это также помогает определить потенциальные области улучшения в процессе разработки программного обеспечения, что может помочь предотвратить появление подобных дефектов в будущих выпусках.

Таким образом, отслеживание и устранение дефектов программного обеспечения может показаться утомительной и трудоемкой задачей. , правильное выполнение может существенно повлиять на качество конечного продукта.

Как найти лежащие в основе ошибки программного обеспечения?

Определение основной причины программной ошибки может быть сложной задачей даже для опытных разработчиков. Чтобы найти лежащие в основе программные ошибки, тестировщики должны применять систематический подход. В этот процесс входят различные этапы:

1) Репликация. Первым этапом является воспроизведение ошибки. Это включает в себя попытку воспроизвести тот же набор шагов, в котором возникла ошибка. Это поможет проверить, является ли ошибка реальной или нет.
2) Изоляция. После того, как ошибка воспроизведена, следующим шагом будет попытка ее изоляции. Это включает в себя выяснение того, что именно вызывает ошибку. Для этого тестировщики должны задать себе несколько вопросов, например:
– Какие входные данные вызывают ошибку?
– При каких различных условиях возникает ошибка?
– Каковы различные способы проявления ошибки?
3) Анализ: после Изолируя ошибку, следующим шагом будет ее анализ. Это включает в себя понимание того, почему возникает ошибка. Тестировщики должны задать себе несколько вопросов, таких как:
– Какова основная причина ошибки?
– Какими способами можно исправить ошибку?
– Какое исправление было бы наиболее эффективным? эффективно?
4) Отчет. После анализа ошибки следующим шагом является сообщение о ней. Это включает в себя создание отчета об ошибке, который включает всю соответствующую информацию об ошибке. Отчет должен быть четким и кратким, чтобы разработчики могли его легко понять.
5) Проверка. После сообщения об ошибке следующим шагом является проверка того, была ли она исправлена. Это включает в себя повторное тестирование программного обеспечения, чтобы убедиться, что ошибка все еще существует. Если ошибка исправлена, то тестер может подтвердить это и закрыть отчет об ошибке. Если ошибка все еще существует, тестировщик может повторно открыть отчет об ошибке.

Заключение

В индустрии программного обеспечения дефекты — неизбежная реальность. Однако благодаря тщательному анализу и пониманию их характера, серьезности и приоритета дефектами можно управлять, чтобы свести к минимуму их влияние на конечный продукт.

Задавая правильные вопросы и применяя правильные методы, тестировщики могут помочь обеспечить чтобы дефекты обнаруживались и исправлялись как можно раньше в процессе разработки.
TAG: qa

Software testing is the process of testing and verifying that a software product or application is doing what it is supposed to do. The benefits of testing include preventing distractions, reducing development costs, and improving performance. There are many different types of software testing, each with specific goals and strategies. Some of them are below:

  1. Acceptance Testing: Ensuring that the whole system works as intended.
  2. Integration Testing: Ensuring that software components or functions work together.
  3. Unit Testing: To ensure that each software unit is operating as expected. The unit is a testable component of the application.
  4. Functional Testing: Evaluating activities by imitating business conditions, based on operational requirements. Checking the black box is a common way to confirm tasks.
  5. Performance Testing: A test of how the software works under various operating loads. Load testing, for example, is used to assess performance under real-life load conditions.
  6. Re-Testing: To test whether new features are broken or degraded. Hygiene checks can be used to verify menus, functions, and commands at the highest level when there is no time for a full reversal test.

What is a Bug?

A malfunction in the software/system is an error that may cause components or the system to fail to perform its required functions. In other words, if an error is encountered during the test it can cause malfunction. For example, incorrect data description, statements, input data, design, etc.

Reasons Why Bugs Occur?

1. Lack of Communication: This is a key factor contributing to the development of software bug fixes. Thus, a lack of clarity in communication can lead to misunderstandings of what the software should or should not do. In many cases, the customer may not fully understand how the product should ultimately work. This is especially true if the software is designed for a completely new product. Such situations often lead to many misinterpretations from both sides.

2. Repeated Definitions Required: Constantly changing software requirements creates confusion and pressure in both software development and testing teams. Usually, adding a new feature or deleting an existing feature can be linked to other modules or software components. Observing such problems causes software interruptions.

3. Policy Framework Does Not Exist: Also, debugging a software component/software component may appear in a different or similar component. Lack of foresight can cause serious problems and increase the number of distractions. This is one of the biggest problems because of what interruptions occur as engineers are often under pressure related to timelines; constantly changing needs, increasing the number of distractions, etc. Addition, Design and redesign, UI integration, module integration, database management all add to the complexity of the software and the system as a whole.

4. Performance Errors: Significant problems with software design and architecture can cause problems for systems. Improved software tends to make mistakes as programmers can also make mistakes. As a test tester, data/announcement reference errors, control flow errors, parameter errors, input/output errors, etc.

5. Lots of Recycling: Resetting resources, redoing or discarding a finished work, changes in hardware/software requirements may also affect the software. Assigning a new developer to a project in the middle of nowhere can cause software interruptions. This can happen if proper coding standards are not followed, incorrect coding, inaccurate data transfer, etc. Discarding part of existing code may leave traces on other parts of the software; Ignoring or deleting that code may cause software interruptions. In addition, critical bugs can occur especially with large projects, as it becomes difficult to pinpoint the location of the problem.

Life Cycle of a Bug in Software Testing

Below are the steps in the lifecycle of the bug in software testing:

  1. Open: The editor begins the process of analyzing bugs here, where possible, and works to fix them. If the editor thinks the error is not enough, the error for some reason can be transferred to the next four regions, Reject or No, i.e. Repeat.
  2. New: This is the first stage of the distortion of distractions in the life cycle of the disorder. In the later stages of the bug’s life cycle, confirmation and testing are performed on these bugs when a new feature is discovered.
  3. Shared: The engineering team has been provided with a new bug fixer recently built at this level. This will be sent to the designer by the project leader or team manager.
  4. Pending Review: When fixing an error, the designer will give the inspector an error check and the feature status will remain pending ‘review’ until the tester is working on the error check.
  5. Fixed: If the Developer completes the debugging task by making the necessary changes, the feature status can be called “Fixed.”
  6. Confirmed: If the tester had no problem with the feature after the designer was given the feature on the test device and thought that if it was properly adjusted, the feature status was given “verified”.
  7. Open again / Reopen: If there is still an error, the editor will then be instructed to check and the feature status will be re-opened.
  8. Closed: If the error is not present, the tester changes the status of the feature to ‘Off’.
  9. Check Again: The inspector then begins the process of reviewing the error to check that the error has been corrected by the engineer as required.
  10. Repeat: If the engineer is considering a factor similar to another factor. If the developer considers a feature similar to another feature, or if the definition of malfunction coincides with any other malfunction, the status of the feature is changed by the developer to ‘duplicate’.

Few more stages to add here are:

  1. Rejected: If a feature can be considered a real factor the developer will mean “Rejected” developer.
  2. Duplicate: If the engineer finds a feature similar to any other feature or if the concept of the malfunction is similar to any other feature the status of the feature is changed to ‘Duplicate’ by the developer.
  3. Postponed: If the developer feels that the feature is not very important and can be corrected in the next release, however, in that case, he can change the status of the feature such as ‘Postponed’.
  4. Not a Bug: If the feature does not affect the performance of the application, the corrupt state is changed to “Not a Bug”.

Bug lifecycle

Fig 1.1 Diagram of Bug Life Cycle

Bug Report

  1. Defect/ Bug Name: A short headline describing the defect. It should be specific and accurate.
  2. Defect/Bug ID: Unique identification number for the defect.
  3. Defect Description: Detailed description of the bug including the information of the module in which it was detected. It contains a detailed summary including the severity, priority, expected results vs actual output, etc.
  4. Severity: This describes the impact of the defect on the application under test.
  5. Priority: This is related to how urgent it is to fix the defect. Priority can be High/ Medium/ Low based on the impact urgency at which the defect should be fixed.
  6. Reported By: Name/ ID of the tester who reported the bug.
  7. Reported On: Date when the defect is raised.
  8. Steps: These include detailed steps along with the screenshots with which the developer can reproduce the same defect.
  9. Status: New/ Open/ Active
  10. Fixed By: Name/ ID of the developer who fixed the defect.
  11. Data Closed: Date when the defect is closed.

Factors to be Considered while Reporting a Bug:

  1. The whole team should clearly understand the different conditions of the trauma before starting research on the life cycle of the disability.
  2. To prevent future confusion, a flawed life cycle should be well documented.
  3. Make sure everyone who has any work related to the Default Life Cycle understands his or her best results work very clearly.
  4. Everyone who changes the status quo should be aware of the situation which should provide sufficient information about the nature of the feature and the reason for it so that everyone working on that feature can easily see the reason for that feature.
  5. A feature tracking tool should be carefully handled in the course of a defective life cycle work to ensure consistency between errors.

Bug Tracking Tools

Below are some of the bug tracking tools–

1. KATALON TESTOPS: Katalon TestOps is a free, powerful orchestration platform that helps with your process of tracking bugs. TestOps provides testing teams and DevOps teams with a clear, linked picture of their testing, resources, and locations to launch the right test, in the right place, at the right time.

Features:

  • Applies to Cloud, Desktop: Window and Linux program.
  • Compatible with almost all test frames available: Jasmine, JUnit, Pytest, Mocha, etc .; CI / CD tools: Jenkins, CircleCI, and management platforms: Jira, Slack.
  • Track real-time data for error correction, and for accuracy.
  • Live and complete performance test reports to determine the cause of any problems.
  • Plan well with Smart Scheduling to prepare for the test cycle while maintaining high quality.
  • Rate release readiness to improve release confidence.
  • Improve collaboration and enhance transparency with comments, dashboards, KPI tracking, possible details – all in one place.

2. KUALITEE: Collection of specific results and analysis with solid failure analysis in any framework. The Kualitee is for development and QA teams look beyond the allocation and tracking of bugs. It allows you to build high-quality software using tiny bugs, fast QA cycles, and better control of your build. The comprehensive suite combines all the functions of a good error management tool and has a test case and flow of test work built into it seamlessly. You would not need to combine and match different tools; instead, you can manage all your tests in one place.

Features:

  • Create, assign, and track errors.
  • Tracing between disability, needs, and testing.
  • Easy-to-use errors, test cases, and test cycles.
  • Custom permissions, fields, and reporting.
  • Interactive and informative dashboard.
  • Integration of external companies and REST API.
  • An intuitive and easy-to-use interface.

3. QA Coverage: QACoverage is the place to go for successfully managing all your testing processes so that you can produce high-quality and trouble-free products. It has a disability control module that will allow you to manage errors from the first diagnostic phase until closed. The error tracking process can be customized and tailored to the needs of each client. In addition to negative tracking, QACoverage has the ability to track risks, issues, enhancements, suggestions, and recommendations. It also has full capabilities for complex test management solutions that include needs management, test case design, test case issuance, and reporting.

Features:

  1. Control the overall workflow of a variety of Tickets including risk, issues, tasks, and development management.
  2. Produce complete metrics to identify the causes and levels of difficulty.
  3. Support a variety of information that supports the feature with email attachments.
  4. Create and set up a workflow for enhanced test visibility with automatic notifications.
  5. Photo reports based on difficulty, importance, type of malfunction, disability category, expected correction date, and much more.

4. BUG HERD: BugHerd is an easy way to track bugs, collect and manage webpage responses. Your team and customers search for feedback on web pages, so they can find the exact problem. BugHerd also scans the information you need to replicate and resolve bugs quickly, such as browser, CSS selector data, operating system, and screenshot. Distractions and feedback, as well as technical information, are submitted to the Kanban Style Task Board, where distractions can be assigned and managed until they are eliminated. BugHerd can also integrate with your existing project management tools, helping to keep your team on the same page with bug fixes.

Software testing is the process of testing and verifying that a software product or application is doing what it is supposed to do. The benefits of testing include preventing distractions, reducing development costs, and improving performance. There are many different types of software testing, each with specific goals and strategies. Some of them are below:

  1. Acceptance Testing: Ensuring that the whole system works as intended.
  2. Integration Testing: Ensuring that software components or functions work together.
  3. Unit Testing: To ensure that each software unit is operating as expected. The unit is a testable component of the application.
  4. Functional Testing: Evaluating activities by imitating business conditions, based on operational requirements. Checking the black box is a common way to confirm tasks.
  5. Performance Testing: A test of how the software works under various operating loads. Load testing, for example, is used to assess performance under real-life load conditions.
  6. Re-Testing: To test whether new features are broken or degraded. Hygiene checks can be used to verify menus, functions, and commands at the highest level when there is no time for a full reversal test.

What is a Bug?

A malfunction in the software/system is an error that may cause components or the system to fail to perform its required functions. In other words, if an error is encountered during the test it can cause malfunction. For example, incorrect data description, statements, input data, design, etc.

Reasons Why Bugs Occur?

1. Lack of Communication: This is a key factor contributing to the development of software bug fixes. Thus, a lack of clarity in communication can lead to misunderstandings of what the software should or should not do. In many cases, the customer may not fully understand how the product should ultimately work. This is especially true if the software is designed for a completely new product. Such situations often lead to many misinterpretations from both sides.

2. Repeated Definitions Required: Constantly changing software requirements creates confusion and pressure in both software development and testing teams. Usually, adding a new feature or deleting an existing feature can be linked to other modules or software components. Observing such problems causes software interruptions.

3. Policy Framework Does Not Exist: Also, debugging a software component/software component may appear in a different or similar component. Lack of foresight can cause serious problems and increase the number of distractions. This is one of the biggest problems because of what interruptions occur as engineers are often under pressure related to timelines; constantly changing needs, increasing the number of distractions, etc. Addition, Design and redesign, UI integration, module integration, database management all add to the complexity of the software and the system as a whole.

4. Performance Errors: Significant problems with software design and architecture can cause problems for systems. Improved software tends to make mistakes as programmers can also make mistakes. As a test tester, data/announcement reference errors, control flow errors, parameter errors, input/output errors, etc.

5. Lots of Recycling: Resetting resources, redoing or discarding a finished work, changes in hardware/software requirements may also affect the software. Assigning a new developer to a project in the middle of nowhere can cause software interruptions. This can happen if proper coding standards are not followed, incorrect coding, inaccurate data transfer, etc. Discarding part of existing code may leave traces on other parts of the software; Ignoring or deleting that code may cause software interruptions. In addition, critical bugs can occur especially with large projects, as it becomes difficult to pinpoint the location of the problem.

Life Cycle of a Bug in Software Testing

Below are the steps in the lifecycle of the bug in software testing:

  1. Open: The editor begins the process of analyzing bugs here, where possible, and works to fix them. If the editor thinks the error is not enough, the error for some reason can be transferred to the next four regions, Reject or No, i.e. Repeat.
  2. New: This is the first stage of the distortion of distractions in the life cycle of the disorder. In the later stages of the bug’s life cycle, confirmation and testing are performed on these bugs when a new feature is discovered.
  3. Shared: The engineering team has been provided with a new bug fixer recently built at this level. This will be sent to the designer by the project leader or team manager.
  4. Pending Review: When fixing an error, the designer will give the inspector an error check and the feature status will remain pending ‘review’ until the tester is working on the error check.
  5. Fixed: If the Developer completes the debugging task by making the necessary changes, the feature status can be called “Fixed.”
  6. Confirmed: If the tester had no problem with the feature after the designer was given the feature on the test device and thought that if it was properly adjusted, the feature status was given “verified”.
  7. Open again / Reopen: If there is still an error, the editor will then be instructed to check and the feature status will be re-opened.
  8. Closed: If the error is not present, the tester changes the status of the feature to ‘Off’.
  9. Check Again: The inspector then begins the process of reviewing the error to check that the error has been corrected by the engineer as required.
  10. Repeat: If the engineer is considering a factor similar to another factor. If the developer considers a feature similar to another feature, or if the definition of malfunction coincides with any other malfunction, the status of the feature is changed by the developer to ‘duplicate’.

Few more stages to add here are:

  1. Rejected: If a feature can be considered a real factor the developer will mean “Rejected” developer.
  2. Duplicate: If the engineer finds a feature similar to any other feature or if the concept of the malfunction is similar to any other feature the status of the feature is changed to ‘Duplicate’ by the developer.
  3. Postponed: If the developer feels that the feature is not very important and can be corrected in the next release, however, in that case, he can change the status of the feature such as ‘Postponed’.
  4. Not a Bug: If the feature does not affect the performance of the application, the corrupt state is changed to “Not a Bug”.

Bug lifecycle

Fig 1.1 Diagram of Bug Life Cycle

Bug Report

  1. Defect/ Bug Name: A short headline describing the defect. It should be specific and accurate.
  2. Defect/Bug ID: Unique identification number for the defect.
  3. Defect Description: Detailed description of the bug including the information of the module in which it was detected. It contains a detailed summary including the severity, priority, expected results vs actual output, etc.
  4. Severity: This describes the impact of the defect on the application under test.
  5. Priority: This is related to how urgent it is to fix the defect. Priority can be High/ Medium/ Low based on the impact urgency at which the defect should be fixed.
  6. Reported By: Name/ ID of the tester who reported the bug.
  7. Reported On: Date when the defect is raised.
  8. Steps: These include detailed steps along with the screenshots with which the developer can reproduce the same defect.
  9. Status: New/ Open/ Active
  10. Fixed By: Name/ ID of the developer who fixed the defect.
  11. Data Closed: Date when the defect is closed.

Factors to be Considered while Reporting a Bug:

  1. The whole team should clearly understand the different conditions of the trauma before starting research on the life cycle of the disability.
  2. To prevent future confusion, a flawed life cycle should be well documented.
  3. Make sure everyone who has any work related to the Default Life Cycle understands his or her best results work very clearly.
  4. Everyone who changes the status quo should be aware of the situation which should provide sufficient information about the nature of the feature and the reason for it so that everyone working on that feature can easily see the reason for that feature.
  5. A feature tracking tool should be carefully handled in the course of a defective life cycle work to ensure consistency between errors.

Bug Tracking Tools

Below are some of the bug tracking tools–

1. KATALON TESTOPS: Katalon TestOps is a free, powerful orchestration platform that helps with your process of tracking bugs. TestOps provides testing teams and DevOps teams with a clear, linked picture of their testing, resources, and locations to launch the right test, in the right place, at the right time.

Features:

  • Applies to Cloud, Desktop: Window and Linux program.
  • Compatible with almost all test frames available: Jasmine, JUnit, Pytest, Mocha, etc .; CI / CD tools: Jenkins, CircleCI, and management platforms: Jira, Slack.
  • Track real-time data for error correction, and for accuracy.
  • Live and complete performance test reports to determine the cause of any problems.
  • Plan well with Smart Scheduling to prepare for the test cycle while maintaining high quality.
  • Rate release readiness to improve release confidence.
  • Improve collaboration and enhance transparency with comments, dashboards, KPI tracking, possible details – all in one place.

2. KUALITEE: Collection of specific results and analysis with solid failure analysis in any framework. The Kualitee is for development and QA teams look beyond the allocation and tracking of bugs. It allows you to build high-quality software using tiny bugs, fast QA cycles, and better control of your build. The comprehensive suite combines all the functions of a good error management tool and has a test case and flow of test work built into it seamlessly. You would not need to combine and match different tools; instead, you can manage all your tests in one place.

Features:

  • Create, assign, and track errors.
  • Tracing between disability, needs, and testing.
  • Easy-to-use errors, test cases, and test cycles.
  • Custom permissions, fields, and reporting.
  • Interactive and informative dashboard.
  • Integration of external companies and REST API.
  • An intuitive and easy-to-use interface.

3. QA Coverage: QACoverage is the place to go for successfully managing all your testing processes so that you can produce high-quality and trouble-free products. It has a disability control module that will allow you to manage errors from the first diagnostic phase until closed. The error tracking process can be customized and tailored to the needs of each client. In addition to negative tracking, QACoverage has the ability to track risks, issues, enhancements, suggestions, and recommendations. It also has full capabilities for complex test management solutions that include needs management, test case design, test case issuance, and reporting.

Features:

  1. Control the overall workflow of a variety of Tickets including risk, issues, tasks, and development management.
  2. Produce complete metrics to identify the causes and levels of difficulty.
  3. Support a variety of information that supports the feature with email attachments.
  4. Create and set up a workflow for enhanced test visibility with automatic notifications.
  5. Photo reports based on difficulty, importance, type of malfunction, disability category, expected correction date, and much more.

4. BUG HERD: BugHerd is an easy way to track bugs, collect and manage webpage responses. Your team and customers search for feedback on web pages, so they can find the exact problem. BugHerd also scans the information you need to replicate and resolve bugs quickly, such as browser, CSS selector data, operating system, and screenshot. Distractions and feedback, as well as technical information, are submitted to the Kanban Style Task Board, where distractions can be assigned and managed until they are eliminated. BugHerd can also integrate with your existing project management tools, helping to keep your team on the same page with bug fixes.

Автоматизация тестирования

Автоматизация тестирования абсолютно неотъемлема и необходима в современной разработке программного обеспечения. Ее преимущества известны всем, что делает автоматизацию тестирования желанным для применения. Факт, отказ от ручного тестирования, сокращение затрат и автоматизация в спринте (in-sprint automation) подталкивают компании внедрять автоматизацию как можно скорее в собственные проекты. У каждой компании свой подход к достижению цели. Однако, они все совершают одинаковые ошибки в процессе внедрения автоматизированного тестирования.

Работая над фреймворками для автоматизированного тестирования, я пытался определить общие проблемы, с которыми сталкиваются организации, и ошибки, которые они совершают. Эти ошибки создают эффект снежного кома и влияют на возврат инвестиций (ROI) от автоматизации.

Улучшай внедрение автоматизации, избегая распространенных ошибок

Жизненный цикл автоматизированного тестирования

Для планирования, реализации и поддержки автоматизированных тестов, я разделяю автоматизацию на 4 этапа. Это помогает мне отслеживать и контролировать автоматизацию на проектах. Этапы имеют следующие названия:

  1. Планирование автоматизации.

  2. Проектирование/разработка автоматизации.

  3. Внедрение и выполнение автоматизации.

  4. Поддержка и улучшение автоматизации.

Жизненный цикл автоматизированного тестирования

Жизненный цикл автоматизированного тестирования

Я хотел бы представить распространенные ошибки в каждом из 4 этапов. Давайте посмотрим на них.

1. Ошибки на этапе планирования автоматизации

  1. Не рассчитана окупаемость инвестиций (ROI).

  2. Нет плана автоматизации/цели автоматизации.

  3. Не определен и не приоритизирован объем тестирования перед стартом автоматизации.

  4. Отсутствие задокументированных требований к среде автоматизации/нереалистичные ожидания.

  5. Выбран неправильный уровень тестирования для автоматизации.

  6. Выбор инструментов, так как они open-source или бесплатные.

  7. Выбор неправильных инструментов автоматизации.

  8. Выбор инструментов на основе навыков команды.

1.1 Не рассчитана окупаемость инвестиций (ROI)

Первая и наиболее частая ошибка, это незнание команд окупятся ли усилия, которые вложат в автоматизацию, или нет. Первоначальная цель автоматизации, это уменьшение расходов при увеличении уровня качества. Рассчитываем мы ROI при внедрении автоматизации в проект? Если ответ нет, какой смысл в автоматизации? Это фундаментальная проверка, которую должный делать команды перед началом автоматизации.

Решение проблемы — с помощью формулы ниже рассчитать ROI в автоматизацию.

RIO = «Затраты ручного тестирования, которые уменьшает автоматизация» — («Затраты на автоматизацию» — «Затраты на поддержку автоматизации»)

1.2 Нет плана автоматизации/цели автоматизации

Они говорят «Плохой план лучше чем его отсутствие». Однако, 80% проектов используют автоматизированное тестирование без плана. Неудивительно почему так много проектов автоматизации не оправдывают ожидания. Это происходит потому что нет шагов автоматизации, неявно установлена цель или нет сигнала о готовности начать, по сути, отсутствие плана автоматизированного тестирования. Часто проекты автоматизации выполняются одновременно с ручным тестированием, но как раз определить различия этих подходов? Насколько отличается их реализация? Разве не требуется различное мышление для выполнения ручного и автоматизированного тестирования? Получается, что нужен план для каждого подхода с разными критериями успеха?

Решение проблемы — создать эксклюзивный, специализированный и исчерпывающий план автоматизированного тестирования.

1.3 Не определен и не приоритизирован объем тестирования перед стартом автоматизации

Обычно говорят «нельзя улучшить то, что нельзя измерить», что верно при запуске проектов автоматизации. Как мы можем начать ее без определения объема тестирования? Без этого мы не можем измерить и сравнить результаты автоматизации. Без определения объема мы будем неуверенными на каждом этапе тестирования.

Решение проблемы — определить объем тестирования

1.4. Отсутствие задокументированных требований к среде автоматизации/нереалистичные ожидания

Был ли у вас когда-либо задокументированные требования к среде автоматизации? Мы убедились, что сложность разработки среды для автоматизации практические такая же, как и для разработки бизнес-приложений. Мы не начинаем разработку таких приложений без документации, но при этом начинаем автоматизацию без нее. Это приводит к неправильным/неизвестным ожиданиям от среды автоматизации и часто они нереалистичны.

Решение проблемы:

  • Среда автоматизации — не начинать разрабатывать среду автоматизации без задокументированных требований к ней и определения цели автоматизации.

  • Инструменты автоматизации — составить требования и ожидания от инструментов автоматизации и используйте инструменты, которые соответствуют требованиям.

1.5. Выбран неправильный уровень тестирования для автоматизации

Часто тестировщики фокусируются на автоматизации UI тестов для обеспечения end-to-end тестирования вместо интеграционных, API и БД тестов. Автоматизация нижних уровней тестирования обеспечит лучшее и детальное тестовое прикрытие с большей скоростью и меньшими затратами. UI тесты медленные и их дорого поддерживать. При этом мы не можем исключать тестирования UI, особенно для продуктов ориентированных на пользователя и продуктов Saas, но можем свести его к минимуму.

Решение проблемы — Понимать и следовать пирамиде тестирования, это фундамент успеха и эффективности автоматизации. Уделять больше внимания тестированию на низком, чем на более верхнем уровне пирамиды тестирования.

Пирамида тестирования

Пирамида тестирования

1.6. Выбор инструментов, так как они open-source или бесплатные

Основная причина неудач автоматизации — выбор инструментов или библиотек потому, что они бесплатные или имеют открытый исходный код. Хотя эти они отлично работают, если разработаны должным образом, однако в этом заключается проблема.

Разработка среды автоматизации — это, по сути, тот же процесс, что и разработка других бизнес приложений командой разработчиков. Это словно полноценный проект разработки, который должен иметь свои строгие стандарты жизненного цикла программного обеспечения (SDLC). Разработчики среды автоматизации должны иметь тот же уровень компетенций, что и разработчики приложений. Потому, что возникает необходимость в процессах проверки кода, архитектуры, утверждении дизайна среды, тестировании, соблюдении стандартов кодирования, управлении кода и т.д. Если мы ожидаем качественный результат от автоматизации, разработанная среда автоматизации должна соответствовать всем практикам (best practices) SDLC.

Все это имеет цену и она может быть высокой. Риск провала проекта автоматизации высок, поскольку у организации всегда есть другие бизнес обязательства. Следовательно, бесплатное ПО и ПО с открытым исходным кодом не может быть «бесплатным» и существует риск неудачи, если оно не будет правильно разработано.

Решение проблемы:

  • Использовать best practices для разработки среды автоматизации, которым следуют разработчики бизнес приложений.

  • Рассмотреть платные или менее дорогостоящие инструменты на рынке, которые обеспечат экономию средств.

1.7 Выбор неправильных инструментов автоматизации

Популярный инструмент может не подходить для нашей задачи. Следовательно, команда тестирования должна сосредотачиваться на сценарии использования при выборе инструмента для автоматизации.

Решение проблемы:

  • Определить для чего нужен инструмент автоматизации. Определить уровень в пирамиде тестирования. Подход к выбору инструмента может быть легче, если исходить из уровня тестирования.

  • Применяя POC, использовать пробный период выбранного инструмента.

1.8 Выбор инструментов на основе навыков команды

Еще одна проблема заключается в выборе инструмента основываясь на навыках команды. Мир движется к no-code решениям и автоматизированное тестирования тоже. No-code инструменты автоматизации обеспечат более быструю работы без дополнительных навыков.

Решение проблемы — цель автоматизации не в улучшении навыков программирования команды, а скорее в сохранении средств ручного тестирования. Если первичная цель организации не в автоматизации тестирования, то лучше выбрать готовый инструмент, а не разрабатывать свой. Особенно для маленьких организаций лучше внедрить готовый инструмент, так как разработка и поддержка собственной среды автоматизации будет иметь низкую ROI, чем готовый платный инструмент.

2. Ошибки на этапе проектирования/разработки автоматизации

  1. Нет дизайна разрабатываемой системы.

  2. Нет обработки исключений.

  3. Неправильный механизм логирования.

  4. Нет стратегии управления кодом/ветками и управления выпуском.

2.1 Нет дизайна разрабатываемой системы

Классические проблемы с которыми сталкиваются при разработке приложений возникают и при разработке среды автоматизации. На самом деле, возможно, в большем масштабе чем разработчики приложений, потому что имеют более низкий уровень знаний. Отсутствие документации, в которой содержится информация о дизайне автоматизации приведет к некачественной разработке, потому что —

  • Неструктурированные модули/монолитное приложение.

  • Неправильные паттерны проектирования.

  • Неприменение best practices.

  • Нет процесса ревью кода.

  • Низкая возможность переиспользование кода.

  • Отсутствие модульности на функциональном уровне.

  • Нет этапа тестирования самой среды автоматизации.

2.2. Нет обработки исключений

Часто ошибки, которые возникают в среде автоматизации необходимо исследовать и исправить в самом коде, потому что нет обработки исключений в самом коде в первую очередь. Следовательно, в отчете после выполнения нет удобных (изящных) исключений.

Решение проблемы — все типы исключений должны быть обработаны на каждом функциональном уровне. Код должен пройти процесс ревью для исключения отсутствия обработки исключений.

2.3 Неправильный механизм логирования

Среда автоматизации должна иметь эффективную систему логирования ошибок, с помощью которой осуществляется отслеживание и исправление дефектов без просмотра кода среды.

Решение проблемы — эффективный механизм логирования с указанием успешных шагов, ошибок и предупреждений должен интегрироваться в среду автоматизации.

2.4 Нет стратегии управления кодом/ветками и управления выпуском

Среда автоматизации содержит большое количество кода. Часто возникают конфликты в коде при работе над ним нескольких разработчиков. Это приводит к неструктурированному кода и неизбежным конфликтам в нем. При написании тестовых скриптов в среде автоматизации возникают сложности, которые заставить выпускать новые версии среды.

Решение проблемы — внедрение стратегии ветвления для среды автоматизации для совместной работы и увеличения функционала. Затем применять систему управления выпуском и использовать раздельно ветку разработки и выпуска.

3. Ошибки на этапе внедрения и выполнения автоматизации

  1. Отсутствие определения объема тестирования.

  2. Нет стратегии управления данными.

  3. Автоматизация больших потоков.

  4. Не проводится проверка тестов.

3.1 Отсутствие определения объема тестирования

Отсутствие определения объема тестирования приведет к отсутствию планирования на этапе внедрения автоматизации. Мы не сможем измерить результат работы по написанию тестовых скриптов.

Решение проблемы — перед запуском тестовых скриптов должен быть определен объем для покрытия автоматизацией. Объем регрессивного тестирования должен быть определен с целью последующей автоматизации.

3.2. Нет стратегии управления данными

Среда автоматизации должна иметь правильную стратегию управления данными. Хранение данных в файлах  excels, csv и т.п. устарело и замедляет выполнение тестов. Также, переменные с тестовыми данными не должны храниться в коде скриптов.

Решение проблемы — среда автоматизации должна иметь возможность хранить и предоставлять тестовые данные в удобном формате JSON, XML и т.п.

3.3 Автоматизация длинной бизнес логики

Автоматизация длинной бизнес логики может увеличить шанс неправильной отображения работоспособности тестируемого приложения, особенно в случае UI тестирования. Может быть случай, когда весь тестовый скрипт ломается из-за небольшого сбоя.

Решение проблемы — разделение длинных скриптов на маленькие поможет повысить стабильность их выполнения. Скорость прохождения набора тестов увеличится, а ошибки будут корректно указываться в точках сбоя.

3.4. Не проводится проверка тестов

Часто автоматизированные скрипты не подвергаются проверки. Ручной тестировщик проверяет сценарии во время их выполнения, но автоматизаторы часто пропускают проверку фактического результата и ожидаемого в разработанных скриптах. Следовательно, ухудшают тестовое покрытие.

Решение проблемы — получить подтверждение правильности скриптов от заинтересованного лица. Заинтересованным лицом может быть бизнес аналитик или QA.

4. Ошибки на этапе поддержки и улучшения автоматизации

  1. Нет обновления кода скриптов при изменении функционала тестируемого приложения.

  2. Редкие запуски тестов.

  3. Зависимость от члена команды.

4.1 Нет обновления кода скриптов при изменении функционала тестируемого приложения

Изменения или улучшения функционала приводит к волновому эффекту. Не обновляя код тестовых скриптов приводит к их устареванию.

Решение проблемы — Среда автоматизации должна иметь возможность легко обновлять тестовые скрипты. Какая польза от среды автоматизации, если при каждом изменении функциональности приложения нужно вносить изменения в ее код для улучшения тестовых скриптов? Это худший дизайн среды автоматизации.

4.2 Редкие запуски тестов

Команда автоматизаторов должна иметь техническую возможность запускать тесты часто. Во время гибких методологий разработки, это становится наиболее важным. Редкий запуск тестов создает две проблемы:

  • Не реализация потенциала автоматизации и недостаточное тестирование приложения.

  • Мы не сможем понять насколько устарел наш тестовый скрипт относительно изменений функционала тестируемого приложения. Частый запуск тестов обеспечивает своевременную проверку актуальности тестов. Это также гарантирует, что мы постепенно обновляем скрипты, избегая их устаревания и неуправляемых изменений.

Решение проблемы — Запуск автоматизации на отдельно выделенной машине обеспечивает работу скриптов в любое время и без потери времени автоматизатора. Еще лучшим подходом является интеграция запуска тестов в CI/CD.

  • Решение проблемы

    Запуск автоматизации на отдельно выделенной машине обеспечивает работу скриптов в любое время и без потери времени автоматизатора. Еще лучшим подходом является интеграция запуска тестов в CI/CD.

4.3 Зависимость от члена команды

Другой ошибкой является зависимость от конкретного сотрудника для запуска тестов или зависимость от его учетных данных. Это ненужная зависимость, которая уменьшает гибкость автоматизации.

Решение проблемы — Создать и использовать общие ID, предоставлять доступ к приложению по общему ID и запускать тесты используя общей ID.

Вот объединенный список частых ошибок, которые возникают во время планирования и внедрения в проекты у команд автоматизации.

Планирование автоматизации

  1. Не рассчитана окупаемость инвестиций (ROI).

  2. Нет плана автоматизации/цели автоматизации.

  3. Не определен и не приоритизирован объем тестирования перед стартом автоматизации.

  4. Отсутствие задокументированных требований к среде автоматизации/нереалистичные ожидания.

  5. Выбран неправильный уровень тестирования для автоматизации.

  6. Выбор инструментов, так как они open-source или бесплатные.

  7. Выбор неправильных инструментов автоматизации.

  8. Выбор инструментов на основе навыков команды.

Проектирование/разработка автоматизации

  1. Нет дизайна разрабатываемой системы.

  2. Нет обработки исключений.

  3. Неправильный механизм логирования.

  4. Нет стратегии управления кодом/ветками и управления выпуском.

Внедрение и выполнение автоматизации

  1. Отсутствие определения объема тестирования.

  2. Нет стратегии управления данными.

  3. Автоматизация больших потоков.

  4. Не проводится проверка тестов.

Поддержка и улучшение автоматизации

  1. Нет обновления кода скриптов при изменении функционала тестируемого приложения.

  2. Редкие запуски тестов.

  3. Зависимость от члена команды.

Выводы

Мы пришли к выводу, что разработка среды автоматизации также сложна, как и разработка бизнес-приложений. Становится понятно почему совершается много ошибок, если процессу разработки среды не уделять должного значения, не соблюдая best practices или не используются правильные ресурсы и навыки. Также, open-source инструменты не дают ожидаемого эффекта. Если организация не заинтересована в развитии средств автоматизации тестирования, это знак к использованию готовых решений, которые обеспечат более высокую ROI за счет уменьшений расходов на разработку и поддержку собственной среды. Особенно в случае маленьких компаний будет сложно обосновать ROI, поскольку они имеют меньшую экономическую гибкость.

Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.

Согласны с мнение автора?


25%
Частично (напишу в комментариях)
4

Проголосовали 16 пользователей.

Воздержались 4 пользователя.

    1. Классификация ошибок

Задача любого
тестировщика заключается в нахождении
наибольшего количества ошибок, поэтому
он должен хорошо знать наиболее часто
допускаемые ошибки и уметь находить их
за минимально короткий период времени.
Остальные ошибки, которые не являются
типовыми, обнаруживаются только тщательно
созданными наборами тестов. Однако из
этого не следует, что для типовых ошибок
не нужно составлять тесты.

Для классификации
ошибок мы должны определить термин
«ошибка».

Ошибка – это
расхождение между вычисленным, наблюдаемым
и истинным, заданным или теоретически
правильным значением.

Итак, по времени
появления ошибки можно разделить на
три вида:

– структурные ошибки
набора;

– ошибки компиляции;

– ошибки периода
выполнения.

Структурные
ошибки
возникают непосредственно при наборе
программы. К данному типу ошибок относятся
такие как: несоответствие числа
открывающих скобок числу закрывающих,
отсутствие парного оператора (например,
try
без catch).

Ошибки
компиляции
возникают из-за ошибок в тексте кода.
Они включают ошибки в синтаксисе,
неверное использование конструкции
языка (оператор else
в операторе for
и т. п.), использование несуществующих
объектов или свойств, методов у объектов,
употребление синтаксических знаков и
т. п.

Ошибки
периода выполнения
возникают, когда программа выполняется
и компилятор (или операционная система,
виртуальная машина) обнаруживает, что
оператор делает попытку выполнить
недопустимое или невозможное действие.
Например, деление на ноль.

Если проанализировать
все типы ошибок согласно первой
классификации, то можно прийти к
заключению, что при тестировании
приходится иметь дело с ошибками периода
выполнения, так как первые два типа
ошибок определяются на этапе кодирования.

В теоретической
информатике программные ошибки
классифицируют по степени нарушения
логики на:

– синтаксические;

–семантические;

– прагматические.

Синтаксические
ошибки
заключаются в нарушении правописания
или пунктуации в записи выражений,
операторов и т. п., т. е. в нарушении
грамматических правил языка. В качестве
примеров синтаксических ошибок можно
назвать:

– пропуск необходимого
знака пунктуации;

– несогласованность
скобок;

– пропуск нужных
скобок;

– неверное написание
зарезервированных слов;

– отсутствие описания
массива.

Все ошибки данного
типа обнаруживаются компилятором.

Семантические
ошибки
заключаются в нарушении порядка
операторов, параметров функций и
употреблении выражений. Например,
параметры у функции add
(на языке Java)
в следующем выражении указаны в
неправильном порядке:

GregorianCalendar.add(1,
Calendar.MONTH).

Параметр, указывающий
изменяемое поле (в примере – месяц),
должен идти первым. Семантические ошибки
также обнаруживаются компилятором.
Надо отметить, что некоторые исследователи
относят семантические ошибки к следующей
группе ошибок.

Прагматические
ошибки (или
логические) заключаются в неправильной
логике алгоритма, нарушении смысла
вычислений и т. п. Они являются самыми
сложными и крайне трудно обнаруживаются.
Компилятор может выявить только следствие
прагматической ошибки.

Таким образом, после
рассмотрения двух классификаций ошибок
можно прийти к выводу, что на этапе
тестирования ищутся прагматические
ошибки периода выполнения, так как
остальные выявляются в процессе
программирования.

На этом можно было
бы закончить рассмотрение классификаций,
но с течением времени накапливался опыт
обнаружения ошибок и сами ошибки,
некоторые из которых образуют характерные
группы, которые могут тоже служить
характерной классификацией.

Ошибка
адресации
– ошибка, состоящая в неправильной
адресации данных (например, выход за
пределы участка памяти).

Ошибка
ввода-вывода
– ошибка, возникающая в процессе обмена
данными между устройствами памяти,
внешними устройствами.

Ошибка
вычисления
– ошибка, возникающая при выполнении
арифметических операций (например,
разнотипные данные, деление на нуль и
др.).

Ошибка
интерфейса
– программная ошибка, вызванная
несовпадением характеристик фактических
и формальных параметров (как правило,
семантическая ошибка периода компиляции,
но может быть и логической ошибкой
периода выполнения).

Ошибка
обращения к данным
– ошибка, возникающая при обращении
программы к данным (например, выход
индекса за пределы массива, не
инициализированные значения переменных
и др.).

Ошибка
описания данных
– ошибка, допущенная в ходе описания
данных.[2]

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Дефекты программного обеспечения можно обнаружить на каждом этапе разработки и тестирования продукта. Чтобы гарантировать исправление наиболее серьезных дефектов программного обеспечения, тестировщикам важно иметь хорошее представление о различных типах дефектов, которые могут возникнуть.

20 ВИДОВ ПРОГРАММНЫХ ДЕФЕКТОВ, КОТОРЫЕ ДОЛЖЕН ЗНАТЬ КАЖДЫЙ ТЕСТЕР

В этой статье мы обсудим самые распространенные типы ПО дефекты и способы их выявления.

Что такое дефект?

Дефект программного обеспечения — это ошибка, изъян, сбой или неисправность в компьютерной программе, из-за которой она выдает неправильный или неожиданный результат или ведет себя непреднамеренным образом. Программная ошибка возникает, когда фактические результаты не совпадают с ожидаемыми. Разработчики и программисты иногда допускают ошибки, которые создают ошибки, называемые дефектами. Большинство ошибок возникает из-за ошибок, которые допускают разработчики или программисты.

Обязательно прочтите: Разница между дефектом, ошибкой, ошибкой и сбоем

Типы программных ошибок при тестировании программного обеспечения

Существует множество различных типов дефектов программного обеспечения, и тестировщикам важно знать наиболее распространенные из них, чтобы они могут эффективно тестировать их.

Ошибки программного обеспечения подразделяются на три типа:

  1. Дефекты программного обеспечения по своей природе
  2. Дефекты программного обеспечения по их приоритету
  3. Дефекты программного обеспечения по их серьезности

Обычно мы можем видеть приоритет и серьезность классификаторов в большинстве инструментов отслеживания ошибок. Если мы настроим классификатор в соответствии с характером ошибки, а также приоритетом и серьезностью, это поможет легко управлять распределением обязанностей по исправлению ошибок соответствующим командам.

#1. Дефекты программного обеспечения по своей природе

Ошибки в программном обеспечении имеют широкий спектр природы, каждая из которых имеет свой собственный набор симптомов. Несмотря на то, что таких багов много, сталкиваться с ними можно не часто. Вот наиболее распространенные ошибки программного обеспечения, классифицированные по характеру, с которыми вы, скорее всего, столкнетесь при тестировании программного обеспечения.

#1. Функциональные ошибки

Как следует из названия, функциональные ошибки — это те, которые вызывают сбои в работе программного обеспечения. Хорошим примером этого может служить кнопка, при нажатии на которую должно открываться новое окно, но вместо этого ничего не происходит.

Функциональные ошибки можно исправить, выполнив функциональное тестирование.

#2. Ошибки на уровне модуля

Ошибки на уровне модуля — это дефекты, связанные с функциональностью отдельного программного модуля. Программный модуль — это наименьшая тестируемая часть приложения. Примеры программных модулей включают классы, методы и процедуры. Ошибки на уровне подразделения могут существенно повлиять на общее качество программного обеспечения.

Ошибки на уровне модуля можно исправить, выполнив модульное тестирование.

#3. Ошибки уровня интеграции

Ошибки уровня интеграции — это дефекты, возникающие при объединении двух или более программных модулей. Эти дефекты может быть трудно найти и исправить, потому что они часто требуют координации между несколькими командами. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки интеграции можно исправить, выполнив интеграционное тестирование.

#4. Дефекты юзабилити

Ошибки юзабилити — это дефекты, влияющие на работу пользователя с программным обеспечением и затрудняющие его использование. Дефект юзабилити — это дефект пользовательского опыта программного обеспечения, который затрудняет его использование. Ошибки юзабилити — это такие ошибки, как если веб-сайт сложен для доступа или обойти, или процесс регистрации сложен для прохождения.

Во время тестирования удобства использования тестировщики программного обеспечения проверяют приложения на соответствие требованиям пользователей и Руководству по доступности веб-контента (WCAG) для выявления таких проблем. Однако они могут оказать существенное влияние на общее качество программного обеспечения.

Ошибки, связанные с удобством использования, можно исправить, выполнив тестирование удобства использования.

#5. Дефекты производительности

Ошибки производительности — это дефекты, влияющие на производительность программного обеспечения. Это может включать в себя такие вещи, как скорость программного обеспечения, объем используемой памяти или количество потребляемых ресурсов. Ошибки уровня производительности сложно отследить и исправить, поскольку они могут быть вызваны рядом различных факторов.

Ошибки юзабилити можно исправить, выполнив тестирование производительности.

#6. Дефекты безопасности

Ошибки безопасности — это тип дефекта программного обеспечения, который может иметь серьезные последствия, если его не устранить. Эти дефекты могут позволить злоумышленникам получить доступ к конфиденциальным данным или системам или даже позволить им получить контроль над уязвимым программным обеспечением. Таким образом, очень важно, чтобы ошибкам уровня безопасности уделялось первоочередное внимание и устранялись как можно скорее.

Ошибки безопасности можно исправить, выполнив тестирование безопасности.

#7. Дефекты совместимости

Дефекты совместимости — это те ошибки, которые возникают, когда приложение несовместимо с оборудованием, на котором оно работает, или с другим программным обеспечением, с которым оно должно взаимодействовать. Несовместимость программного и аппаратного обеспечения может привести к сбоям, потере данных и другому непредсказуемому поведению. Тестировщики должны знать о проблемах совместимости и проводить соответствующие тесты. Программное приложение, имеющее проблемы с совместимостью, не работает последовательно на различных видах оборудования, операционных системах, веб-браузерах и устройствах при подключении к определенным программам или работе в определенных сетевых условиях.

Ошибки совместимости можно исправить, выполнение тестирования совместимости.

#8. Синтаксические ошибки

Синтаксические ошибки являются самым основным типом дефекта. Они возникают, когда код нарушает правила языка программирования. Например, использование неправильной пунктуации или забывание закрыть скобку может привести к синтаксической ошибке. Синтаксические ошибки обычно мешают запуску кода, поэтому их относительно легко обнаружить и исправить.

#9. Логические ошибки

Логические ошибки — это дефекты, из-за которых программа выдает неправильные результаты. Эти ошибки может быть трудно найти и исправить, потому что они часто не приводят к каким-либо видимым ошибкам. Логические ошибки могут возникать в любом типе программного обеспечения, но они особенно распространены в приложениях, требующих сложных вычислений или принятия решений.

Общие симптомы логических ошибок включают:

  • Неверные результаты или выходные данные
  • Неожиданное поведение
  • Сбой или зависание программного обеспечения

Чтобы найти и исправить логические ошибки, тестировщикам необходимо иметь четкое представление о коде программы и о том, как она должна работать. Часто лучший способ найти такие ошибки — использовать инструменты отладки или пошаговое выполнение, чтобы отслеживать выполнение программы и видеть, где что-то идет не так.

#2. Дефекты программного обеспечения по степени серьезности

Уровень серьезности присваивается дефекту по его влиянию. В результате серьезность проблемы отражает степень ее влияния на функциональность или работу программного продукта. Дефекты серьезности классифицируются как критические, серьезные, средние и незначительные в зависимости от степени серьезности.

#1. Критические дефекты

Критический дефект — это программная ошибка, имеющая серьезные или катастрофические последствия для работы приложения. Критические дефекты могут привести к сбою, зависанию или некорректной работе приложения. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение критическим дефектам, поскольку их необходимо исправить как можно скорее.

#2. Серьезные дефекты

Серьезный дефект — это программная ошибка, существенно влияющая на работу приложения. Серьезные дефекты могут привести к замедлению работы приложения или другому неожиданному поведению. Они также могут привести к потере данных или уязвимостям в системе безопасности. Разработчики и тестировщики часто придают первостепенное значение серьезным дефектам, поскольку их необходимо исправить как можно скорее.

#3. Незначительные дефекты

Незначительный дефект — это программная ошибка, которая оказывает небольшое или незначительное влияние на работу приложения. Незначительные дефекты могут привести к тому, что приложение будет работать немного медленнее или демонстрировать другое неожиданное поведение. Разработчики и тестировщики часто не придают незначительным дефектам приоритет, потому что их можно исправить позже.

#4. Тривиальные дефекты

Тривиальный дефект – это программная ошибка, не влияющая на работу приложения. Тривиальные дефекты могут привести к тому, что приложение отобразит сообщение об ошибке или проявит другое неожиданное поведение. Разработчики и тестировщики часто присваивают тривиальным дефектам самый низкий приоритет, потому что они могут быть исправлены позже.

#3. Дефекты программного обеспечения по приоритету

#1. Дефекты с низким приоритетом

Дефекты с низким приоритетом, как правило, не оказывают серьезного влияния на работу программного обеспечения и могут быть отложены для исправления в следующей версии или выпуске. В эту категорию попадают косметические ошибки, такие как орфографические ошибки, неправильное выравнивание и т. д.

#2. Дефекты со средним приоритетом

Дефекты со средним приоритетом — это ошибки, которые могут быть исправлены после предстоящего выпуска или в следующем выпуске. Приложение, возвращающее ожидаемый результат, которое, однако, неправильно форматируется в конкретном браузере, является примером дефекта со средним приоритетом.

#3. Дефекты с высоким приоритетом

Как следует из названия, дефекты с высоким приоритетом — это те, которые сильно влияют на функционирование программного обеспечения. В большинстве случаев эти дефекты необходимо исправлять немедленно, так как они могут привести к серьезным нарушениям нормального рабочего процесса. Дефекты с высоким приоритетом обычно классифицируются как непреодолимые, так как они могут помешать пользователю продолжить выполнение поставленной задачи.

Некоторые распространенные примеры дефектов с высоким приоритетом включают:

  • Дефекты, из-за которых приложение не работает. сбой
  • Дефекты, препятствующие выполнению задачи пользователем
  • Дефекты, приводящие к потере или повреждению данных
  • Дефекты, раскрывающие конфиденциальную информацию неавторизованным пользователям
  • Дефекты, делающие возможным несанкционированный доступ к системе
  • Дефекты, приводящие к потере функциональности
  • Дефекты, приводящие к неправильным результатам или неточным данным
  • Дефекты, вызывающие проблемы с производительностью, такие как чрезмерное использование памяти или медленное время отклика

#4. Срочные дефекты

Срочные дефекты — это дефекты, которые необходимо устранить в течение 24 часов после сообщения о них. В эту категорию попадают дефекты со статусом критической серьезности. Однако дефекты с низким уровнем серьезности также могут быть классифицированы как высокоприоритетные. Например, опечатка в названии компании на домашней странице приложения не оказывает технического влияния на программное обеспечение, но оказывает существенное влияние на бизнес, поэтому считается срочной.

#4. Дополнительные дефекты

#1. Отсутствующие дефекты

Отсутствующие дефекты возникают из-за требований, которые не были включены в продукт. Они также считаются несоответствиями спецификации проекта и обычно негативно сказываются на пользовательском опыте или качестве программного обеспечения.

#2. Неправильные дефекты

Неправильные дефекты — это те дефекты, которые удовлетворяют требованиям, но не должным образом. Это означает, что хотя функциональность достигается в соответствии с требованиями, но не соответствует ожиданиям пользователя.

#3. Дефекты регрессии

Дефект регрессии возникает, когда изменение кода вызывает непреднамеренное воздействие на независимую часть программного обеспечения.

Часто задаваемые вопросы — Типы программных ошибок< /h2>

Почему так важна правильная классификация дефектов?

Правильная классификация дефектов важна, поскольку она помогает эффективно использовать ресурсы и управлять ими, правильно приоритизировать дефекты и поддерживать качество программного продукта.

Команды тестирования программного обеспечения в различных организациях используют различные инструменты отслеживания дефектов, такие как Jira, для отслеживания дефектов и управления ими. Несмотря на то, что в этих инструментах есть несколько вариантов классификации дефектов по умолчанию, они не всегда могут наилучшим образом соответствовать конкретным потребностям организации.

Следовательно, важно сначала определить и понять типы дефектов программного обеспечения, которые наиболее важны для организации, а затем соответствующим образом настроить инструмент управления дефектами.

Правильная классификация дефектов также гарантирует, что команда разработчиков сможет сосредоточиться на критических дефектах и ​​исправить их до того, как они повлияют на конечных пользователей.

Кроме того, это также помогает определить потенциальные области улучшения в процессе разработки программного обеспечения, что может помочь предотвратить появление подобных дефектов в будущих выпусках.

Таким образом, отслеживание и устранение дефектов программного обеспечения может показаться утомительной и трудоемкой задачей. , правильное выполнение может существенно повлиять на качество конечного продукта.

Как найти лежащие в основе ошибки программного обеспечения?

Определение основной причины программной ошибки может быть сложной задачей даже для опытных разработчиков. Чтобы найти лежащие в основе программные ошибки, тестировщики должны применять систематический подход. В этот процесс входят различные этапы:

1) Репликация. Первым этапом является воспроизведение ошибки. Это включает в себя попытку воспроизвести тот же набор шагов, в котором возникла ошибка. Это поможет проверить, является ли ошибка реальной или нет.
2) Изоляция. После того, как ошибка воспроизведена, следующим шагом будет попытка ее изоляции. Это включает в себя выяснение того, что именно вызывает ошибку. Для этого тестировщики должны задать себе несколько вопросов, например:
– Какие входные данные вызывают ошибку?
– При каких различных условиях возникает ошибка?
– Каковы различные способы проявления ошибки?
3) Анализ: после Изолируя ошибку, следующим шагом будет ее анализ. Это включает в себя понимание того, почему возникает ошибка. Тестировщики должны задать себе несколько вопросов, таких как:
– Какова основная причина ошибки?
– Какими способами можно исправить ошибку?
– Какое исправление было бы наиболее эффективным? эффективно?
4) Отчет. После анализа ошибки следующим шагом является сообщение о ней. Это включает в себя создание отчета об ошибке, который включает всю соответствующую информацию об ошибке. Отчет должен быть четким и кратким, чтобы разработчики могли его легко понять.
5) Проверка. После сообщения об ошибке следующим шагом является проверка того, была ли она исправлена. Это включает в себя повторное тестирование программного обеспечения, чтобы убедиться, что ошибка все еще существует. Если ошибка исправлена, то тестер может подтвердить это и закрыть отчет об ошибке. Если ошибка все еще существует, тестировщик может повторно открыть отчет об ошибке.

Заключение

В индустрии программного обеспечения дефекты — неизбежная реальность. Однако благодаря тщательному анализу и пониманию их характера, серьезности и приоритета дефектами можно управлять, чтобы свести к минимуму их влияние на конечный продукт.

Задавая правильные вопросы и применяя правильные методы, тестировщики могут помочь обеспечить чтобы дефекты обнаруживались и исправлялись как можно раньше в процессе разработки.
TAG: qa

Уровень сложности
Средний

Время на прочтение
5 мин

Количество просмотров 6.9K

1. Недостаточное покрытие

Иногда из-за нашей лени, невнимательности или чего-либо ещё получается неполный охват тестами всех важных сценариев, крайних случаев и потенциальных ошибок. Представим, что у нас есть очень простой класс Calculator, который умеет делать сложение:

public int Add(int a, int b)
{
    return a + b;
}

Порой, когда на работе заставляют чтобы код сопровождался юнит-тестами, может получиться класс, содержащий всего один тест:

[Test]
public void Add_WhenCalled_ReturnsSum()
{
    // Arrange
    var a = 40;
    var b = 2;
    var calculator = new Calculator();

    // Act
    var result = calculator.Add(a,b);

    // Assert
    Assert.AreEqual(42, result);
}

Тестирует ли код выше метод Add? Да, тестирует и даже гарантирует правильность сложения чисел 40 и 2. Однако, ни отрицательные числа, ни большие числа, сумма которых выходит за пределы размера int, ни сложение с нулем здесь не проверены.

Как сделать правильно?

Ещё до написания кода желательно вместе с аналитиком/тестировщиком/другими разработчиками обсудить все возможные корнер-кейсы (крайние случаи) и то, как код должен реагировать при встрече с ними.

2. Переизбыток тестов

В противоположность к первому пункту можно увлечься и насоздавать много излишних тестов для тривиального или простого кода, что приведет к увеличению нагрузки на поддержку и замедлению выполнения тестов.

[Test]
public void Add_WithFortyAndTwo_ReturnsFortyTwo()
{
    // ...
}

[Test]
public void Add_WithOneAndOne_ReturnsTwo()
{
    // ...
}

[Test]
public void Add_WithTenAndTen_ReturnsTwenty()
{
    // ...
}

[Test]
public void Add_WithZeroFirst_ReturnsSum()
{
    // ...
}

[Test]
public void Add_WithZeroSecond_ReturnsSum()
{
    // ...
}

Как сделать правильно?

Совет по составлению списка проверок с другими людьми здесь так же актуален. Плюс, порой можно воспользоваться передачей параметров в тестовый метод, что сокращает размер файла с тестами и их чтение. Еще более продвинутый вариант — использовать генераторы данных, например, Bogus. Ну и самый хардкорный вариант — использование pairwise testing.

3. Нетестируемый код

После работы в Лаборатории Касперского, где код обкладывался кучами разных тестов, я наиболее явно ощутил весь смысл слова «тестопригодность», когда встретил код, который мне пришлось несколько дней рефакторить, чтобы добавить для него юнит-тесты. Один из примеров как сделать код нетестопригодным — использовать другие классы напрямую.

public class Calculator
{
    private readonly ILogger _logger;

    public Calculator()
    {
        _logger = new Logger();
    }

    public int Add(int a, int b)
    {
        _logger.Log("Add method called.");
        return a + b;
    }
}

Ну и соответственно, чтобы сделать его тестопригодным, надо сделать инверсию зависимости, а если по-русски, то заменить зависимость от класса на зависимость от интерфейса:

public class Calculator
{
    private readonly ILogger _logger;

    public Calculator(ILogger logger)
    {
        _logger = logger;
    }

    public int Add(int a, int b)
    {
        _logger.Log("Add method called.");
        return a + b;
    }
}

Как сделать правильно?

Не завязываться на конкретные реализации и как можно скорее убирать такие связи, если они есть — станет легче не только писать тесты, но и просто поддерживать код.

4. Игнорирование или пропуск тестов

Если бы сам не столкнулся с подобным в нескольких компаниях, то мне бы и в голову не пришло, что тесты можно (а порой даже нужно) игнорировать.

Как сделать правильно?

Назначить ответственного человека, либо самому следить за тем, чтобы игнорированием тестов не злоупотребляли, а использовали только когда необходимо. Например, когда идет крупномасштабное внедрение изменений — обновление кодстайла, сторонней или своей библиотеки.

5. Тестирование реализации

Довольно стандартная ловушка для новичков в юнит-тестировании — написать сначала нужный код и потом на основе этого кода писать тесты. Причем тесты пишутся так, чтобы покрыть логику этого написанного кода. Проблема такого подхода — то, что не было написано, не будет и протестировано. Например, если при добавлении в класс Calculator метода Divide мы не учтем в коде проверку деления на ноль, то и при написании тестов по уже существующему коду вероятность написать тест деления на ноль исчезающе мала.

Как сделать правильно?

Вспоминаем совет к первым двум пунктам — составлять тест-кейсы ДО написания кода и опираться в них на требуемую бизнес-логику, а не на уже реализованную функциональность. Хотя, сразу оговорюсь, что для написания тестов к уже существующему коду, по которому никаких зафиксированных бизнес-требований нет и никто их не знает/не помнит, подход на основе реализации вполне подходит. Но только для целей регрессионного тестирования.

6. Хрупкие тесты

Предположим, что мы написали класс А, который реализует необходимую нам бизнес-логику. Затем, в процессе рефакторинга, мы вынесли из класса А два вспомогательных класса — В и С. Нужно ли писать тесты на все три класса? Конечно, это зависит от логики, которая была вынесена во вспомогательные классы и того, будет ли она использоваться где-то ещё помимо класса А, однако, в 99% случаев писать тесты на классы В и С не нужно.

Как сделать правильно?

Рискуя набить оскомину, повторюсь, надо тестировать не написанный код, а бизнес-логику, которая реализуется этим кодом.

7. Отсутствие организации тестов

Видел я и такие проекты, гды пытались внедрить юнит-тесты, однако, все они лежали в корне тестового проекта и было тяжело разобраться есть ли уже нужные тебе тесты или нет. И вместо того, чтобы разбираться в этом бардаке и искать нужный класс, люди просто создавали ещё один, куда писали свои тесты. Хаос в таком случае только увеличивался.

Как сделать правильно?

Надо договориться о том, как будут организованы тесты в вашей компании/команде. Один из наиболее простых и распостраненных подходов — полностью копировать структуру основного проекта, добавляя постфикс «Tests». То есть, если был проект CalculationSolution и в нем был путь Calculations/Calculators/, по которому лежал файл Calculator.cs, для которого мы хотим добавить юнит-тесты, то юнит-тесты должны быть в проекте CalculationSolution.Tests по пути Calculations/Calculators/CalculatorTests.cs.

8. Божественные тесты

Как в процессе программирования может появиться god object — класс, который делает все и вся, так и при написании тестов могут получаться тесты, в которых проверяется не что-то одно, а сразу штук 10 разных аспектов. Да, такая «денормализация» тестов порой имеет место быть в end-to-end, UI или интеграционных тестах в целях экономии ресурсов (в т.ч. времени выполнения), однако, юнит-тесты должны проходить очень быстро и нет смысла усложнять себе разбор упавших тестов ради экономии пары миллисекунд.

Как сделать правильно?

Следить за тем, чтобы один тест тестировал только один аспект бизнес-логики.

9. Недостаточная обработка ошибок

Соблазн протестировать happy path и, возможно, парочку самых простых в тестировании ошибок может привести к тому, что непойманные на этапе автоматизированного тестирования ошибки приведут к проблемам в продакшн среде и цена этой ошибки будет намного выше. Отличие этого пункта от первого в том, что, если в первом пункте было наглядно видно маленькое количество тестов, их практически не было, то здесь тесты уже есть и их даже может быть много, однако, они могут быть направлены на количество, а не на качество.

Как сделать правильно?

Опять же, составлять список тестов заранее, плюс, можно добавить в чеклист ревьюера пункт о том, что все тест-кейсы должны быть реализованы.

10. Смешивание юнит-тестов с другими видами тестов

Как я писал выше, юнит-тесты обычно проходят очень быстро, так как не требуют сложной подготовки, подтягивания зависимостей и прочего. Остальные виды тестов уже несколько более продвинутые и более ресурсоемкие. Поэтому смешивание всех тестов в одну кучу является не очень хорошим вариантом.

Как сделать правильно?

Правильным будет разделять мух от котлет. Сделать это можно, например, разнеся тесты по разным проектам или используя идентифицирующие атрибуты. Далее с помощью этих атрибутов можно настроить так, чтобы ни один коммит не попадал ни в одну ветку до тех пор, пока все юнит-тесты, связанные с этим кодом, не пройдут успешно. Также, можно выделить под разные виды тестов разные виртуальные машины и/или стратегии запуска этих тестов.

Статья подготовлена в рамках набора на специализацию C# Developer. Узнать подробнее о специализации.

Software testing is the process of testing and verifying that a software product or application is doing what it is supposed to do. The benefits of testing include preventing distractions, reducing development costs, and improving performance. There are many different types of software testing, each with specific goals and strategies. Some of them are below:

  1. Acceptance Testing: Ensuring that the whole system works as intended.
  2. Integration Testing: Ensuring that software components or functions work together.
  3. Unit Testing: To ensure that each software unit is operating as expected. The unit is a testable component of the application.
  4. Functional Testing: Evaluating activities by imitating business conditions, based on operational requirements. Checking the black box is a common way to confirm tasks.
  5. Performance Testing: A test of how the software works under various operating loads. Load testing, for example, is used to assess performance under real-life load conditions.
  6. Re-Testing: To test whether new features are broken or degraded. Hygiene checks can be used to verify menus, functions, and commands at the highest level when there is no time for a full reversal test.

What is a Bug?

A malfunction in the software/system is an error that may cause components or the system to fail to perform its required functions. In other words, if an error is encountered during the test it can cause malfunction. For example, incorrect data description, statements, input data, design, etc.

Reasons Why Bugs Occur?

1. Lack of Communication: This is a key factor contributing to the development of software bug fixes. Thus, a lack of clarity in communication can lead to misunderstandings of what the software should or should not do. In many cases, the customer may not fully understand how the product should ultimately work. This is especially true if the software is designed for a completely new product. Such situations often lead to many misinterpretations from both sides.

2. Repeated Definitions Required: Constantly changing software requirements creates confusion and pressure in both software development and testing teams. Usually, adding a new feature or deleting an existing feature can be linked to other modules or software components. Observing such problems causes software interruptions.

3. Policy Framework Does Not Exist: Also, debugging a software component/software component may appear in a different or similar component. Lack of foresight can cause serious problems and increase the number of distractions. This is one of the biggest problems because of what interruptions occur as engineers are often under pressure related to timelines; constantly changing needs, increasing the number of distractions, etc. Addition, Design and redesign, UI integration, module integration, database management all add to the complexity of the software and the system as a whole.

4. Performance Errors: Significant problems with software design and architecture can cause problems for systems. Improved software tends to make mistakes as programmers can also make mistakes. As a test tester, data/announcement reference errors, control flow errors, parameter errors, input/output errors, etc.

5. Lots of Recycling: Resetting resources, redoing or discarding a finished work, changes in hardware/software requirements may also affect the software. Assigning a new developer to a project in the middle of nowhere can cause software interruptions. This can happen if proper coding standards are not followed, incorrect coding, inaccurate data transfer, etc. Discarding part of existing code may leave traces on other parts of the software; Ignoring or deleting that code may cause software interruptions. In addition, critical bugs can occur especially with large projects, as it becomes difficult to pinpoint the location of the problem.

Life Cycle of a Bug in Software Testing

Below are the steps in the lifecycle of the bug in software testing:

  1. Open: The editor begins the process of analyzing bugs here, where possible, and works to fix them. If the editor thinks the error is not enough, the error for some reason can be transferred to the next four regions, Reject or No, i.e. Repeat.
  2. New: This is the first stage of the distortion of distractions in the life cycle of the disorder. In the later stages of the bug’s life cycle, confirmation and testing are performed on these bugs when a new feature is discovered.
  3. Shared: The engineering team has been provided with a new bug fixer recently built at this level. This will be sent to the designer by the project leader or team manager.
  4. Pending Review: When fixing an error, the designer will give the inspector an error check and the feature status will remain pending ‘review’ until the tester is working on the error check.
  5. Fixed: If the Developer completes the debugging task by making the necessary changes, the feature status can be called “Fixed.”
  6. Confirmed: If the tester had no problem with the feature after the designer was given the feature on the test device and thought that if it was properly adjusted, the feature status was given “verified”.
  7. Open again / Reopen: If there is still an error, the editor will then be instructed to check and the feature status will be re-opened.
  8. Closed: If the error is not present, the tester changes the status of the feature to ‘Off’.
  9. Check Again: The inspector then begins the process of reviewing the error to check that the error has been corrected by the engineer as required.
  10. Repeat: If the engineer is considering a factor similar to another factor. If the developer considers a feature similar to another feature, or if the definition of malfunction coincides with any other malfunction, the status of the feature is changed by the developer to ‘duplicate’.

Few more stages to add here are:

  1. Rejected: If a feature can be considered a real factor the developer will mean “Rejected” developer.
  2. Duplicate: If the engineer finds a feature similar to any other feature or if the concept of the malfunction is similar to any other feature the status of the feature is changed to ‘Duplicate’ by the developer.
  3. Postponed: If the developer feels that the feature is not very important and can be corrected in the next release, however, in that case, he can change the status of the feature such as ‘Postponed’.
  4. Not a Bug: If the feature does not affect the performance of the application, the corrupt state is changed to “Not a Bug”.

Bug lifecycle

Fig 1.1 Diagram of Bug Life Cycle

Bug Report

  1. Defect/ Bug Name: A short headline describing the defect. It should be specific and accurate.
  2. Defect/Bug ID: Unique identification number for the defect.
  3. Defect Description: Detailed description of the bug including the information of the module in which it was detected. It contains a detailed summary including the severity, priority, expected results vs actual output, etc.
  4. Severity: This describes the impact of the defect on the application under test.
  5. Priority: This is related to how urgent it is to fix the defect. Priority can be High/ Medium/ Low based on the impact urgency at which the defect should be fixed.
  6. Reported By: Name/ ID of the tester who reported the bug.
  7. Reported On: Date when the defect is raised.
  8. Steps: These include detailed steps along with the screenshots with which the developer can reproduce the same defect.
  9. Status: New/ Open/ Active
  10. Fixed By: Name/ ID of the developer who fixed the defect.
  11. Data Closed: Date when the defect is closed.

Factors to be Considered while Reporting a Bug:

  1. The whole team should clearly understand the different conditions of the trauma before starting research on the life cycle of the disability.
  2. To prevent future confusion, a flawed life cycle should be well documented.
  3. Make sure everyone who has any work related to the Default Life Cycle understands his or her best results work very clearly.
  4. Everyone who changes the status quo should be aware of the situation which should provide sufficient information about the nature of the feature and the reason for it so that everyone working on that feature can easily see the reason for that feature.
  5. A feature tracking tool should be carefully handled in the course of a defective life cycle work to ensure consistency between errors.

Bug Tracking Tools

Below are some of the bug tracking tools–

1. KATALON TESTOPS: Katalon TestOps is a free, powerful orchestration platform that helps with your process of tracking bugs. TestOps provides testing teams and DevOps teams with a clear, linked picture of their testing, resources, and locations to launch the right test, in the right place, at the right time.

Features:

  • Applies to Cloud, Desktop: Window and Linux program.
  • Compatible with almost all test frames available: Jasmine, JUnit, Pytest, Mocha, etc .; CI / CD tools: Jenkins, CircleCI, and management platforms: Jira, Slack.
  • Track real-time data for error correction, and for accuracy.
  • Live and complete performance test reports to determine the cause of any problems.
  • Plan well with Smart Scheduling to prepare for the test cycle while maintaining high quality.
  • Rate release readiness to improve release confidence.
  • Improve collaboration and enhance transparency with comments, dashboards, KPI tracking, possible details – all in one place.

2. KUALITEE: Collection of specific results and analysis with solid failure analysis in any framework. The Kualitee is for development and QA teams look beyond the allocation and tracking of bugs. It allows you to build high-quality software using tiny bugs, fast QA cycles, and better control of your build. The comprehensive suite combines all the functions of a good error management tool and has a test case and flow of test work built into it seamlessly. You would not need to combine and match different tools; instead, you can manage all your tests in one place.

Features:

  • Create, assign, and track errors.
  • Tracing between disability, needs, and testing.
  • Easy-to-use errors, test cases, and test cycles.
  • Custom permissions, fields, and reporting.
  • Interactive and informative dashboard.
  • Integration of external companies and REST API.
  • An intuitive and easy-to-use interface.

3. QA Coverage: QACoverage is the place to go for successfully managing all your testing processes so that you can produce high-quality and trouble-free products. It has a disability control module that will allow you to manage errors from the first diagnostic phase until closed. The error tracking process can be customized and tailored to the needs of each client. In addition to negative tracking, QACoverage has the ability to track risks, issues, enhancements, suggestions, and recommendations. It also has full capabilities for complex test management solutions that include needs management, test case design, test case issuance, and reporting.

Features:

  1. Control the overall workflow of a variety of Tickets including risk, issues, tasks, and development management.
  2. Produce complete metrics to identify the causes and levels of difficulty.
  3. Support a variety of information that supports the feature with email attachments.
  4. Create and set up a workflow for enhanced test visibility with automatic notifications.
  5. Photo reports based on difficulty, importance, type of malfunction, disability category, expected correction date, and much more.

4. BUG HERD: BugHerd is an easy way to track bugs, collect and manage webpage responses. Your team and customers search for feedback on web pages, so they can find the exact problem. BugHerd also scans the information you need to replicate and resolve bugs quickly, such as browser, CSS selector data, operating system, and screenshot. Distractions and feedback, as well as technical information, are submitted to the Kanban Style Task Board, where distractions can be assigned and managed until they are eliminated. BugHerd can also integrate with your existing project management tools, helping to keep your team on the same page with bug fixes.

Last Updated :
27 Mar, 2022

Like Article

Save Article

    1. Классификация ошибок

Задача любого
тестировщика заключается в нахождении
наибольшего количества ошибок, поэтому
он должен хорошо знать наиболее часто
допускаемые ошибки и уметь находить их
за минимально короткий период времени.
Остальные ошибки, которые не являются
типовыми, обнаруживаются только тщательно
созданными наборами тестов. Однако из
этого не следует, что для типовых ошибок
не нужно составлять тесты.

Для классификации
ошибок мы должны определить термин
«ошибка».

Ошибка – это
расхождение между вычисленным, наблюдаемым
и истинным, заданным или теоретически
правильным значением.

Итак, по времени
появления ошибки можно разделить на
три вида:

– структурные ошибки
набора;

– ошибки компиляции;

– ошибки периода
выполнения.

Структурные
ошибки
возникают непосредственно при наборе
программы. К данному типу ошибок относятся
такие как: несоответствие числа
открывающих скобок числу закрывающих,
отсутствие парного оператора (например,
try
без catch).

Ошибки
компиляции
возникают из-за ошибок в тексте кода.
Они включают ошибки в синтаксисе,
неверное использование конструкции
языка (оператор else
в операторе for
и т. п.), использование несуществующих
объектов или свойств, методов у объектов,
употребление синтаксических знаков и
т. п.

Ошибки
периода выполнения
возникают, когда программа выполняется
и компилятор (или операционная система,
виртуальная машина) обнаруживает, что
оператор делает попытку выполнить
недопустимое или невозможное действие.
Например, деление на ноль.

Если проанализировать
все типы ошибок согласно первой
классификации, то можно прийти к
заключению, что при тестировании
приходится иметь дело с ошибками периода
выполнения, так как первые два типа
ошибок определяются на этапе кодирования.

В теоретической
информатике программные ошибки
классифицируют по степени нарушения
логики на:

– синтаксические;

–семантические;

– прагматические.

Синтаксические
ошибки
заключаются в нарушении правописания
или пунктуации в записи выражений,
операторов и т. п., т. е. в нарушении
грамматических правил языка. В качестве
примеров синтаксических ошибок можно
назвать:

– пропуск необходимого
знака пунктуации;

– несогласованность
скобок;

– пропуск нужных
скобок;

– неверное написание
зарезервированных слов;

– отсутствие описания
массива.

Все ошибки данного
типа обнаруживаются компилятором.

Семантические
ошибки
заключаются в нарушении порядка
операторов, параметров функций и
употреблении выражений. Например,
параметры у функции add
(на языке Java)
в следующем выражении указаны в
неправильном порядке:

GregorianCalendar.add(1,
Calendar.MONTH).

Параметр, указывающий
изменяемое поле (в примере – месяц),
должен идти первым. Семантические ошибки
также обнаруживаются компилятором.
Надо отметить, что некоторые исследователи
относят семантические ошибки к следующей
группе ошибок.

Прагматические
ошибки (или
логические) заключаются в неправильной
логике алгоритма, нарушении смысла
вычислений и т. п. Они являются самыми
сложными и крайне трудно обнаруживаются.
Компилятор может выявить только следствие
прагматической ошибки.

Таким образом, после
рассмотрения двух классификаций ошибок
можно прийти к выводу, что на этапе
тестирования ищутся прагматические
ошибки периода выполнения, так как
остальные выявляются в процессе
программирования.

На этом можно было
бы закончить рассмотрение классификаций,
но с течением времени накапливался опыт
обнаружения ошибок и сами ошибки,
некоторые из которых образуют характерные
группы, которые могут тоже служить
характерной классификацией.

Ошибка
адресации
– ошибка, состоящая в неправильной
адресации данных (например, выход за
пределы участка памяти).

Ошибка
ввода-вывода
– ошибка, возникающая в процессе обмена
данными между устройствами памяти,
внешними устройствами.

Ошибка
вычисления
– ошибка, возникающая при выполнении
арифметических операций (например,
разнотипные данные, деление на нуль и
др.).

Ошибка
интерфейса
– программная ошибка, вызванная
несовпадением характеристик фактических
и формальных параметров (как правило,
семантическая ошибка периода компиляции,
но может быть и логической ошибкой
периода выполнения).

Ошибка
обращения к данным
– ошибка, возникающая при обращении
программы к данным (например, выход
индекса за пределы массива, не
инициализированные значения переменных
и др.).

Ошибка
описания данных
– ошибка, допущенная в ходе описания
данных.[2]

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

  • Какие типовые программные ошибки наиболее распространены тестирование
  • Какие типичные ошибки совершают претенденты на получение гранта
  • Какие типичные ошибки слушания совершают люди
  • Какие типичные ошибки при страховании
  • Какие типичные ошибки при спусках на лыжах существуют