От чего зависит ошибка аппроксимации

From Wikipedia, the free encyclopedia

For broader coverage of this topic, see Approximation.

«Absolute error» redirects here. Not to be confused with Absolute deviation.

Graph of f(x)=e^{x} (blue) with its linear approximation P_{1}(x)=1+x (red) at a = 0. The approximation error is the gap between the curves, and it increases for x values further from 0.

The approximation error in a data value is the discrepancy between an exact value and some approximation to it. This error can be expressed as an absolute error (the numerical amount of the discrepancy) or as a relative error (the absolute error divided by the data value).

An approximation error can occur for a variety of reasons, among them a computing machine precision or measurement error (e.g. the length of a piece of paper is 4.53 cm but the ruler only allows you to estimate it to the nearest 0.1 cm, so you measure it as 4.5 cm).

In the mathematical field of numerical analysis, the numerical stability of an algorithm indicates the extent to which errors in the input of the algorithm will lead to large errors of the output; numerically stable algorithms to not yield a significant error in output when the input is malformed and vice versa. [1]

Formal definition[edit]

Given some value v and its approximation vapprox, the absolute error is

epsilon =|v-v_{text{approx}}| , [2][3]

where the vertical bars denote the absolute value.
If vneq 0, the relative error is

eta ={frac {epsilon }{|v|}}=left|{frac {v-v_{text{approx}}}{v}}right|=left|1-{frac {v_{text{approx}}}{v}}right|,

and the percent error (an expression of the relative error) is [3]

{displaystyle delta =100%times eta =100%times left|{frac {v-v_{text{approx}}}{v}}right|.}

An error bound is an upper limit on the relative or absolute size of an approximation error.[4]

Generalizations[edit]

[icon]

This section needs expansion. You can help by adding to it. (April 2023)

These definitions can be extended to the case when v and v_{text{approx}} are n-dimensional vectors, by replacing the absolute value with an n-norm.[5]

Examples[edit]

Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)  

  • v
  • t
  • e

As an example, if the exact value is 50 and the approximation is 49.9, then the absolute error is 0.1 and the relative error is 0.1/50 = 0.002 = 0.2%. As a practical example, when measuring a 6 mL beaker, the value read was 5 mL. The correct reading being 6 mL, this means the percent error in that particular situation is, rounded, 16.7%.

The relative error is often used to compare approximations of numbers of widely differing size; for example, approximating the number 1,000 with an absolute error of 3 is, in most applications, much worse than approximating the number 1,000,000 with an absolute error of 3; in the first case the relative error is 0.003 while in the second it is only 0.000003.

There are two features of relative error that should be kept in mind. First, relative error is undefined when the true value is zero as it appears in the denominator (see below). Second, relative error only makes sense when measured on a ratio scale, (i.e. a scale which has a true meaningful zero), otherwise it is sensitive to the measurement units. For example, when an absolute error in a temperature measurement given in Celsius scale is 1 °C, and the true value is 2 °C, the relative error is 0.5. But if the exact same approximation is made with the Kelvin scale, a 1 K absolute error with the same true value of 275.15 K = 2 °C gives a relative error of 3.63×10−3.

Instruments[edit]

In most indicating instruments, the accuracy is guaranteed to a certain percentage of full-scale reading. The limits of these deviations from the specified values are known as limiting errors or guarantee errors.[6]

See also[edit]

  • Accepted and experimental value
  • Condition number
  • Errors and residuals in statistics
  • Experimental uncertainty analysis
  • Machine epsilon
  • Measurement error
  • Measurement uncertainty
  • Propagation of uncertainty
  • Quantization error
  • Relative difference
  • Round-off error
  • Uncertainty

References[edit]

  1. ^ Weisstein, Eric W. «Numerical Stability». mathworld.wolfram.com. Retrieved 2023-06-11.
  2. ^ Weisstein, Eric W. «Absolute Error». mathworld.wolfram.com. Retrieved 2023-06-11.
  3. ^ a b «Absolute and Relative Error | Calculus II». courses.lumenlearning.com. Retrieved 2023-06-11.
  4. ^ «Approximation and Error Bounds». www.math.wpi.edu. Retrieved 2023-06-11.
  5. ^ Golub, Gene; Charles F. Van Loan (1996). Matrix Computations – Third Edition. Baltimore: The Johns Hopkins University Press. p. 53. ISBN 0-8018-5413-X.
  6. ^ Helfrick, Albert D. (2005) Modern Electronic Instrumentation and Measurement Techniques. p. 16. ISBN 81-297-0731-4

External links[edit]

  • Weisstein, Eric W. «Percentage error». MathWorld.

Министерство
сельского хозяйства РФ

Федеральное
государственное бюджетное образовательное

учреждение
высшего профессионального образования

«Пермская
государственная сельскохозяйственная
академия

имени
академика Д.Н.Прянишникова»

Кафедра финансов,
кредита и экономического анализа

Выполнила:

студентка
3 курса заочного отделения

По
специальности: «Экономика и управление
на АПК»

Группа
ЭБУ-2011-1-4739

Гонцова
Елена Александровна

Проверил:
кандидат экономических наук Тупицина
Ольга Владимировна

Пермь 2014

Содержание

  1. Ошибки
    аппроксимации и ее определение………………………………….3

  2. Аналитический
    способ выравнивания временного ряда
    и используемые при этом
    функции……………………………………………………………..4

  3. Практическая
    часть…………………………………………………………..11

    1. Задание
      1………………………………………………………………11

    2. Задание
      2……………………………………………….………………19

Список
использованной литературы…………………………………………..25

  1. Ошибки аппроксимации и ее определение.

Средняя ошибка
аппроксимации

– это среднее отклонение расчетных
данных от фактических. Она определяется
в процентах по модулю.

Фактические
значения результативного признака
отличаются от теоретических. Чем меньше
это отличие, тем ближе теоретические
значения подходят к эмпирическим данным,
это лучшее качество модели. Величина
отклонений фактических и расчетных
значений результативного признака по
каждому наблюдению представляет собой
ошибку аппроксимации. Их число
соответствует объему совокупности. В
отдельных случаях ошибка апроксимации
может оказаться равной нулю. Для сравнения
используются величины отклонений,
выраженные в процентах к фактическим
значениям.

Поскольку может
быть как величиной положительной, так
и отрицательной, то ошибки аппроксимации
для каждого наблюдения принято определять
в процентах по модулю. Отклонения можно
рассматривать как абсолютную ошибку
аппроксимации, и как относительную
ошибку аппроксимации. Чтоб иметь общее
суждение о качестве модели из относительных
отклонений по каждому наблюдению,
определяют среднюю ошибку аппроксимации
как среднюю арифметическую простую.

Среднюю ошибку
аппроксимации рассчитают по формуле:

Возможно и иное
определение средней ошибки аппроксимации:

Если А£10-12%, то
можно говорить о хорошем качестве
модели.

  1. Аналитический способ выравнивания временного ряда и используемые при этом функции.

Более
совершенным приемом выявления основной
тенденции развития в рядах динамики
является аналитическое выравнивание.
При изучении общей тенденции методом
аналитического выравнивания исходят
из того, что изменения уровней ряда
динамики могут быть с той или иной
степенью точности приближения выражены
определенными математическими функциями.
Вид уравнения определяется характером
динамики развития конкретного явления.
На практике по имеющемуся временному
ряду задают вид и находят параметры
функции y=f(t), а затем анализируют поведение
отклонений от тенденции. Чаще всего при
выравнивании используются следующие
зависимости: линейная, параболическая
и экспоненциальная. Во многих случаях
моделирование рядов динамики с помощью
полиномов или экспоненциальной функции
не дает удовлетворительных результатов,
так как в рядах динамики содержатся
заметные периодические колебания вокруг
общей тенденции. В таких случаях следует
использовать гармонический анализ
(гармоники ряда Фурье). Применение,
именно, этого метода предпочтительно,
поскольку он определяет закон, по
которому можно достаточно точно
спрогнозировать значения уровней ряда.

Целью же аналитического
выравнивания динамического ряда является
определение аналитической или графической
зависимости y=f(t). Функцию y=f(t) выбирают
таким образом, чтобы она давала
содержательное объяснение изучаемого
процесса. Это могут быть различные
функции.

Системы уравнений
вида y=f(t) для оценки параметров полиномов
по МНК

(кликабельно)

Графическое
представление полиномов n-порядка

1.
Если изменение уровней ряда характеризуется
равномерным увеличением (уменьшением)
уровней, когда абсолютные цепные приросты
близки по величине, тенденцию развития
характеризует уравнение прямой линии.

2.
Если в результате анализа типа тенденции
динамики установлена криволинейная
зависимость, примерно с постоянным
ускорением, то форма тенденции выражается
уравнением параболы второго порядка.

3.
Если рост уровней ряда динамики происходит
в геометрической прогрессии, т.е. цепные
коэффициенты роста более или менее
постоянны, выравнивание ряда динамики
ведется по показательной функции.

После
выбора вида уравнения необходимо
определить параметры уравнения. Самый
распространенный способ определения
параметров уравнения — это метод
наименьших квадратов, в котором в
качестве решения принимается точка
минимума суммы квадратов отклонений
между теоретическими (выравненными по
выбранному уравнению) и эмпирическими
уровнями.

Выравнивание
по прямой (определение линии тренда)
имеет выражение: yt=a0+a1t

t—условное
обозначение времени;

а
0 и a1—параметры искомой прямой.

Параметры
прямой находятся из решения системы
уравнений:

Система уравнений
упрощается, если значения t подобрать
так, чтобы их сумма равнялась Σt = 0, т. е.
начало отсчета времени перенести в
середину рассматриваемого периода.
Если до переноса точки отсчета t = 1, 2, 3,
4…, то после переноса:

если число уровней
ряда нечетное t = -4 -3 -2 -1 0 +1 +2 +3 +4

если
число уровней ряда четное t = -7 -5 -3
-1 +1 +3 +5 +7

Таким образом, ∑t
в нечетной степени всегда будет равна
нулю.

Аналогично находятся
параметры параболы 2-го порядка из
решения системы урав­нений:

Выравнивание
по среднему абсолютному приросту или
среднему коэффициенту роста:

Δ-средний абсолютный
прирост;

К-средний коэффициент
роста;

У0-начальный уровень
ряда;

Уn-конечный уровень
ряда;

t-порядковый номер
уровня, начиная с нуля.

Построив
уравнение регрессии, проводят оценку
его надежности. Значимость выбранного
уравнения регрессии, параметров уравнения
и коэффициента корреляции следует
оценить, применив критические методы
оценки:

F-критерий Фишера,
t–критерий Стьюдента, при этом, расчетные
значения критериев сравниваются с
табличными (критическими) при заданном
уровне значимости и числе степеней
свободы. Fфакт > Fтеор — уравнение
регрессии адекватно.

n — число наблюдений
(уровней ряда), m — число параметров
уравнения (модели) регрессии.

Проверка
адекватности уравнения регрессии (
качества модели в целом) осуществляется
с помощью средней ошибки аппроксимации,
величина которой не должна превышать
10-12% (рекомендовано).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

УДК 517

Николаева И.В. студент магистратуры 1 курс, институт «Экономики и управления» Самарский национальный исследовательский университет имени академика С.П.Королева

Россия, г. Самара ОСОБЕННОСТИ ПРИМЕНЕНИЯ АБСОЛЮТНОЙ И ОТНОСИТЕЛЬНОЙ ОШИБКИ АППРОКСИМАЦИИ В РЕГРЕССИОННОМ АНАЛИЗЕ Аннотация: Статья посвящена абсолютной, и относительной ошибкам аппроксимации для линейных регрессионных моделей, как наиболее часто встречающихся на практике.

Ключевые слова: регрессионный анализ, аппроксимация, относительная ошибка, абсолютная ошибка.

Nikolaeva I. V. student magistracy 1 course, Institute «Economy and management» Samara national research University named after academician S. P.

Korolev Russia, Samara APPLICATION FEATURES ABSOLUTE AND RELATIVE APPROXIMATION ERRORS IN REGRESSION ANALYSIS Abstract: the Article deals with both absolute and relative approximation errors for linear regression models, as the most common in practice.

Key words: regression analysis, approximation, relative error, absolute

error.

Разработка эконометрических моделей является целью эконометрического анализа, позволяющая спрогнозировать тенденции развития экономических процессов для принятия обоснованных решений. Эконометрические модели позволяют выявить особенности функционирования объекта и благодаря этому предсказать будущее его поведение при изменении какого-либо параметра. Для любого субъекта возможность прогнозирования ситуации значит получение наилучших результатов, избежание потерь, минимизация рисков. Построение эконометрических моделей с целью анализа и прогнозирования экономических процессов является важной задачей при проведении исследования любого уровня. Однако проблема оценки качества полученной модели является ключевой в моделировании.

Оценка значимости как уравнения в целом, так и отдельных его параметров проводится после того как уравнение регрессии найдено. Значимость уравнения регрессии — это установление соответствия математической модели, выражающей зависимость между переменными, эмпирическим данным и определение достаточного количества включенных

в уравнение объясняющих переменных для описания зависимой переменной. При подборе уравнения тренда, значение ошибки аппроксимации может служить для выбора наиболее подходящего уравнения. Аппроксимация результатов наблюдений может идти по разным моделям, но наилучшей аппроксимацией является та, в которой минимально отклонение между моделью и реальными данными в относительных значениях.

Фактические значения результативного признака отличаются от теоретических значений, рассчитанных по уравнению регрессии, т. е. у и ух. Чем меньше эти отличия, тем ближе теоретические значения к эмпирическим данным, тем лучше качество модели. Величина отклонений фактических и расчетных значений результативного признака (у — ух) по каждому наблюдению представляет собой ошибку аппроксимации. Их число соответствует объему совокупности. В отдельных случаях ошибка аппроксимации может оказаться равной нулю. Отклонения (у — ух) несравнимы между собой, исключая величину, равную нулю. Для сравнения используются величины отклонений, выраженные в процентах к фактическим значениям.

Отклонения (у — ух) можно рассматривать как абсолютную ошибку аппроксимации. Поскольку (у — ух) может быть как величиной положительной, так и отрицательной, то ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю. Относительная ошибка аппроксимации рассчитывается по формуле:

У-Ух

* 100 (1)

У

Чем ближе измеренное значение к истинному значению, тем точнее измерение. Если экспериментальное значение меньше реального, то абсолютная ошибка отрицательна, а если экспериментальное значение больше реального, то абсолютная ошибка положительна.

Таким образом, величина отклонения теоретического значения результативного признака от фактического значения, взятая по модулю, представляет собой абсолютную ошибку аппроксимации. А величина, равная отношению абсолютной ошибки к фактическим значениям результативного признака, выраженная в процентах, является относительной ошибкой аппроксимации.

Для иллюстрации приведены данные опроса шести семей (в которой два работающих взрослых и один ребенок) г.Самара по связи расходов на продукты питания с уровнем доходов этих семей.

_Таблица 1 — Данные опроса

Расходы семьи на продукты питания, y, руб/месяц Доходы семьи, x, руб/месяц

8000 21000

18000 50000

10000 23000

15000 40000

11000 27000

12000 30000

На основе поля корреляции можно сделать предположение, что связь между доходами и расходами на продукты питания — линейная.

б

у

я р

К

и ь м 64 и К т

е Н

с и

ы С

д о ы

х

с гг1 у

Рн до

р

с

20000 15000 10000 5000 0

10000 20000 30000 40000 Доходы семьи, руб.

50000

60000

Рисунок 2 — Поле корреляции по данным опроса

Предположительно зависимость является линейной, поэтому получены следующие параметры линейного уравнения парной регрессии.

Ь = 0,322112

а = 2079,451

А уравнение парной регрессии для представленных данных будет следующее:

% = 2079,451 + 0,322112 * х

Рисунок 3 — Поле корреляции и линия тренда

Из уравнения можно сделать вывод, что с увеличением доходов семьи на 1000 рублей, расходы на питание увеличиваются на 322,112 рублей.

0

Таблица 2 — Расчет абсолютной, относительной, средней ошибки _аппроксимации

х у х*у X2 У2 ух у-ух |у-ух 1 /у*100

1 21000 8000 168000000 441000000 64000000 8843,8 843,8 10,5

2 50000 18000 900000000 2500000000 324000000 18185,0 185,0 1,0

3 23000 10000 230000000 529000000 100000000 9488,0 512,0 5,1

4 40000 15000 600000000 1600000000 225000000 14963,9 36,1 0,2

5 27000 11000 297000000 729000000 121000000 10776,5 223,5 2,0

6 30000 12000 360000000 900000000 144000000 11742,8 257,2 2,1

Итого 191000 74000 2555000000 6699000000 978000000 74000,0 — 21,1

Ср. знач 31833,3 12333,3 425833333,3 1116500000 163000000 12333,3 — 3,5

Таким образом, средняя ошибка аппроксимации А = 3,5%, что говорит о хорошем качестве уравнения регрессии, т.е. свидетельствует о хорошем подборе модели к исходным данным и показывает, что линия регрессии хорошо приближает исходные данные.

На основе проведенного расчета можно сделать следующие выводы. Чем ближе измеренное значение к реальному значению, тем точнее измерение. Абсолютная ошибка является недостаточно показательной. Поэтому нагляднее точность измерения будет характеризоваться отношением абсолютной ошибки к полученному значению измеренной величины, а именно относительная ошибка. Если в ряде данных имеются значения у, близкие к нулю, то значение абсолютной ошибки аппроксимации также становится чрезмерно завышенным вне зависимости от адекватности построенной модели. Кроме того, если значение ух имеет значение равное нулю или близко к нулю, то, относительная ошибка аппроксимации перестает учитывать разницу между фактическим и расчетным значениями — под знаком суммы получается единица. А также, если фактические данные ряда имеют очень большие значения, то есть измеряются в тысячах единиц, то знаменатель становится очень большим, в результате чего средняя ошибка аппроксимации существенно занижается, вне зависимости от качества построенной модели.

Таким образом, можно сделать вывод, что объективно оценить качество модели только по абсолютной, относительной ошибкам аппроксимации не представляется возможным, так как абсолютная ошибка зависит от выбора масштаба измерения, а относительная ошибка завышает вклад ошибки вблизи нулевого значения.

Использованные источники: 1.Эконометрика : учебник для бакалавриата и магистратуры /И. И. Елисеева [и др.] ; под ред. И. И. Елисеевой. — М. : Издательство Юрайт, 2015. — 449 с. — Серия : Бакалавр и магистр. Академический курс.

2.О.В. Любимцев, О.Л. Любимцева, Линейные регрессионные модели в эконометрике. Методическое пособие. Нижний Новгород, ННГАСУ, 2016. З.Федеральная служба государственной статистики http://www.gks.ru

УДК 378.1(063)

Овакимян М.А., кандидат экономических наук, доцент кафедра «Государственное и муниципальное управление» Южно-Российский институт управления-филиал РАНХиГС

Россия, г. Ростов-на-Дону Андриасова К.Г. студент магистратуры 2 курс, факультет управления Южно-Российский институт управления-филиал РАНХиГС

Россия, г. Ростов-на-Дону ОЦЕНКА КАДРОВОГО ПОТЕНЦИАЛА ОБРАЗОВАТЕЛЬНОЙ ОРГАНИЗАЦИИ Аннотация: проблема кадрового потенциала в системе высшего образования представляется ключевой. Именно от уровня кадрового потенциала ВУЗа в конечном итоге будет зависеть уровень квалификации, полученный выпускником. Образовательная система является фундаментом развития общества в целом, что актуализирует необходимость определения критериев оценки кадров и формирование системы аттестационных мероприятий в соответствии с требованиями времени.

Основой для повышения эффективности кадрового потенциала ВУЗа является разработка профессиональных стандартов, определяющая уровень компетенций сотрудников. Важно понимать, что оценочная система должна учитывать различные формы оценивания, с учетом специфики ВУЗа.

Ключевые слова: оценка, компетенция, инновация, аттестация, квалификация, подготовка и т.д.

Оvakimyan M.A., Candidate of Economic Sciences, Associate Professor

Public Administration South-Russia Institute of Management RANEPA

Russia, Rostov-on-Don Andriasova K. G. master’s student 2nd year, Faculty Public Administration, South-Russia Institute of Management RANEPA

Russia, Rostov-on-Don ASSESSMENT OF PERSONNEL POTENTIAL OF THE EDUCATIONAL ORGANIZATION Abstract: the problem of human resources in the higher education system seem to be key. It is the level of personnel potential of the University will

Регрессионная сумма квадратов

Рисунок 4 Результат вычисления функции ЛИНЕЙН

Получили уровнение регрессии:

Делаем вывод: С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб.

Означает, что 52% вариации заработной платы (у) объясняется вариацией фактора х — среднедушевого прожиточного минимума, а 48% — действием других факторов, не включённых в модель.

По вычисленному коэффициенту детерминации можно рассчитать коэффициент корреляции: .

Связь оценивается как тесная.

4. С помощью среднего (общего) коэффициента эластичности определим силу влияния фактора на результат.

Для уравнения прямой средний (общий) коэффициент эластичности определим по формуле:

Средние значения найдём, выделив область ячеек со значениями х, и выберем Формулы / Автосумма / Среднее , и то же самое произведём со значениями у.

Рисунок 5 Расчёт средних значений функции и аргумент

Таким образом, при изменении среднедушевого прожиточного минимума на 1% от своего среднего значения среднедневная заработная плата изменится в среднем на 0,51%.

С помощью инструмента анализа данных Регрессия можно получить:
— результаты регрессионной статистики,
— результаты дисперсионного анализа,
— результаты доверительных интервалов,
— остатки и графики подбора линии регрессии,
— остатки и нормальную вероятность.

Порядок действий следующий:

1) проверьте доступ к Пакету анализа . В главном меню последовательно выберите: Файл/Параметры/Надстройки .

2) В раскрывающемся списке Управление выберите пункт Надстройки Excel и нажмите кнопку Перейти.

3) В окне Надстройки установите флажок Пакет анализа , а затем нажмите кнопку ОК .

Если Пакет анализа отсутствует в списке поля Доступные надстройки , нажмите кнопку Обзор , чтобы выполнить поиск.

Если выводится сообщение о том, что пакет анализа не установлен на компьютере, нажмите кнопку Да , чтобы установить его.

4) В главном меню последовательно выберите: Данные / Анализ данных / Инструменты анализа / Регрессия , а затем нажмите кнопку ОК .

5) Заполните диалоговое окно ввода данных и параметров вывода:

Входной интервал Y — диапазон, содержащий данные результативного признака;

Входной интервал X — диапазон, содержащий данные факторного признака;

Метки — флажок, который указывает, содержит ли первая строка названия столбцов или нет;

Константа — ноль — флажок, указывающий на наличие или отсутствие свободного члена в уравнении;

Выходной интервал — достаточно указать левую верхнюю ячейку будущего диапазона;

6) Новый рабочий лист — можно задать произвольное имя нового листа.

Затем нажмите кнопку ОК .

Рисунок 6 Диалоговое окно ввода параметров инструмента Регрессия

Результаты регрессионного анализа для данных задачи представлены на рисунке 7.

Рисунок 7 Результат применения инструмента регрессия

5. Оценим с помощью средней ошибки аппроксимации качество уравнений. Воспользуемся результатами регрессионного анализа представленного на Рисунке 8.

Рисунок 8 Результат применения инструмента регрессия «Вывод остатка»

Составим новую таблицу как показано на рисунке 9. В графе С рассчитаем относительную ошибку аппроксимации по формуле:

Рисунок 9 Расчёт средней ошибки аппроксимации

Средняя ошибка аппроксимации рассчитывается по формуле:

Качество построенной модели оценивается как хорошее, так как не превышает 8 — 10%.

6. Из таблицы с регрессионной статистикой (Рисунок 4) выпишем фактическое значение F-критерия Фишера:

Поскольку при 5%-ном уровне значимости, то можно сделать вывод о значимости уравнения регрессии (связь доказана).

8. Оценку статистической значимости параметров регрессии проведём с помощью t-статистики Стьюдента и путём расчёта доверительного интервала каждого из показателей.

Выдвигаем гипотезу Н 0 о статистически незначимом отличии показателей от нуля:

.

для числа степеней свободы

На рисунке 7 имеются фактические значения t-статистики:

t-критерий для коэффициента корреляции можно рассчитать двумя способами:

где — случайная ошибка коэффициента корреляции.

Данные для расчёта возьмём из таблицы на Рисунке 7.

Фактические значения t-статистики превосходят табличные значения:

Поэтому гипотеза Н 0 отклоняется, то есть параметры регрессии и коэффициент корреляции не случайно отличаются от нуля, а статистически значимы.

Доверительный интервал для параметра a определяется как

Для параметра a 95%-ные границы как показано на рисунке 7 составили:

Доверительный интервал для коэффициента регрессии определяется как

Для коэффициента регрессии b 95%-ные границы как показано на рисунке 7 составили:

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры a и b, находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

7. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит:

Тогда прогнозное значение прожиточного минимума составит:

Ошибку прогноза рассчитаем по формуле:

где

Дисперсию посчитаем также с помощью ППП Excel. Для этого:

1) Активизируйте Мастер функций : в главном меню выберете Формулы / Вставить функцию .

3) Заполните диапазон, содержащий числовые данные факторного признака. Нажмите ОК .

Рисунок 10 Расчёт дисперсии

Получили значение дисперсии

Для подсчёта остаточной дисперсии на одну степень свободы воспользуемся результатами дисперсионного анализа как показано на Рисунке 7.

Доверительные интервалы прогноза индивидуальных значений у при с вероятностью 0,95 определяются выражением:

Интервал достаточно широк, прежде всего, за счёт малого объёма наблюдений. В целом выполненный прогноз среднемесячной заработной платы оказался надёжным.

Условие задачи взято из: Практикум по эконометрике: Учеб. пособие / И.И. Елисеева, С.В. Курышева, Н.М. Гордеенко и др.; Под ред. И.И. Елисеевой. — М.: Финансы и статистика, 2003. — 192 с.: ил.

Для общей оценки качества построенной эконометрической определяются такие характеристики как коэффициент детерминации, индекс корреляции, средняя относительная ошибка аппроксимации, а также проверяется значимость уравнения регрессии с помощью F -критерия Фишера. Перечисленные характеристики являются достаточно универсальными и могут применяться как для линейных, так и для нелинейных моделей, а также моделей с двумя и более факторными переменными. Определяющее значение при вычислении всех перечисленных характеристик качества играет ряд остатков ε i , который вычисляется путем вычитания из фактических (полученных по наблюдениям) значений исследуемого признака y i значений, рассчитанных по уравнению модели y рi .

показывает, какая доля изменения исследуемого признака учтена в модели. Другими словами коэффициент детерминации показывает, какая часть изменения исследуемой переменной может быть вычислена, исходя из изменений включённых в модель факторных переменных с помощью выбранного типа функции, связывающей факторные переменные и исследуемый признак в уравнении модели.

Коэффициент детерминации R 2 может принимать значения от 0 до 1. Чем ближе коэффициент детерминации R 2 к единице, тем лучше качество модели.

Индекс корреляции можно легко вычислить, зная коэффициент детерминации:

Индекс корреляции R характеризует тесноту выбранного при построении модели типа связи между учтёнными в модели факторами и исследуемой переменной. В случае линейной парной регрессии его значение по абсолютной величине совпадает с коэффициентом парной корреляции r (x, y) , который мы рассмотрели ранее, и характеризует тесноту линейной связи между x и y . Значения индекса корреляции, очевидно, также лежат в интервале от 0 до 1. Чем ближе величина R к единице, тем теснее выбранный вид функции связывает между собой факторные переменные и исследуемый признак, тем лучше качество модели.

(2.11)

выражается в процентах и характеризует точность модели. Приемлимая точность модели при решении практических задач может определяться, исходя из соображений экономической целесообразности с учётом конкретной ситуации. Широко применяется критерий, в соответствии с которым точность считается удовлетворительной, если средняя относительная погрешность меньше 15%. Если E отн.ср. меньше 5%, то говорят, что модель имеет высокую точность. Не рекомендуется применять для анализа и прогноза модели с неудовлетворительной точностью, то есть, когда E отн.ср. больше 15%.

F-критерий Фишера используется для оценки значимости уравнения регрессии. Расчётное значение F-критерия определяется из соотношения:

. (2.12)

Критическое значение F -критерия определяется по таблицам при заданном уровне значимости α и степенях свободы (можно использовать функцию FРАСПОБР в Excel). Здесь, по-прежнему, m – число факторов, учтённых в модели, n – количество наблюдений. Если расчётное значение больше критического, то уравнение модели признаётся значимым. Чем больше расчётное значение F -критерия, тем лучше качество модели.

Определим характеристики качества построенной нами линейной модели для Примера 1 . Воспользуемся данными Таблицы 2. Коэффициент детерминации :

Следовательно, в рамках линейной модели изменение объёма продаж на 90,1% объясняется изменением температуры воздуха.

.

Значение индекса корреляции в случае парной линейной модели как мы видим, действительно по модулю равно коэффициенту корреляции между соответствующими переменными (объём продаж и температура). Поскольку полученное значение достаточно близко к единице, то можно сделать вывод о наличии тесной линейной связи между исследуемой переменной (объём продаж) и факторной переменноё (температура).

Критическое значение F кр при α = 0,1; ν 1 =1; ν 2 =7-1-1=5 равно 4,06. Расчётное значение F -критерия больше табличного, следовательно, уравнение модели является значимым.

Средняя относительная ошибка аппроксимации

Построенная линейная модель парной регрессии имеет неудовлетворительную точность (>15%), и её не рекомендуется использовать для анализа и прогнозирования.

В итоге, несмотря на то, что большинство статистических характеристик удовлетворяют предъявляемым к ним критериям, линейная модель парной регрессии непригодна для прогнозирования объёма продаж в зависимости от температуры воздуха. Нелинейный характер зависимости между указанными переменными по данным наблюдений достаточно хорошо виден на Рис.1. Проведённый анализ это подтвердил.

Среди различных методов прогнозирования нельзя не выделить аппроксимацию. С её помощью можно производить приблизительные подсчеты и вычислять планируемые показатели, путем замены исходных объектов на более простые. В Экселе тоже существует возможность использования данного метода для прогнозирования и анализа. Давайте рассмотрим, как этот метод можно применить в указанной программе встроенными инструментами.

Наименование данного метода происходит от латинского слова proxima – «ближайшая» Именно приближение путем упрощения и сглаживания известных показателей, выстраивание их в тенденцию и является его основой. Но данный метод можно использовать не только для прогнозирования, но и для исследования уже имеющихся результатов. Ведь аппроксимация является, по сути, упрощением исходных данных, а упрощенный вариант исследовать легче.

Главный инструмент, с помощью которого проводится сглаживания в Excel – это построение линии тренда. Суть состоит в том, что на основе уже имеющихся показателей достраивается график функции на будущие периоды. Основное предназначение линии тренда, как не трудно догадаться, это составление прогнозов или выявление общей тенденции.

Но она может быть построена с применением одного из пяти видов аппроксимации:

  • Линейной;
  • Экспоненциальной;
  • Логарифмической;
  • Полиномиальной;
  • Степенной.

Рассмотрим каждый из вариантов более подробно в отдельности.

Способ 1: линейное сглаживание

Прежде всего, давайте рассмотрим самый простой вариант аппроксимации, а именно с помощью линейной функции. На нем мы остановимся подробнее всего, так как изложим общие моменты характерные и для других способов, а именно построение графика и некоторые другие нюансы, на которых при рассмотрении последующих вариантов уже останавливаться не будем.

Прежде всего, построим график, на основании которого будем проводить процедуру сглаживания. Для построения графика возьмем таблицу, в которой помесячно указана себестоимость единицы продукции, производимой предприятием, и соответствующая прибыль в данном периоде. Графическая функция, которую мы построим, будет отображать зависимость увеличения прибыли от уменьшения себестоимости продукции.

Сглаживание, которое используется в данном случае, описывается следующей формулой:

В конкретно нашем случае формула принимает такой вид:

Величина достоверности аппроксимации у нас равна 0,9418 , что является довольно приемлемым итогом, характеризующим сглаживание, как достоверное.

Способ 2: экспоненциальная аппроксимация

Теперь давайте рассмотрим экспоненциальный тип аппроксимации в Эксель.

Общий вид функции сглаживания при этом такой:

где e – это основание натурального логарифма.

В конкретно нашем случае формула приняла следующую форму:

Способ 3: логарифмическое сглаживание

Теперь настала очередь рассмотреть метод логарифмической аппроксимации.

В общем виде формула сглаживания выглядит так:

где ln – это величина натурального логарифма. Отсюда и наименование метода.

В нашем случае формула принимает следующий вид:

Способ 4: полиномиальное сглаживание

Настал черед рассмотреть метод полиномиального сглаживания.

Формула, которая описывает данный тип сглаживания, приняла следующий вид:

Способ 5: степенное сглаживание

В завершении рассмотрим метод степенной аппроксимации в Excel.

Данный способ эффективно используется в случаях интенсивного изменения данных функции. Важно учесть, что этот вариант применим только при условии, что функция и аргумент не принимают отрицательных или нулевых значений.

Общая формула, описывающая данный метод имеет такой вид:

В конкретно нашем случае она выглядит так:

Как видим, при использовании конкретных данных, которые мы применяли для примера, наибольший уровень достоверности показал метод полиномиальной аппроксимации с полиномом в шестой степени (0,9844 ), наименьший уровень достоверности у линейного метода (0,9418 ). Но это совсем не значит, что такая же тенденция будет при использовании других примеров. Нет, уровень эффективности у приведенных выше методов может значительно отличаться, в зависимости от конкретного вида функции, для которой будет строиться линия тренда. Поэтому, если для этой функции выбранный метод наиболее эффективен, то это совсем не означает, что он также будет оптимальным и в другой ситуации.

Если вы пока не можете сразу определить, основываясь на вышеприведенных рекомендациях, какой вид аппроксимации подойдет конкретно в вашем случае, то есть смысл попробовать все методы. После построения линии тренда и просмотра её уровня достоверности можно будет выбрать оптимальный вариант.

Контрольная работа: Парная регрессия

Смысл регрессионного анализа – построение функциональных зависимостей между двумя группами переменных величин Х1 , Х2 , … Хр и Y. При этом речь идет о влиянии переменных Х (это будут аргументы функций) на значения переменной Y (значение функции). Переменные Х мы будем называть факторами, а Y – откликом.

Наиболее простой случай – установление зависимости одного отклика y от одного фактора х. Такой случай называется парной (простой) регрессией.

Парная регрессия – уравнение связи двух переменных у иx :

,

где у – зависимая переменная (результативный признак);

х – независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.

Линейная регрессия:.

Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.

Регрессии, нелинейные по объясняющим переменным:

• полиномы разных степеней

•равносторонняя гипербола

Регрессии, нелинейные по оцениваемым параметрам:

• степенная ;

• показательная

• экспоненциальная

Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических минимальна, т.е.

Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно а и b :

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции для линейной регрессии

и индекс корреляции — для нелинейной регрессии ():

Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации.

Средняя ошибка аппроксимации – среднее отклонение расчетных значений от фактических:

Допустимый предел значений – не более 8 – 10%.

Средний коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения:

Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:

где – общая сумма квадратов отклонений;

– сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);

–остаточная сумма квадратов отклонений.

Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R 2 :

Коэффициент детерминации – квадрат коэффициента или индекса корреляции.

F -тест – оценивание качества уравнения регрессии – состоит в проверке гипотезы Но о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F -критерия Фишера. F факт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:

п – число единиц совокупности;

т – число параметров при переменных х.

Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости а. Уровень значимости а – вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно а принимается равной 0,05 или 0,01.

Если Fтабл Fфакт , то гипотеза Н0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.

Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t -критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:

Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:

Сравнивая фактическое и критическое (табличное) значения t-статистики – tтабл и tфакт – принимаем или отвергаем гипотезу Hо .

Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством

Если tтабл tфакт , то гипотеза Но не отклоняется и признается случайная природа формирования a , b или .

Для расчета доверительного интервала определяем предельную ошибку ∆ для каждого показателя:

Формулы для расчета доверительных интервалов имеют следующий вид:

Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.

Прогнозное значение определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения . Вычисляется средняя стандартная ошибка прогноза :

где

и строится доверительный интервал прогноза:

где

По 22 регионам страны изучается зависимость розничной продажи телевизоров, y от среднедушевых денежных доходов в месяц, x (табл. 1):

Название: Парная регрессия
Раздел: Рефераты по математике
Тип: контрольная работа Добавлен 13:41:57 15 апреля 2011 Похожие работы
Просмотров: 3780 Комментариев: 22 Оценило: 4 человек Средний балл: 4.5 Оценка: неизвестно Скачать
№ региона X Y
1,000 2,800 28,000
2,000 2,400 21,300
3,000 2,100 21,000
4,000 2,600 23,300
5,000 1,700 15,800
6,000 2,500 21,900
7,000 2,400 20,000
8,000 2,600 22,000
9,000 2,800 23,900
10,000 2,600 26,000
11,000 2,600 24,600
12,000 2,500 21,000
13,000 2,900 27,000
14,000 2,600 21,000
15,000 2,200 24,000
16,000 2,600 34,000
17,000 3,300 31,900
19,000 3,900 33,000
20,000 4,600 35,400
21,000 3,700 34,000
22,000 3,400 31,000

1. Постройте поле корреляции и сформулируйте гипотезу о форме связи.

2. Рассчитайте параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессий.

3. Оцените тесноту связи с помощью показателей корреляции и детерминации.

4. С помощью среднего (общего) коэффициента эластичности дайте сравнительную оценку силы связи фактора с результатом.

5. Качество уравнений оцените с помощью средней ошибки аппроксимации.

6. С помощью F-критерия Фишера определите статистическую надежность результатов регрессионного моделирования. Выберите лучшее уравнение регрессии и дайте его обоснование.

7. Рассчитайте прогнозное значение результата по линейному уравнению регрессии, если прогнозное значение фактора увеличится на 7% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости α=0,05.

8. Оцените полученные результаты, выводы оформите в аналитической записке.

1. Поле корреляции для:

· Линейной регрессии y=a+b*x:

Гипотеза о форме связи: чем больше размер среднедушевого денежного дохода в месяц (факторный признак), тем больше при прочих равных условиях розничная продажа телевизоров (результативный признак). В данной модели параметр b называется коэффициентом регрессии и показывает, насколько в среднем отклоняется величина результативного признака у при отклонении величины факторного признаках на одну единицу.

· Степенной регрессии :

Гипотеза о форме связи : степенная функция имеет вид Y=ax b .

Параметр b степенного уравнения называется показателем эластичности и указывает, на сколько процентов изменится у при возрастании х на 1%. При х = 1 a = Y.

· Экспоненциальная регрессия :

· Равносторонняя гипербола :

Гипотеза о форме связи: В ряде случаев обратная связь между факторным и результативным признаками может быть выражена уравнением гиперболы: Y=a+b/x.

· Обратная гипербола :

· Полулогарифмическая регрессия :

2. Рассчитайте параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессий.

· Рассчитаем параметры уравнений линейной парной регрессии. Для расчета параметров a и b линейной регрессии y=a+b*x решаем систему нормальных уравнений относительно a и b:

По исходным данным рассчитываем ∑y, ∑x, ∑yx, ∑x 2 , ∑y 2 (табл. 2):

№ региона X Y XY X^2 Y^2 Y^cp Y-Y^cp Ai
1 2,800 28,000 78,400 7,840 784,000 25,719 2,281 0,081
2 2,400 21,300 51,120 5,760 453,690 22,870 -1,570 0,074
3 2,100 21,000 44,100 4,410 441,000 20,734 0,266 0,013
4 2,600 23,300 60,580 6,760 542,890 24,295 -0,995 0,043
5 1,700 15,800 26,860 2,890 249,640 17,885 -2,085 0,132
6 2,500 21,900 54,750 6,250 479,610 23,582 -1,682 0,077
7 2,400 20,000 48,000 5,760 400,000 22,870 -2,870 0,144
8 2,600 22,000 57,200 6,760 484,000 24,295 -2,295 0,104
9 2,800 23,900 66,920 7,840 571,210 25,719 -1,819 0,076
10 2,600 26,000 67,600 6,760 676,000 24,295 1,705 0,066
11 2,600 24,600 63,960 6,760 605,160 24,295 0,305 0,012
12 2,500 21,000 52,500 6,250 441,000 23,582 -2,582 0,123
13 2,900 27,000 78,300 8,410 729,000 26,431 0,569 0,021
14 2,600 21,000 54,600 6,760 441,000 24,295 -3,295 0,157
15 2,200 24,000 52,800 4,840 576,000 21,446 2,554 0,106
16 2,600 34,000 88,400 6,760 1156,000 24,295 9,705 0,285
17 3,300 31,900 105,270 10,890 1017,610 29,280 2,620 0,082
19 3,900 33,000 128,700 15,210 1089,000 33,553 -0,553 0,017
20 4,600 35,400 162,840 21,160 1253,160 38,539 -3,139 0,089
21 3,700 34,000 125,800 13,690 1156,000 32,129 1,871 0,055
22 3,400 31,000 105,400 11,560 961,000 29,992 1,008 0,033
Итого 58,800 540,100 1574,100 173,320 14506,970 540,100 0,000
сред значение 2,800 25,719 74,957 8,253 690,808 0,085
станд. откл 0,643 5,417

Система нормальных уравнений составит:

Ур-ие регрессии: = 5,777+7,122∙x. Данное уравнение показывает, что с увеличением среднедушевого денежного дохода в месяц на 1 тыс. руб. доля розничных продаж телевизоров повышается в среднем на 7,12%.

· Рассчитаем параметры уравнений степенной парной регрессии. Построению степенной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:

где

Для расчетов используем данные табл. 3:

№ рег X Y XY X^2 Y^2 Yp^cp y^cp
1 1,030 3,332 3,431 1,060 11,104 3,245 25,67072
2 0,875 3,059 2,678 0,766 9,356 3,116 22,56102
3 0,742 3,045 2,259 0,550 9,269 3,004 20,17348
4 0,956 3,148 3,008 0,913 9,913 3,183 24,12559
5 0,531 2,760 1,465 0,282 7,618 2,827 16,90081
6 0,916 3,086 2,828 0,840 9,526 3,150 23,34585
7 0,875 2,996 2,623 0,766 8,974 3,116 22,56102
8 0,956 3,091 2,954 0,913 9,555 3,183 24,12559
9 1,030 3,174 3,268 1,060 10,074 3,245 25,67072
10 0,956 3,258 3,113 0,913 10,615 3,183 24,12559
11 0,956 3,203 3,060 0,913 10,258 3,183 24,12559
12 0,916 3,045 2,790 0,840 9,269 3,150 23,34585
13 1,065 3,296 3,509 1,134 10,863 3,275 26,4365
14 0,956 3,045 2,909 0,913 9,269 3,183 24,12559
15 0,788 3,178 2,506 0,622 10,100 3,043 20,97512
16 0,956 3,526 3,369 0,913 12,435 3,183 24,12559
17 1,194 3,463 4,134 1,425 11,990 3,383 29,4585
19 1,361 3,497 4,759 1,852 12,226 3,523 33,88317
20 1,526 3,567 5,443 2,329 12,721 3,661 38,90802
21 1,308 3,526 4,614 1,712 12,435 3,479 32,42145
22 1,224 3,434 4,202 1,498 11,792 3,408 30,20445
итого 21,115 67,727 68,921 22,214 219,361 67,727 537,270
сред зн 1,005 3,225 3,282 1,058 10,446 3,225
стан откл 0,216 0,211

Рассчитаем С и b:

Получим линейное уравнение: . Выполнив его потенцирование, получим:

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата y .

· Рассчитаем параметры уравнений экспоненциальной парной регрессии. Построению экспоненциальной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:

где

Для расчетов используем данные табл. 4:

№ региона X Y XY X^2 Y^2 Yp y^cp
1 2,800 3,332 9,330 7,840 11,104 3,225 25,156
2 2,400 3,059 7,341 5,760 9,356 3,116 22,552
3 2,100 3,045 6,393 4,410 9,269 3,034 20,777
4 2,600 3,148 8,186 6,760 9,913 3,170 23,818
5 1,700 2,760 4,692 2,890 7,618 2,925 18,625
6 2,500 3,086 7,716 6,250 9,526 3,143 23,176
7 2,400 2,996 7,190 5,760 8,974 3,116 22,552
8 2,600 3,091 8,037 6,760 9,555 3,170 23,818
9 2,800 3,174 8,887 7,840 10,074 3,225 25,156
10 2,600 3,258 8,471 6,760 10,615 3,170 23,818
11 2,600 3,203 8,327 6,760 10,258 3,170 23,818
12 2,500 3,045 7,611 6,250 9,269 3,143 23,176
13 2,900 3,296 9,558 8,410 10,863 3,252 25,853
14 2,600 3,045 7,916 6,760 9,269 3,170 23,818
15 2,200 3,178 6,992 4,840 10,100 3,061 21,352
16 2,600 3,526 9,169 6,760 12,435 3,170 23,818
17 3,300 3,463 11,427 10,890 11,990 3,362 28,839
19 3,900 3,497 13,636 15,210 12,226 3,526 33,978
20 4,600 3,567 16,407 21,160 12,721 3,717 41,140
21 3,700 3,526 13,048 13,690 12,435 3,471 32,170
22 3,400 3,434 11,676 11,560 11,792 3,389 29,638
Итого 58,800 67,727 192,008 173,320 219,361 67,727 537,053
сред зн 2,800 3,225 9,143 8,253 10,446
стан откл 0,643 0,211

Рассчитаем С и b:

Получим линейное уравнение: . Выполнив его потенцирование, получим:

Для расчета теоретических значений y подставим в уравнение значения x .

· Рассчитаем параметры уравнений полулогарифмической парной регрессии. Построению полулогарифмической модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем замены:

где

Для расчетов используем данные табл. 5:

№ региона X Y XY X^2 Y^2 y^cp
1 1,030 28,000 28,829 1,060 784,000 26,238
2 0,875 21,300 18,647 0,766 453,690 22,928
3 0,742 21,000 15,581 0,550 441,000 20,062
4 0,956 23,300 22,263 0,913 542,890 24,647
5 0,531 15,800 8,384 0,282 249,640 15,525
6 0,916 21,900 20,067 0,840 479,610 23,805
7 0,875 20,000 17,509 0,766 400,000 22,928
8 0,956 22,000 21,021 0,913 484,000 24,647
9 1,030 23,900 24,608 1,060 571,210 26,238
10 0,956 26,000 24,843 0,913 676,000 24,647
11 0,956 24,600 23,506 0,913 605,160 24,647
12 0,916 21,000 19,242 0,840 441,000 23,805
13 1,065 27,000 28,747 1,134 729,000 26,991
14 0,956 21,000 20,066 0,913 441,000 24,647
15 0,788 24,000 18,923 0,622 576,000 21,060
16 0,956 34,000 32,487 0,913 1156,000 24,647
17 1,194 31,900 38,086 1,425 1017,610 29,765
19 1,361 33,000 44,912 1,852 1089,000 33,351
20 1,526 35,400 54,022 2,329 1253,160 36,895
21 1,308 34,000 44,483 1,712 1156,000 32,221
22 1,224 31,000 37,937 1,498 961,000 30,406
Итого 21,115 540,100 564,166 22,214 14506,970 540,100
сред зн 1,005 25,719 26,865 1,058 690,808
стан откл 0,216 5,417

Рассчитаем a и b:

Получим линейное уравнение: .

· Рассчитаем параметры уравнений обратной парной регрессии. Для оценки параметров приведем обратную модель к линейному виду, заменив , тогда

Для расчетов используем данные табл. 6:

№ региона X Y XY X^2 Y^2 Y^cp
1 2,800 0,036 0,100 7,840 0,001 24,605
2 2,400 0,047 0,113 5,760 0,002 22,230
3 2,100 0,048 0,100 4,410 0,002 20,729
4 2,600 0,043 0,112 6,760 0,002 23,357
5 1,700 0,063 0,108 2,890 0,004 19,017
6 2,500 0,046 0,114 6,250 0,002 22,780
7 2,400 0,050 0,120 5,760 0,003 22,230
8 2,600 0,045 0,118 6,760 0,002 23,357
9 2,800 0,042 0,117 7,840 0,002 24,605
10 2,600 0,038 0,100 6,760 0,001 23,357
11 2,600 0,041 0,106 6,760 0,002 23,357
12 2,500 0,048 0,119 6,250 0,002 22,780
13 2,900 0,037 0,107 8,410 0,001 25,280
14 2,600 0,048 0,124 6,760 0,002 23,357
15 2,200 0,042 0,092 4,840 0,002 21,206
16 2,600 0,029 0,076 6,760 0,001 23,357
17 3,300 0,031 0,103 10,890 0,001 28,398
19 3,900 0,030 0,118 15,210 0,001 34,844
20 4,600 0,028 0,130 21,160 0,001 47,393
21 3,700 0,029 0,109 13,690 0,001 32,393
22 3,400 0,032 0,110 11,560 0,001 29,301
Итого 58,800 0,853 2,296 173,320 0,036 537,933
сред знач 2,800 0,041 0,109 8,253 0,002
стан отклон 0,643 0,009

Рассчитаем a и b:

Получим линейное уравнение: . Выполнив его потенцирование, получим:

Для расчета теоретических значений y подставим в уравнение значения x .

· Рассчитаем параметры уравнений равносторонней гиперболы парной регрессии. Для оценки параметров приведем модель равносторонней гиперболы к линейному виду, заменив , тогда

Для расчетов используем данные табл. 7:

№ региона X=1/z Y XY X^2 Y^2 Y^cp
1 0,357 28,000 10,000 0,128 784,000 26,715
2 0,417 21,300 8,875 0,174 453,690 23,259
3 0,476 21,000 10,000 0,227 441,000 19,804
4 0,385 23,300 8,962 0,148 542,890 25,120
5 0,588 15,800 9,294 0,346 249,640 13,298
6 0,400 21,900 8,760 0,160 479,610 24,227
7 0,417 20,000 8,333 0,174 400,000 23,259
8 0,385 22,000 8,462 0,148 484,000 25,120
9 0,357 23,900 8,536 0,128 571,210 26,715
10 0,385 26,000 10,000 0,148 676,000 25,120
11 0,385 24,600 9,462 0,148 605,160 25,120
12 0,400 21,000 8,400 0,160 441,000 24,227
13 0,345 27,000 9,310 0,119 729,000 27,430
14 0,385 21,000 8,077 0,148 441,000 25,120
15 0,455 24,000 10,909 0,207 576,000 21,060
16 0,385 34,000 13,077 0,148 1156,000 25,120
17 0,303 31,900 9,667 0,092 1017,610 29,857
19 0,256 33,000 8,462 0,066 1089,000 32,564
20 0,217 35,400 7,696 0,047 1253,160 34,829
21 0,270 34,000 9,189 0,073 1156,000 31,759
22 0,294 31,000 9,118 0,087 961,000 30,374
Итого 7,860 540,100 194,587 3,073 14506,970 540,100
сред знач 0,374 25,719 9,266 0,146 1318,815
стан отклон 0,079 25,639

Рассчитаем a и b:

Получим линейное уравнение: . Получим уравнение регрессии: .

3. Оценка тесноты связи с помощью показателей корреляции и детерминации :

· Линейная модель. Тесноту линейной связи оценит коэффициент корреляции. Был получен следующий коэффициент корреляции rxy =b=7,122*, что говорит о прямой сильной связи фактора и результата. Коэффициент детерминации r²xy =(0,845)²=0,715. Это означает, что 71,5% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Степенная модель. Тесноту нелинейной связи оценит индекс корреляции. Был получен следующий индекс корреляции =, что говорит о очень сильной тесной связи, но немного больше чем в линейной модели. Коэффициент детерминации r²xy =0,7175. Это означает, что 71,75% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Экспоненциальная модель. Был получен следующий индекс корреляции ρxy =0,8124, что говорит о том, что связь прямая и очень сильная, но немного слабее, чем в линейной и степенной моделях. Коэффициент детерминации r²xy =0,66. Это означает, что 66% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Полулогарифмическая модель. Был получен следующий индекс корреляции ρxy =0,8578, что говорит о том, что связь прямая и очень сильная, но немного больше чем в предыдущих моделях. Коэффициент детерминации r²xy =0,7358. Это означает, что 73,58% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Гиперболическая модель. Был получен следующий индекс корреляции ρxy =0,8448 и коэффициент корреляции rxy =-0,1784 что говорит о том, что связь обратная очень сильная. Коэффициент детерминации r²xy =0,7358. Это означает, что 73,5% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

· Обратная модель. Был получен следующий индекс корреляции ρxy =0,8114 и коэффициент корреляции rxy =-0,8120, что говорит о том, что связь обратная очень сильная. Коэффициент детерминации r²xy =0,6584. Это означает, что 65,84% вариации результативного признака (розничнаяпродажа телевизоров, у) объясняется вариацией фактора х – среднедушевой денежный доход в месяц.

Вывод: по полулогарифмическому уравнению получена наибольшая оценка тесноты связи: ρxy =0,8578 (по сравнению с линейной, степенной, экспоненциальной, гиперболической, обратной регрессиями).

4. С помощью среднего (общего) коэффициента эластичности дайте сравнительную оценку силы связи фактора с результатом.

Рассчитаем коэффициент эластичности для линейной модели:

· Для уравнения прямой:y = 5,777+7,122∙x

· Для уравнениястепенноймодели :

· Для уравненияэкспоненциальноймодели :

Для уравненияполулогарифмическоймодели :

· Для уравнения обратной гиперболической модели :

· Для уравнения равносторонней гиперболической модели :

Сравнивая значения , характеризуем оценку силы связи фактора с результатом:

·

·

·

·

·

·

Известно, что коэффициент эластичности показывает связь между фактором и результатом, т.е. на сколько% изменится результат y от своей средней величины при изменении фактора х на 1% от своего среднего значения. В данном примере получилось, что самая большая сила связи между фактором и результатом в полулогарифмической модели, слабая сила связи в обратной гиперболической модели.

5. Оценка качества уравнений с помощью средней ошибки аппроксимации.

Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчетные) значения . Найдем величину средней ошибки аппроксимации :

В среднем расчетные значения отклоняются от фактических на:

· Линейная регрессия. =*100%= 8,5%, что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Степенная регрессия. =*100%= 8,2%, что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Экспоненциальная регрессия. =*100%= 9%, что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Полулогарифмическая регрессия. =*100%= 7,9 что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Гиперболическая регрессия. =*100%= 9,3 что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

· Обратная регрессия. =*100%= 9,9 3 что говорит о повышенной ошибке аппроксимации, но в допустимых пределах.

Качество построенной модели оценивается как хорошее, так как не превышает 8 -10%.

6. Рассчитаем F-критерий:

· Линейная регрессия. = *19= 47,579

источники:

http://welom.ru/srednyaya-oshibka-approksimacii-v-excel-ocenka-kachestva-uravneniya/

http://www.bestreferat.ru/referat-268496.html

  • От фонда красных партизанов до наших дней ошибка
  • От усталости мое тело подкашивалось на ногах речевая ошибка
  • От совести говоря меня слушали очень внимательно притаив внимание ошибка
  • От снега падавшего крупными хлопьями стало скользко на тротуаре речевая ошибка
  • От неизвестного вируса скончался петух ошибка