Относительная ошибка аппроксимации это

From Wikipedia, the free encyclopedia

For broader coverage of this topic, see Approximation.

«Absolute error» redirects here. Not to be confused with Absolute deviation.

Graph of f(x)=e^{x} (blue) with its linear approximation P_{1}(x)=1+x (red) at a = 0. The approximation error is the gap between the curves, and it increases for x values further from 0.

The approximation error in a data value is the discrepancy between an exact value and some approximation to it. This error can be expressed as an absolute error (the numerical amount of the discrepancy) or as a relative error (the absolute error divided by the data value).

An approximation error can occur for a variety of reasons, among them a computing machine precision or measurement error (e.g. the length of a piece of paper is 4.53 cm but the ruler only allows you to estimate it to the nearest 0.1 cm, so you measure it as 4.5 cm).

In the mathematical field of numerical analysis, the numerical stability of an algorithm indicates the extent to which errors in the input of the algorithm will lead to large errors of the output; numerically stable algorithms to not yield a significant error in output when the input is malformed and vice versa. [1]

Formal definition[edit]

Given some value v and its approximation vapprox, the absolute error is

epsilon =|v-v_{text{approx}}| , [2][3]

where the vertical bars denote the absolute value.
If vneq 0, the relative error is

eta ={frac {epsilon }{|v|}}=left|{frac {v-v_{text{approx}}}{v}}right|=left|1-{frac {v_{text{approx}}}{v}}right|,

and the percent error (an expression of the relative error) is [3]

{displaystyle delta =100%times eta =100%times left|{frac {v-v_{text{approx}}}{v}}right|.}

An error bound is an upper limit on the relative or absolute size of an approximation error.[4]

Generalizations[edit]

[icon]

This section needs expansion. You can help by adding to it. (April 2023)

These definitions can be extended to the case when v and v_{text{approx}} are n-dimensional vectors, by replacing the absolute value with an n-norm.[5]

Examples[edit]

Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)  

  • v
  • t
  • e

As an example, if the exact value is 50 and the approximation is 49.9, then the absolute error is 0.1 and the relative error is 0.1/50 = 0.002 = 0.2%. As a practical example, when measuring a 6 mL beaker, the value read was 5 mL. The correct reading being 6 mL, this means the percent error in that particular situation is, rounded, 16.7%.

The relative error is often used to compare approximations of numbers of widely differing size; for example, approximating the number 1,000 with an absolute error of 3 is, in most applications, much worse than approximating the number 1,000,000 with an absolute error of 3; in the first case the relative error is 0.003 while in the second it is only 0.000003.

There are two features of relative error that should be kept in mind. First, relative error is undefined when the true value is zero as it appears in the denominator (see below). Second, relative error only makes sense when measured on a ratio scale, (i.e. a scale which has a true meaningful zero), otherwise it is sensitive to the measurement units. For example, when an absolute error in a temperature measurement given in Celsius scale is 1 °C, and the true value is 2 °C, the relative error is 0.5. But if the exact same approximation is made with the Kelvin scale, a 1 K absolute error with the same true value of 275.15 K = 2 °C gives a relative error of 3.63×10−3.

Instruments[edit]

In most indicating instruments, the accuracy is guaranteed to a certain percentage of full-scale reading. The limits of these deviations from the specified values are known as limiting errors or guarantee errors.[6]

See also[edit]

  • Accepted and experimental value
  • Condition number
  • Errors and residuals in statistics
  • Experimental uncertainty analysis
  • Machine epsilon
  • Measurement error
  • Measurement uncertainty
  • Propagation of uncertainty
  • Quantization error
  • Relative difference
  • Round-off error
  • Uncertainty

References[edit]

  1. ^ Weisstein, Eric W. «Numerical Stability». mathworld.wolfram.com. Retrieved 2023-06-11.
  2. ^ Weisstein, Eric W. «Absolute Error». mathworld.wolfram.com. Retrieved 2023-06-11.
  3. ^ a b «Absolute and Relative Error | Calculus II». courses.lumenlearning.com. Retrieved 2023-06-11.
  4. ^ «Approximation and Error Bounds». www.math.wpi.edu. Retrieved 2023-06-11.
  5. ^ Golub, Gene; Charles F. Van Loan (1996). Matrix Computations – Third Edition. Baltimore: The Johns Hopkins University Press. p. 53. ISBN 0-8018-5413-X.
  6. ^ Helfrick, Albert D. (2005) Modern Electronic Instrumentation and Measurement Techniques. p. 16. ISBN 81-297-0731-4

External links[edit]

  • Weisstein, Eric W. «Percentage error». MathWorld.

Министерство
сельского хозяйства РФ

Федеральное
государственное бюджетное образовательное

учреждение
высшего профессионального образования

«Пермская
государственная сельскохозяйственная
академия

имени
академика Д.Н.Прянишникова»

Кафедра финансов,
кредита и экономического анализа

Выполнила:

студентка
3 курса заочного отделения

По
специальности: «Экономика и управление
на АПК»

Группа
ЭБУ-2011-1-4739

Гонцова
Елена Александровна

Проверил:
кандидат экономических наук Тупицина
Ольга Владимировна

Пермь 2014

Содержание

  1. Ошибки
    аппроксимации и ее определение………………………………….3

  2. Аналитический
    способ выравнивания временного ряда
    и используемые при этом
    функции……………………………………………………………..4

  3. Практическая
    часть…………………………………………………………..11

    1. Задание
      1………………………………………………………………11

    2. Задание
      2……………………………………………….………………19

Список
использованной литературы…………………………………………..25

  1. Ошибки аппроксимации и ее определение.

Средняя ошибка
аппроксимации

– это среднее отклонение расчетных
данных от фактических. Она определяется
в процентах по модулю.

Фактические
значения результативного признака
отличаются от теоретических. Чем меньше
это отличие, тем ближе теоретические
значения подходят к эмпирическим данным,
это лучшее качество модели. Величина
отклонений фактических и расчетных
значений результативного признака по
каждому наблюдению представляет собой
ошибку аппроксимации. Их число
соответствует объему совокупности. В
отдельных случаях ошибка апроксимации
может оказаться равной нулю. Для сравнения
используются величины отклонений,
выраженные в процентах к фактическим
значениям.

Поскольку может
быть как величиной положительной, так
и отрицательной, то ошибки аппроксимации
для каждого наблюдения принято определять
в процентах по модулю. Отклонения можно
рассматривать как абсолютную ошибку
аппроксимации, и как относительную
ошибку аппроксимации. Чтоб иметь общее
суждение о качестве модели из относительных
отклонений по каждому наблюдению,
определяют среднюю ошибку аппроксимации
как среднюю арифметическую простую.

Среднюю ошибку
аппроксимации рассчитают по формуле:

Возможно и иное
определение средней ошибки аппроксимации:

Если А£10-12%, то
можно говорить о хорошем качестве
модели.

  1. Аналитический способ выравнивания временного ряда и используемые при этом функции.

Более
совершенным приемом выявления основной
тенденции развития в рядах динамики
является аналитическое выравнивание.
При изучении общей тенденции методом
аналитического выравнивания исходят
из того, что изменения уровней ряда
динамики могут быть с той или иной
степенью точности приближения выражены
определенными математическими функциями.
Вид уравнения определяется характером
динамики развития конкретного явления.
На практике по имеющемуся временному
ряду задают вид и находят параметры
функции y=f(t), а затем анализируют поведение
отклонений от тенденции. Чаще всего при
выравнивании используются следующие
зависимости: линейная, параболическая
и экспоненциальная. Во многих случаях
моделирование рядов динамики с помощью
полиномов или экспоненциальной функции
не дает удовлетворительных результатов,
так как в рядах динамики содержатся
заметные периодические колебания вокруг
общей тенденции. В таких случаях следует
использовать гармонический анализ
(гармоники ряда Фурье). Применение,
именно, этого метода предпочтительно,
поскольку он определяет закон, по
которому можно достаточно точно
спрогнозировать значения уровней ряда.

Целью же аналитического
выравнивания динамического ряда является
определение аналитической или графической
зависимости y=f(t). Функцию y=f(t) выбирают
таким образом, чтобы она давала
содержательное объяснение изучаемого
процесса. Это могут быть различные
функции.

Системы уравнений
вида y=f(t) для оценки параметров полиномов
по МНК

(кликабельно)

Графическое
представление полиномов n-порядка

1.
Если изменение уровней ряда характеризуется
равномерным увеличением (уменьшением)
уровней, когда абсолютные цепные приросты
близки по величине, тенденцию развития
характеризует уравнение прямой линии.

2.
Если в результате анализа типа тенденции
динамики установлена криволинейная
зависимость, примерно с постоянным
ускорением, то форма тенденции выражается
уравнением параболы второго порядка.

3.
Если рост уровней ряда динамики происходит
в геометрической прогрессии, т.е. цепные
коэффициенты роста более или менее
постоянны, выравнивание ряда динамики
ведется по показательной функции.

После
выбора вида уравнения необходимо
определить параметры уравнения. Самый
распространенный способ определения
параметров уравнения — это метод
наименьших квадратов, в котором в
качестве решения принимается точка
минимума суммы квадратов отклонений
между теоретическими (выравненными по
выбранному уравнению) и эмпирическими
уровнями.

Выравнивание
по прямой (определение линии тренда)
имеет выражение: yt=a0+a1t

t—условное
обозначение времени;

а
0 и a1—параметры искомой прямой.

Параметры
прямой находятся из решения системы
уравнений:

Система уравнений
упрощается, если значения t подобрать
так, чтобы их сумма равнялась Σt = 0, т. е.
начало отсчета времени перенести в
середину рассматриваемого периода.
Если до переноса точки отсчета t = 1, 2, 3,
4…, то после переноса:

если число уровней
ряда нечетное t = -4 -3 -2 -1 0 +1 +2 +3 +4

если
число уровней ряда четное t = -7 -5 -3
-1 +1 +3 +5 +7

Таким образом, ∑t
в нечетной степени всегда будет равна
нулю.

Аналогично находятся
параметры параболы 2-го порядка из
решения системы урав­нений:

Выравнивание
по среднему абсолютному приросту или
среднему коэффициенту роста:

Δ-средний абсолютный
прирост;

К-средний коэффициент
роста;

У0-начальный уровень
ряда;

Уn-конечный уровень
ряда;

t-порядковый номер
уровня, начиная с нуля.

Построив
уравнение регрессии, проводят оценку
его надежности. Значимость выбранного
уравнения регрессии, параметров уравнения
и коэффициента корреляции следует
оценить, применив критические методы
оценки:

F-критерий Фишера,
t–критерий Стьюдента, при этом, расчетные
значения критериев сравниваются с
табличными (критическими) при заданном
уровне значимости и числе степеней
свободы. Fфакт > Fтеор — уравнение
регрессии адекватно.

n — число наблюдений
(уровней ряда), m — число параметров
уравнения (модели) регрессии.

Проверка
адекватности уравнения регрессии (
качества модели в целом) осуществляется
с помощью средней ошибки аппроксимации,
величина которой не должна превышать
10-12% (рекомендовано).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

УДК 517

Николаева И.В. студент магистратуры 1 курс, институт «Экономики и управления» Самарский национальный исследовательский университет имени академика С.П.Королева

Россия, г. Самара ОСОБЕННОСТИ ПРИМЕНЕНИЯ АБСОЛЮТНОЙ И ОТНОСИТЕЛЬНОЙ ОШИБКИ АППРОКСИМАЦИИ В РЕГРЕССИОННОМ АНАЛИЗЕ Аннотация: Статья посвящена абсолютной, и относительной ошибкам аппроксимации для линейных регрессионных моделей, как наиболее часто встречающихся на практике.

Ключевые слова: регрессионный анализ, аппроксимация, относительная ошибка, абсолютная ошибка.

Nikolaeva I. V. student magistracy 1 course, Institute «Economy and management» Samara national research University named after academician S. P.

Korolev Russia, Samara APPLICATION FEATURES ABSOLUTE AND RELATIVE APPROXIMATION ERRORS IN REGRESSION ANALYSIS Abstract: the Article deals with both absolute and relative approximation errors for linear regression models, as the most common in practice.

Key words: regression analysis, approximation, relative error, absolute

error.

Разработка эконометрических моделей является целью эконометрического анализа, позволяющая спрогнозировать тенденции развития экономических процессов для принятия обоснованных решений. Эконометрические модели позволяют выявить особенности функционирования объекта и благодаря этому предсказать будущее его поведение при изменении какого-либо параметра. Для любого субъекта возможность прогнозирования ситуации значит получение наилучших результатов, избежание потерь, минимизация рисков. Построение эконометрических моделей с целью анализа и прогнозирования экономических процессов является важной задачей при проведении исследования любого уровня. Однако проблема оценки качества полученной модели является ключевой в моделировании.

Оценка значимости как уравнения в целом, так и отдельных его параметров проводится после того как уравнение регрессии найдено. Значимость уравнения регрессии — это установление соответствия математической модели, выражающей зависимость между переменными, эмпирическим данным и определение достаточного количества включенных

в уравнение объясняющих переменных для описания зависимой переменной. При подборе уравнения тренда, значение ошибки аппроксимации может служить для выбора наиболее подходящего уравнения. Аппроксимация результатов наблюдений может идти по разным моделям, но наилучшей аппроксимацией является та, в которой минимально отклонение между моделью и реальными данными в относительных значениях.

Фактические значения результативного признака отличаются от теоретических значений, рассчитанных по уравнению регрессии, т. е. у и ух. Чем меньше эти отличия, тем ближе теоретические значения к эмпирическим данным, тем лучше качество модели. Величина отклонений фактических и расчетных значений результативного признака (у — ух) по каждому наблюдению представляет собой ошибку аппроксимации. Их число соответствует объему совокупности. В отдельных случаях ошибка аппроксимации может оказаться равной нулю. Отклонения (у — ух) несравнимы между собой, исключая величину, равную нулю. Для сравнения используются величины отклонений, выраженные в процентах к фактическим значениям.

Отклонения (у — ух) можно рассматривать как абсолютную ошибку аппроксимации. Поскольку (у — ух) может быть как величиной положительной, так и отрицательной, то ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю. Относительная ошибка аппроксимации рассчитывается по формуле:

У-Ух

* 100 (1)

У

Чем ближе измеренное значение к истинному значению, тем точнее измерение. Если экспериментальное значение меньше реального, то абсолютная ошибка отрицательна, а если экспериментальное значение больше реального, то абсолютная ошибка положительна.

Таким образом, величина отклонения теоретического значения результативного признака от фактического значения, взятая по модулю, представляет собой абсолютную ошибку аппроксимации. А величина, равная отношению абсолютной ошибки к фактическим значениям результативного признака, выраженная в процентах, является относительной ошибкой аппроксимации.

Для иллюстрации приведены данные опроса шести семей (в которой два работающих взрослых и один ребенок) г.Самара по связи расходов на продукты питания с уровнем доходов этих семей.

_Таблица 1 — Данные опроса

Расходы семьи на продукты питания, y, руб/месяц Доходы семьи, x, руб/месяц

8000 21000

18000 50000

10000 23000

15000 40000

11000 27000

12000 30000

На основе поля корреляции можно сделать предположение, что связь между доходами и расходами на продукты питания — линейная.

б

у

я р

К

и ь м 64 и К т

е Н

с и

ы С

д о ы

х

с гг1 у

Рн до

р

с

20000 15000 10000 5000 0

10000 20000 30000 40000 Доходы семьи, руб.

50000

60000

Рисунок 2 — Поле корреляции по данным опроса

Предположительно зависимость является линейной, поэтому получены следующие параметры линейного уравнения парной регрессии.

Ь = 0,322112

а = 2079,451

А уравнение парной регрессии для представленных данных будет следующее:

% = 2079,451 + 0,322112 * х

Рисунок 3 — Поле корреляции и линия тренда

Из уравнения можно сделать вывод, что с увеличением доходов семьи на 1000 рублей, расходы на питание увеличиваются на 322,112 рублей.

0

Таблица 2 — Расчет абсолютной, относительной, средней ошибки _аппроксимации

х у х*у X2 У2 ух у-ух |у-ух 1 /у*100

1 21000 8000 168000000 441000000 64000000 8843,8 843,8 10,5

2 50000 18000 900000000 2500000000 324000000 18185,0 185,0 1,0

3 23000 10000 230000000 529000000 100000000 9488,0 512,0 5,1

4 40000 15000 600000000 1600000000 225000000 14963,9 36,1 0,2

5 27000 11000 297000000 729000000 121000000 10776,5 223,5 2,0

6 30000 12000 360000000 900000000 144000000 11742,8 257,2 2,1

Итого 191000 74000 2555000000 6699000000 978000000 74000,0 — 21,1

Ср. знач 31833,3 12333,3 425833333,3 1116500000 163000000 12333,3 — 3,5

Таким образом, средняя ошибка аппроксимации А = 3,5%, что говорит о хорошем качестве уравнения регрессии, т.е. свидетельствует о хорошем подборе модели к исходным данным и показывает, что линия регрессии хорошо приближает исходные данные.

На основе проведенного расчета можно сделать следующие выводы. Чем ближе измеренное значение к реальному значению, тем точнее измерение. Абсолютная ошибка является недостаточно показательной. Поэтому нагляднее точность измерения будет характеризоваться отношением абсолютной ошибки к полученному значению измеренной величины, а именно относительная ошибка. Если в ряде данных имеются значения у, близкие к нулю, то значение абсолютной ошибки аппроксимации также становится чрезмерно завышенным вне зависимости от адекватности построенной модели. Кроме того, если значение ух имеет значение равное нулю или близко к нулю, то, относительная ошибка аппроксимации перестает учитывать разницу между фактическим и расчетным значениями — под знаком суммы получается единица. А также, если фактические данные ряда имеют очень большие значения, то есть измеряются в тысячах единиц, то знаменатель становится очень большим, в результате чего средняя ошибка аппроксимации существенно занижается, вне зависимости от качества построенной модели.

Таким образом, можно сделать вывод, что объективно оценить качество модели только по абсолютной, относительной ошибкам аппроксимации не представляется возможным, так как абсолютная ошибка зависит от выбора масштаба измерения, а относительная ошибка завышает вклад ошибки вблизи нулевого значения.

Использованные источники: 1.Эконометрика : учебник для бакалавриата и магистратуры /И. И. Елисеева [и др.] ; под ред. И. И. Елисеевой. — М. : Издательство Юрайт, 2015. — 449 с. — Серия : Бакалавр и магистр. Академический курс.

2.О.В. Любимцев, О.Л. Любимцева, Линейные регрессионные модели в эконометрике. Методическое пособие. Нижний Новгород, ННГАСУ, 2016. З.Федеральная служба государственной статистики http://www.gks.ru

УДК 378.1(063)

Овакимян М.А., кандидат экономических наук, доцент кафедра «Государственное и муниципальное управление» Южно-Российский институт управления-филиал РАНХиГС

Россия, г. Ростов-на-Дону Андриасова К.Г. студент магистратуры 2 курс, факультет управления Южно-Российский институт управления-филиал РАНХиГС

Россия, г. Ростов-на-Дону ОЦЕНКА КАДРОВОГО ПОТЕНЦИАЛА ОБРАЗОВАТЕЛЬНОЙ ОРГАНИЗАЦИИ Аннотация: проблема кадрового потенциала в системе высшего образования представляется ключевой. Именно от уровня кадрового потенциала ВУЗа в конечном итоге будет зависеть уровень квалификации, полученный выпускником. Образовательная система является фундаментом развития общества в целом, что актуализирует необходимость определения критериев оценки кадров и формирование системы аттестационных мероприятий в соответствии с требованиями времени.

Основой для повышения эффективности кадрового потенциала ВУЗа является разработка профессиональных стандартов, определяющая уровень компетенций сотрудников. Важно понимать, что оценочная система должна учитывать различные формы оценивания, с учетом специфики ВУЗа.

Ключевые слова: оценка, компетенция, инновация, аттестация, квалификация, подготовка и т.д.

Оvakimyan M.A., Candidate of Economic Sciences, Associate Professor

Public Administration South-Russia Institute of Management RANEPA

Russia, Rostov-on-Don Andriasova K. G. master’s student 2nd year, Faculty Public Administration, South-Russia Institute of Management RANEPA

Russia, Rostov-on-Don ASSESSMENT OF PERSONNEL POTENTIAL OF THE EDUCATIONAL ORGANIZATION Abstract: the problem of human resources in the higher education system seem to be key. It is the level of personnel potential of the University will

From Wikipedia, the free encyclopedia

For broader coverage of this topic, see Approximation.

Graph of f(x)=e^{x} (blue) with its linear approximation P_{1}(x)=1+x (red) at a = 0. The approximation error is the gap between the curves, and it increases for x values further from 0.

The approximation error in a data value is the discrepancy between an exact value and some approximation to it. This error can be expressed as an absolute error (the numerical amount of the discrepancy) or as a relative error (the absolute error divided by the data value).

An approximation error can occur because of computing machine precision or measurement error (e.g. the length of a piece of paper is 4.53 cm but the ruler only allows you to estimate it to the nearest 0.1 cm, so you measure it as 4.5 cm).

In the mathematical field of numerical analysis, the numerical stability of an algorithm indicates how the error is propagated by the algorithm.

Formal definition[edit]

One commonly distinguishes between the relative error and the absolute error.

Given some value v and its approximation vapprox, the absolute error is

epsilon =|v-v_{text{approx}}| ,

where the vertical bars denote the absolute value.
If vneq 0, the relative error is

eta ={frac {epsilon }{|v|}}=left|{frac {v-v_{text{approx}}}{v}}right|=left|1-{frac {v_{text{approx}}}{v}}right|,

and the percent error (an expression of the relative error) is

{displaystyle delta =100%times eta =100%times {frac {epsilon }{|v|}}=100%times left|{frac {v-v_{text{approx}}}{v}}right|.}

In words, the absolute error is the magnitude of the difference between the exact value and the approximation. The relative error is the absolute error divided by the magnitude of the exact value.

An error bound is an upper limit on the relative or absolute size of an approximation error.

Generalizations[edit]

These definitions can be extended to the case when v and v_{text{approx}} are n-dimensional vectors, by replacing the absolute value with an n-norm.[1]

Examples[edit]

Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)  

  • v
  • t
  • e

As an example, if the exact value is 50 and the approximation is 49.9, then the absolute error is 0.1 and the relative error is 0.1/50 = 0.002 = 0.2%. Another example would be if, in measuring a 6 mL beaker, the value read was 5 mL. The correct reading being 6 mL, this means the percent error in that particular situation is, rounded, 16.7%.

The relative error is often used to compare approximations of numbers of widely differing size; for example, approximating the number 1,000 with an absolute error of 3 is, in most applications, much worse than approximating the number 1,000,000 with an absolute error of 3; in the first case the relative error is 0.003 and in the second it is only 0.000003.

There are two features of relative error that should be kept in mind. Firstly, relative error is undefined when the true value is zero as it appears in the denominator (see below). Secondly, relative error only makes sense when measured on a ratio scale, (i.e. a scale which has a true meaningful zero), otherwise it would be sensitive to the measurement units. For example, when an absolute error in a temperature measurement given in Celsius scale is 1 °C, and the true value is 2 °C, the relative error is 0.5, and the percent error is 50%. For this same case, when the temperature is given in Kelvin scale, the same 1 K absolute error with the same true value of 275.15 K gives a relative error of 3.63×10−3 and a percent error of only 0.363%. Celsius temperature is measured on an interval scale, whereas the Kelvin scale has a true zero and so is a ratio scale. Thus the relative error is not very meaningful.

Instruments[edit]

In most indicating instruments, the accuracy is guaranteed to a certain percentage of full-scale reading. The limits of these deviations from the specified values are known as limiting errors or guarantee errors.[2]

See also[edit]

  • Accepted and experimental value
  • Condition number
  • Errors and residuals in statistics
  • Experimental uncertainty analysis
  • Machine epsilon
  • Measurement error
  • Measurement uncertainty
  • Propagation of uncertainty
  • Quantization error
  • Relative difference
  • Round-off error
  • Uncertainty

References[edit]

  1. ^ Golub, Gene; Charles F. Van Loan (1996). Matrix Computations – Third Edition. Baltimore: The Johns Hopkins University Press. p. 53. ISBN 0-8018-5413-X.
  2. ^ Helfrick, Albert D. (2005) Modern Electronic Instrumentation and Measurement Techniques. p. 16. ISBN 81-297-0731-4

External links[edit]

  • Weisstein, Eric W. «Percentage error». MathWorld.

From Wikipedia, the free encyclopedia

For broader coverage of this topic, see Approximation.

Graph of f(x)=e^{x} (blue) with its linear approximation P_{1}(x)=1+x (red) at a = 0. The approximation error is the gap between the curves, and it increases for x values further from 0.

The approximation error in a data value is the discrepancy between an exact value and some approximation to it. This error can be expressed as an absolute error (the numerical amount of the discrepancy) or as a relative error (the absolute error divided by the data value).

An approximation error can occur because of computing machine precision or measurement error (e.g. the length of a piece of paper is 4.53 cm but the ruler only allows you to estimate it to the nearest 0.1 cm, so you measure it as 4.5 cm).

In the mathematical field of numerical analysis, the numerical stability of an algorithm indicates how the error is propagated by the algorithm.

Formal definition[edit]

One commonly distinguishes between the relative error and the absolute error.

Given some value v and its approximation vapprox, the absolute error is

epsilon =|v-v_{text{approx}}| ,

where the vertical bars denote the absolute value.
If vneq 0, the relative error is

eta ={frac {epsilon }{|v|}}=left|{frac {v-v_{text{approx}}}{v}}right|=left|1-{frac {v_{text{approx}}}{v}}right|,

and the percent error (an expression of the relative error) is

{displaystyle delta =100%times eta =100%times {frac {epsilon }{|v|}}=100%times left|{frac {v-v_{text{approx}}}{v}}right|.}

In words, the absolute error is the magnitude of the difference between the exact value and the approximation. The relative error is the absolute error divided by the magnitude of the exact value.

An error bound is an upper limit on the relative or absolute size of an approximation error.

Generalizations[edit]

These definitions can be extended to the case when v and v_{text{approx}} are n-dimensional vectors, by replacing the absolute value with an n-norm.[1]

Examples[edit]

Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)  

  • v
  • t
  • e

As an example, if the exact value is 50 and the approximation is 49.9, then the absolute error is 0.1 and the relative error is 0.1/50 = 0.002 = 0.2%. Another example would be if, in measuring a 6 mL beaker, the value read was 5 mL. The correct reading being 6 mL, this means the percent error in that particular situation is, rounded, 16.7%.

The relative error is often used to compare approximations of numbers of widely differing size; for example, approximating the number 1,000 with an absolute error of 3 is, in most applications, much worse than approximating the number 1,000,000 with an absolute error of 3; in the first case the relative error is 0.003 and in the second it is only 0.000003.

There are two features of relative error that should be kept in mind. Firstly, relative error is undefined when the true value is zero as it appears in the denominator (see below). Secondly, relative error only makes sense when measured on a ratio scale, (i.e. a scale which has a true meaningful zero), otherwise it would be sensitive to the measurement units. For example, when an absolute error in a temperature measurement given in Celsius scale is 1 °C, and the true value is 2 °C, the relative error is 0.5, and the percent error is 50%. For this same case, when the temperature is given in Kelvin scale, the same 1 K absolute error with the same true value of 275.15 K gives a relative error of 3.63×10−3 and a percent error of only 0.363%. Celsius temperature is measured on an interval scale, whereas the Kelvin scale has a true zero and so is a ratio scale. Thus the relative error is not very meaningful.

Instruments[edit]

In most indicating instruments, the accuracy is guaranteed to a certain percentage of full-scale reading. The limits of these deviations from the specified values are known as limiting errors or guarantee errors.[2]

See also[edit]

  • Accepted and experimental value
  • Condition number
  • Errors and residuals in statistics
  • Experimental uncertainty analysis
  • Machine epsilon
  • Measurement error
  • Measurement uncertainty
  • Propagation of uncertainty
  • Quantization error
  • Relative difference
  • Round-off error
  • Uncertainty

References[edit]

  1. ^ Golub, Gene; Charles F. Van Loan (1996). Matrix Computations – Third Edition. Baltimore: The Johns Hopkins University Press. p. 53. ISBN 0-8018-5413-X.
  2. ^ Helfrick, Albert D. (2005) Modern Electronic Instrumentation and Measurement Techniques. p. 16. ISBN 81-297-0731-4

External links[edit]

  • Weisstein, Eric W. «Percentage error». MathWorld.

Министерство
сельского хозяйства РФ

Федеральное
государственное бюджетное образовательное

учреждение
высшего профессионального образования

«Пермская
государственная сельскохозяйственная
академия

имени
академика Д.Н.Прянишникова»

Кафедра финансов,
кредита и экономического анализа

Выполнила:

студентка
3 курса заочного отделения

По
специальности: «Экономика и управление
на АПК»

Группа
ЭБУ-2011-1-4739

Гонцова
Елена Александровна

Проверил:
кандидат экономических наук Тупицина
Ольга Владимировна

Пермь 2014

Содержание

  1. Ошибки
    аппроксимации и ее определение………………………………….3

  2. Аналитический
    способ выравнивания временного ряда
    и используемые при этом
    функции……………………………………………………………..4

  3. Практическая
    часть…………………………………………………………..11

    1. Задание
      1………………………………………………………………11

    2. Задание
      2……………………………………………….………………19

Список
использованной литературы…………………………………………..25

  1. Ошибки аппроксимации и ее определение.

Средняя ошибка
аппроксимации

– это среднее отклонение расчетных
данных от фактических. Она определяется
в процентах по модулю.

Фактические
значения результативного признака
отличаются от теоретических. Чем меньше
это отличие, тем ближе теоретические
значения подходят к эмпирическим данным,
это лучшее качество модели. Величина
отклонений фактических и расчетных
значений результативного признака по
каждому наблюдению представляет собой
ошибку аппроксимации. Их число
соответствует объему совокупности. В
отдельных случаях ошибка апроксимации
может оказаться равной нулю. Для сравнения
используются величины отклонений,
выраженные в процентах к фактическим
значениям.

Поскольку может
быть как величиной положительной, так
и отрицательной, то ошибки аппроксимации
для каждого наблюдения принято определять
в процентах по модулю. Отклонения можно
рассматривать как абсолютную ошибку
аппроксимации, и как относительную
ошибку аппроксимации. Чтоб иметь общее
суждение о качестве модели из относительных
отклонений по каждому наблюдению,
определяют среднюю ошибку аппроксимации
как среднюю арифметическую простую.

Среднюю ошибку
аппроксимации рассчитают по формуле:

Возможно и иное
определение средней ошибки аппроксимации:

Если А£10-12%, то
можно говорить о хорошем качестве
модели.

  1. Аналитический способ выравнивания временного ряда и используемые при этом функции.

Более
совершенным приемом выявления основной
тенденции развития в рядах динамики
является аналитическое выравнивание.
При изучении общей тенденции методом
аналитического выравнивания исходят
из того, что изменения уровней ряда
динамики могут быть с той или иной
степенью точности приближения выражены
определенными математическими функциями.
Вид уравнения определяется характером
динамики развития конкретного явления.
На практике по имеющемуся временному
ряду задают вид и находят параметры
функции y=f(t), а затем анализируют поведение
отклонений от тенденции. Чаще всего при
выравнивании используются следующие
зависимости: линейная, параболическая
и экспоненциальная. Во многих случаях
моделирование рядов динамики с помощью
полиномов или экспоненциальной функции
не дает удовлетворительных результатов,
так как в рядах динамики содержатся
заметные периодические колебания вокруг
общей тенденции. В таких случаях следует
использовать гармонический анализ
(гармоники ряда Фурье). Применение,
именно, этого метода предпочтительно,
поскольку он определяет закон, по
которому можно достаточно точно
спрогнозировать значения уровней ряда.

Целью же аналитического
выравнивания динамического ряда является
определение аналитической или графической
зависимости y=f(t). Функцию y=f(t) выбирают
таким образом, чтобы она давала
содержательное объяснение изучаемого
процесса. Это могут быть различные
функции.

Системы уравнений
вида y=f(t) для оценки параметров полиномов
по МНК

(кликабельно)

Графическое
представление полиномов n-порядка

1.
Если изменение уровней ряда характеризуется
равномерным увеличением (уменьшением)
уровней, когда абсолютные цепные приросты
близки по величине, тенденцию развития
характеризует уравнение прямой линии.

2.
Если в результате анализа типа тенденции
динамики установлена криволинейная
зависимость, примерно с постоянным
ускорением, то форма тенденции выражается
уравнением параболы второго порядка.

3.
Если рост уровней ряда динамики происходит
в геометрической прогрессии, т.е. цепные
коэффициенты роста более или менее
постоянны, выравнивание ряда динамики
ведется по показательной функции.

После
выбора вида уравнения необходимо
определить параметры уравнения. Самый
распространенный способ определения
параметров уравнения — это метод
наименьших квадратов, в котором в
качестве решения принимается точка
минимума суммы квадратов отклонений
между теоретическими (выравненными по
выбранному уравнению) и эмпирическими
уровнями.

Выравнивание
по прямой (определение линии тренда)
имеет выражение: yt=a0+a1t

t—условное
обозначение времени;

а
0 и a1—параметры искомой прямой.

Параметры
прямой находятся из решения системы
уравнений:

Система уравнений
упрощается, если значения t подобрать
так, чтобы их сумма равнялась Σt = 0, т. е.
начало отсчета времени перенести в
середину рассматриваемого периода.
Если до переноса точки отсчета t = 1, 2, 3,
4…, то после переноса:

если число уровней
ряда нечетное t = -4 -3 -2 -1 0 +1 +2 +3 +4

если
число уровней ряда четное t = -7 -5 -3
-1 +1 +3 +5 +7

Таким образом, ∑t
в нечетной степени всегда будет равна
нулю.

Аналогично находятся
параметры параболы 2-го порядка из
решения системы урав­нений:

Выравнивание
по среднему абсолютному приросту или
среднему коэффициенту роста:

Δ-средний абсолютный
прирост;

К-средний коэффициент
роста;

У0-начальный уровень
ряда;

Уn-конечный уровень
ряда;

t-порядковый номер
уровня, начиная с нуля.

Построив
уравнение регрессии, проводят оценку
его надежности. Значимость выбранного
уравнения регрессии, параметров уравнения
и коэффициента корреляции следует
оценить, применив критические методы
оценки:

F-критерий Фишера,
t–критерий Стьюдента, при этом, расчетные
значения критериев сравниваются с
табличными (критическими) при заданном
уровне значимости и числе степеней
свободы. Fфакт > Fтеор — уравнение
регрессии адекватно.

n — число наблюдений
(уровней ряда), m — число параметров
уравнения (модели) регрессии.

Проверка
адекватности уравнения регрессии (
качества модели в целом) осуществляется
с помощью средней ошибки аппроксимации,
величина которой не должна превышать
10-12% (рекомендовано).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

  • Относительная ошибка аппроксимации формула
  • Относительная ошибка аналитическая химия
  • Относительная невязка это отношение абсолютной ошибки к измеренной величине
  • Относись к каждой ошибке как к уроку который помог тебе стать лучше автор
  • Отмостка топ ошибка никогда так не делай отмостку