Ошибка эксперимента как найти

Какие бывают погрешности

Любое число, которое выдает нам эксперимент, это результат измерения. Измерение производится прибором, и это либо непосредственные показания прибора, либо результат обработки этих показаний. И в том, и в другом случае полученный результат измерения неидеален, он содержит погрешности. И потому любой грамотный физик должен не только предъявить численный результат измерения, но и обязан указать все сопутствующие погрешности. Не будет преувеличением сказать, что численный экспериментальный результат, предъявленный без указания каких-либо погрешностей, бессмыслен.

В физике элементарных частиц к указанию погрешностей относятся исключительно ответственно. Экспериментаторы не только сообщают погрешности, но и разделяют их на разные группы. Три основных погрешности, которые встречаются чаще всего, это статистическая, систематическая и теоретическая (или модельная) погрешности. Цель такого разделения — дать четкое понимание того, что именно ограничивает точность этого конкретного измерения, а значит, за счет чего эту точность можно улучшить в будущем.

Статистическая погрешность связана с разбросом значений, которые выдает эксперимент после каждой попытки измерить величину.

(Подробнее о статистической погрешности)

Систематическая погрешность характеризует несовершенство самого измерительного инструмента или методики обработки данных, а точнее, недостаточное знание того, насколько «сбоит» инструмент или методика.

(Подробнее о систематической погрешности)

Теоретическая/модельная погрешность — это неопределенность результата измерения, которая возникла потому, что методика обработки данных была сложная и в чем-то опиралась на теоретические предположения или результаты моделирования, которые тоже несовершенны. Впрочем, иногда эту погрешность считают просто разновидностью систематических погрешностей.

(Подробнее о погрешности теории и моделирования)

Наконец, в отдельный класс, видимо, можно отнести возможные человеческие ошибки, прежде всего психологического свойства (предвзятость при анализе данных, ленность при проверке того, как результаты зависят от методики анализа). Строго говоря, они не являются погрешностью измерения, поскольку могут и должны быть устранены. Зачастую это избавление от человеческих ошибок может быть вполне формализовано. Так называемый дважды слепой эксперимент в биомедицинских науках — один тому пример. В физике частиц есть похожие приемы (см. заметку Что означает «слепой анализ» при поиске новых частиц?).

Что означает погрешность

Стандартный вид записи измеренной величины с погрешностью знаком всем. Например, результат взвешивания какого-то предмета может быть 100 ± 5 грамм. Это означает, что мы не знаем абсолютно точно массу, она может быть и 101 грамм, и 96 грамм, а может быть и все 108 грамм. Но уж точно не 60 и не 160 грамм. Мы говорим лишь, сколько нам показывают весы, и из каких-то соображений определяем тот примерный разброс, который измерение вполне могло бы дать.

Тут надо подчеркнуть две вещи. Во-первых, в бытовой ситуации значение 100 ± 5 грамм часто интерпретируется так, словно истинная масса гарантированно лежит в этом диапазоне и ни в коей мере не может быть 94 или 106 грамм. Научная запись подразумевает не это. Она означает, что истинная масса скорее всего лежит в этом интервале, но в принципе может случиться и так, что она немножко выходит за его пределы. Это становится наиболее четко, когда речь идет о статистических погрешностях; см. подробности на страничке Что такое «сигма»?.

Во-вторых, надо четко понимать, что погрешности — это не ошибки эксперимента. Наоборот, они являются показателем качества эксперимента. Погрешности характеризуют объективный уровень несовершенства прибора или неидеальности методики обработки. Их нельзя полностью устранить, но зато можно сказать, в каких рамках результату можно доверять.

Некоторые дополнительные тонкости, связанные с тем, что именно означают погрешности, описаны на странице Тонкости анализа данных.

Как записывают погрешности

Указанный выше способ записи не уточняет, что это за погрешность перед нами. В физике элементарных частиц при предъявлении результатов источники погрешностей принято уточнять. В результате запись результата может иногда принять пугающий своей сложностью вид. Таких выражений не надо бояться, просто нужно внимательно посмотреть, что там указано.

В самом простом случае экспериментально измеренное число записывается так: результат и две погрешности одна за другой:

μ = 1,33 ± 0,14 ± 0,15.

Тут вначале всегда идет статистическая, а за ней — систематическая погрешность. Если же измерение не прямое, а в чем-то опирается на теорию, которая тоже не идеально точна, то следом за ними приписывается теоретическая погрешность, например:

μ = 1,33 ± 0,14 ± 0,15 ± 0,11.

Иногда для пущей понятности явно указывают, что есть что, и тогда погрешностей может быть даже больше. Это делается вовсе не для того, чтобы запутать читателя, а с простой целью: упростить в будущем расчет уточенного результата, если какой-то один из источников погрешностей будет уменьшен. Вот пример из статьи arXiv:1205.0934 коллаборации LHCb:

Означает эта длинная строка следующее. Тут записана измеренная детектором вероятность выписанного распада Bs-мезона, которая равна [1,83 ± четыре вида погрешностей] · 10–5. В перечислении погрешностей вначале идет статистическая погрешность, потом систематическая погрешность, затем погрешность, связанная с плохим знанием некоторой величины fs/fd (неважно, что это такое), и наконец, погрешность, связанная с плохим знанием вероятности распада B0-мезона (потому что измерение Bs-распада косвенно опирается на B0-распад).

Нередки также случаи, когда погрешности в сторону увеличения и уменьшения разные. Тогда это тоже указывается явно (пример из статьи hep-ex/0403004):

И наконец, совсем экзотический случай: когда величина настолько плохо определена, что погрешность пишут не к самому числу, а к показателю степени. Например, 1012 ± 2 означает, что величина вполне может лежать где-то между 10 миллиардами и 100 триллионами. В этом случае обычно нет большого смысла разделять погрешности на разные типы.

Величина со всеми явно указанными погрешностями часто не очень удобна для работы, например при сравнении теории и эксперимента. В этом случае погрешности суммируют. Эти слова ни в коем случае нельзя воспринимать как простое сложение! Как правило, речь идет о сложении в квадратах: если все три типа погрешностей обозначить как Δxstat., Δxsys., Δxtheor., то глобальная погрешность обычно вычисляется по формуле

Стоит еще добавить, что в других разделах физики нередко используют иную запись: вместо символа «±» погрешность просто помещают в скобках. Тогда ее понимают так: это погрешность, выраженная в единицах последней значащей цифры. Например, 100(5) означает 100 ± 5, а 1,230(15) означает 1,230 ± 0,015. В этом случае принципиально важно писать правильное число нулей в результате измерения, ведь запись 1,23(15) уже будет означать вдесятеро большую погрешность: 1,23 ± 0,15.

Рис. 1. Два вида изображения погрешностей у экспериментальных данных. Слева: «усы» показывают полные погрешности; справа: засечки показывают статистические, а длина «усов» — полные погрешности

Как изображают погрешности

Когда экспериментально измеренные значения наносятся на график, погрешности тоже приходится указывать. Это обычно делают в виде «усов», как на рисунке слева. Такие «усы» с засечками относятся к глобальной погрешности. Если же хочется разделить статистические и систематические погрешности, то делают так, как показано на рисунке справа. Здесь засечки показывают только статистические погрешности, а полные усы во всю длину отвечают глобальным погрешностям. Другой вариант: выделение полных погрешностей цветом, как это показано, например, на рисунке с данными ATLAS по хиггсовскому бозону.

Наконец, когда экспериментальная точка имеет отдельные погрешности по обеим осям, то их тоже наносят, и результат выглядит в виде крестика.

Свойства физического объекта (явления, процесса) определяются набором
количественных характеристик — физических величин.
Как правило, результат измерения представляет
собой число, задающее отношение измеряемой величины к некоторому эталону.
Сравнение с эталоном может быть как
прямым (проводится непосредственно
экспериментатором), так и косвенным (проводится с помощью некоторого
прибора, которому экспериментатор доверяет).
Полученные таким образом величины имеют размерность, определяемую выбором эталона.

Замечание. Результатом измерения может также служить количество отсчётов некоторого
события, логическое утверждение (да/нет) или даже качественная оценка
(сильно/слабо/умеренно). Мы ограничимся наиболее типичным для физики случаем,
когда результат измерения может быть представлен в виде числа или набора чисел.

Взаимосвязь между различными физическими величинами может быть описана
физическими законами, представляющими собой идеализированную
модель действительности. Конечной целью любого физического
эксперимента (в том числе и учебного) является проверка адекватности или
уточнение параметров таких моделей.

1.1 Результат измерения

Рассмотрим простейший пример: измерение длины стержня
с помощью линейки. Линейка проградуирована производителем с помощью
некоторого эталона длины — таким образом, сравнивая длину
стержня с ценой деления линейки, мы выполняем косвенное сравнение с
общепринятым стандартным эталоном.

Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат
x=xизм. Можно ли утверждать, что xизм — это длина
стержня?

Во-первых, значение x не может быть задано точно, хотя бы
потому, что оно обязательно округлено до некоторой значащей
цифры: если линейка «обычная», то у неё
есть цена деления; а если линейка, к примеру, «лазерная»
— у неё высвечивается конечное число значащих цифр
на дисплее.

Во-вторых, мы никак не можем быть уверенны, что длина стержня на
самом деле
такова хотя бы с точностью до ошибки округления. Действительно,
мы могли приложить линейку не вполне ровно; сама линейка могла быть
изготовлена не вполне точно; стержень может быть не идеально цилиндрическим
и т.п.

И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной
точности измерения, теряет смысл само понятие «длины стержня». Ведь
на масштабах атомов у стержня нет чётких границ, а значит говорить о его
геометрических размерах в таком случае крайне затруднительно!

Итак, из нашего примера видно, что никакое физическое измерение не может быть
произведено абсолютно точно, то есть
у любого измерения есть погрешность.

Замечание. Также используют эквивалентный термин ошибка измерения
(от англ. error). Подчеркнём, что смысл этого термина отличается от
общеупотребительного бытового: если физик говорит «в измерении есть ошибка»,
— это не означает, что оно неправильно и его надо переделать.
Имеется ввиду лишь, что это измерение неточно, то есть имеет
погрешность.

Количественно погрешность можно было бы определить как разность между
измеренным и «истинным» значением длины стержня:
δ⁢x=xизм-xист. Однако на практике такое определение
использовать нельзя: во-первых, из-за неизбежного наличия
погрешностей «истинное» значение измерить невозможно, и во-вторых, само
«истинное» значение может отличаться в разных измерениях (например, стержень
неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).
Поэтому говорят обычно об оценке погрешности.

Об измеренной величине также часто говорят как об оценке, подчеркивая,
что эта величина не точна и зависит не только от физических свойств
исследуемого объекта, но и от процедуры измерения.

Замечание. 
Термин оценка имеет и более формальное значение. Оценкой называют результат процедуры получения значения параметра или параметров физической модели, а также иногда саму процедуру. Теория оценок является подразделом математической статистики. Некоторые ее положения изложены в главе 3, но для более серьезного понимания следует обратиться к [5].

Для оценки значения физической величины корректно использовать
не просто некоторое фиксированное число xизм, а интервал (или
диапазон) значений, в пределах которого может лежать её
«истинное» значение. В простейшем случае этот интервал
может быть записан как

где δ⁢x — абсолютная величина погрешности.
Эта запись означает, что исследуемая величина лежит в интервале
x∈(xизм-δ⁢x;xизм+δ⁢x)
с некоторой достаточно большой долей вероятности (более подробно о
вероятностном содержании интервалов см. п. 2.2).
Для наглядной оценки точности измерения удобно также использовать
относительную величину погрешности:

Она показывает, насколько погрешность мала по сравнению с
самой измеряемой величиной (её также можно выразить в процентах:
ε=δ⁢xx⋅100%).

Пример. Штангенциркуль —
прибор для измерения длин с ценой деления 0,1⁢мм. Пусть
диаметр некоторой проволоки равен 0,37 мм. Считая, что абсолютная
ошибка составляет половину цены деления прибора, результат измерения
можно будет записать как d=0,40±0,05⁢мм (или
d=(40±5)⋅10-5⁢м).
Относительная погрешность составляет ε≈13%, то
есть точность измерения весьма посредственная — поскольку
размер объекта близок к пределу точности прибора.

О необходимости оценки погрешностей.

Измерим длины двух стержней x1 и x2 и сравним результаты.
Можно ли сказать, что стержни одинаковы или различны?

Казалось бы,
достаточно проверить, справедливо ли x1=x2. Но никакие
два результата измерения не равны друг другу с абсолютной точностью! Таким
образом, без указания погрешности измерения ответ на этот вопрос дать
невозможно.

С другой стороны, если погрешность δ⁢x известна, то можно
утверждать, что если измеренные длины одинаковы
в пределах погрешности опыта, если |x2-x1|<δ⁢x
(и различны в противоположном случае).

Итак, без знания погрешностей невозможно сравнить между собой никакие
два измерения, и, следовательно, невозможно сделать никаких
значимых выводов по результатам эксперимента: ни о наличии зависимостей
между величинами, ни о практической применимости какой-либо теории,
и т. п. В связи с этим задача правильной оценки погрешностей является крайне
важной, поскольку существенное занижение или завышение значения погрешности
(по сравнению с реальной точностью измерений) ведёт к неправильным выводам.

В физическом эксперименте (в том числе лабораторном практикуме) оценка
погрешностей должна проводиться всегда
(даже когда составители задания забыли упомянуть об этом).

1.2 Многократные измерения

Проведём серию из n одинаковых (однотипных) измерений одной
и той же физической величины (например, многократно приложим линейку к стержню) и получим
ряд значений

Что можно сказать о данном наборе чисел и о длине стержня?
И можно ли увеличивая число измерений улучшить конечный результат?

Если цена деления самой линейки достаточно мала, то как нетрудно убедиться
на практике, величины {xi} почти наверняка окажутся
различными. Причиной тому могут быть
самые разные обстоятельства, например: у нас недостаточно остроты
зрения и точности рук, чтобы каждый раз прикладывать линейку одинаково;
стенки стержня могут быть слегка неровными; у стержня может и не быть
определённой длины, например, если в нём возбуждены звуковые волны,
из-за чего его торцы колеблются, и т. д.

В такой ситуации результат измерения интерпретируется как
случайная величина, описываемая некоторым вероятностным законом
(распределением).
Подробнее о случайных величинах и методах работы с ними см. гл. 2.

По набору результатов 𝐱 можно вычислить их среднее арифметическое:

⟨x⟩=x1+x2+…+xnn≡1n⁢∑i=1nxi. (1.1)

Это значение, вычисленное по результатам конечного числа n измерений,
принято называть выборочным средним. Здесь и далее для обозначения
выборочных средних будем использовать угловые скобки.

Кроме среднего представляет интерес и то, насколько сильно варьируются
результаты от опыта к опыту. Определим отклонение каждого измерения от среднего как

Разброс данных относительно среднего принято характеризовать
среднеквадратичным отклонением:

s=Δ⁢x12+Δ⁢x22+…+Δ⁢xn2n=1n⁢∑i=1nΔ⁢xi2 (1.2)

или кратко

Значение среднего квадрата отклонения s2 называют
выборочной дисперсией.

Будем увеличивать число измерений n (n→∞). Если объект измерения и методика
достаточно стабильны, то отклонения от среднего Δ⁢xi будут, во-первых,
относительно малы, а во-вторых, положительные и отрицательные отклонения будут
встречаться примерно одинаково часто. Тогда при вычислении (1.1)
почти все отклонения Δ⁢xi скомпенсируются и можно ожидать,
что выборочное среднее при n≫1 будет стремиться к некоторому пределу:

Тогда предельное значение x¯ можно отождествить с «истинным» средним
для исследуемой величины.

Предельную величину среднеквадратичного отклонения при n→∞
обозначим как

Замечание. В общем случае указанные пределы могут и не существовать. Например, если измеряемый параметр
меняется во времени или в результате самого измерения, либо испытывает слишком большие
случайные скачки и т. п. Такие ситуации требуют особого рассмотрения и мы на них не
останавливаемся.


Замечание. Если n мало (n<10), для оценки среднеквадратичного отклонения
математическая статистика рекомендует вместо формулы (1.3) использовать
исправленную формулу (подробнее см. п. 5.2):



sn-12=1n-1⁢∑i=1nΔ⁢xi2,

(1.4)

где произведена замена n→n-1. Величину sn-1
часто называют стандартным отклонением.

Итак, можно по крайней мере надеяться на то, что результаты небольшого числа
измерений имеют не слишком большой разброс, так что величина ⟨x⟩
может быть использована как приближенное значение (оценка) истинного значения
⟨x⟩≈x¯,
а увеличение числа измерений позволит уточнить результат.

Многие случайные величины подчиняются так называемому нормальному закону
распределения (подробнее см. Главу 2). Для таких величин
могут быть строго доказаны следующие свойства:

  • при многократном повторении эксперимента бо́льшая часть измерений
    (∼68%) попадает в интервал x¯-σ<x<x¯+σ
    (см. п. 2.2).

  • выборочное среднее значение ⟨x⟩ оказывается с большей
    вероятностью ближе к истинному значению x¯, чем каждое из измерений
    {xi} в отдельности. При этом ошибка вычисления среднего
    убывает пропорционально корню из числа опытов n
    (см. п. 2.4).


Упражнение. Показать, что



s2=⟨x2⟩-⟨x⟩2.

(1.5)

то есть дисперсия равна разности среднего значения квадрата
⟨x2⟩=1n⁢∑i=1nxi2
и квадрата среднего ⟨x⟩2=(1n⁢∑i=1nxi)2.

1.3 Классификация погрешностей

Чтобы лучше разобраться в том, нужно ли многократно повторять измерения,
и в каком случае это позволит улучшить результаты опыта,
проанализируем источники и виды погрешностей.

В первую очередь, многократные измерения позволяют проверить
воспроизводимость результатов: повторные измерения в одинаковых
условиях, должны давать близкие результаты. В противном случае
исследование будет существенно затруднено, если вообще возможно.
Таким образом, многократные измерения необходимы для того,
чтобы убедиться как в надёжности методики, так и в существовании измеряемой
величины как таковой.

При любых измерениях возможны грубые ошибки — промахи
(англ. miss). Это «ошибки» в стандартном
понимании этого слова — возникающие по вине экспериментатора
или в силу других непредвиденных обстоятельств (например, из-за сбоя
аппаратуры). Промахов, конечно, нужно избегать, а результаты таких
измерений должны быть по возможности исключены из рассмотрения.

Как понять, является ли «аномальный» результат промахом? Вопрос этот весьма
непрост. В литературе существуют статистические
критерии отбора промахов, которыми мы, однако, настоятельно не рекомендуем
пользоваться (по крайней мере, без серьезного понимания последствий
такого отбора). Отбрасывание аномальных данных может, во-первых, привести
к тенденциозному искажению результата исследований, а во-вторых, так
можно упустить открытие неизвестного эффекта. Поэтому при научных
исследованиях необходимо максимально тщательно проанализировать причину
каждого промаха, в частности, многократно повторив эксперимент. Лишь
только если факт и причина промаха установлены вполне достоверно,
соответствующий результат можно отбросить.

Замечание. Часто причины аномальных отклонений невозможно установить на этапе
обработки данных, поскольку часть информации о проведении измерений к этому моменту
утеряна. Единственным способ борьбы с этим — это максимально подробное описание всего
процесса измерений в лабораторном журнале. Подробнее об этом
см. п. 4.1.1.

При многократном повторении измерении одной и той же физической величины
погрешности могут иметь систематический либо случайный
характер. Назовём погрешность систематической, если она повторяется
от опыта к опыту, сохраняя свой знак и величину, либо закономерно
меняется в процессе измерений. Случайные (или статистические)
погрешности меняются хаотично при повторении измерений как по величине,
так и по знаку, и в изменениях не прослеживается какой-либо закономерности.

Кроме того, удобно разделять погрешности по их происхождению. Можно
выделить

  • инструментальные (или приборные) погрешности,
    связанные с несовершенством конструкции (неточности, допущенные при
    изготовлении или вследствие старения), ошибками калибровки или ненормативными
    условиями эксплуатации измерительных приборов;

  • методические погрешности, связанные с несовершенством
    теоретической модели явления (использование приближенных формул и
    моделей явления) или с несовершенством методики измерения (например,
    влиянием взаимодействия прибора и объекта измерения на результат измерения);

  • естественные погрешности, связанные со случайным
    характером
    измеряемой физической величины — они являются не столько
    «ошибками» измерения, сколько характеризуют
    природу изучаемого объекта или явления.

Замечание. Разделение погрешностей на систематические и случайные
не является однозначным и зависит от постановки опыта. Например, производя
измерения не одним, а несколькими однотипными приборами, мы переводим
систематическую приборную ошибку, связанную с неточностью шкалы и
калибровки, в случайную. Разделение по происхождению также условно,
поскольку любой прибор подвержен воздействию «естественных»
случайных и систематических ошибок (шумы и наводки, тряска, атмосферные
условия и т. п.), а в основе работы прибора всегда лежит некоторое
физическое явление, описываемое не вполне совершенной теорией.

1.3.1 Случайные погрешности

Случайный характер присущ большому количеству различных физических
явлений, и в той или иной степени проявляется в работе всех без исключения
приборов. Случайные погрешности обнаруживаются просто при многократном
повторении опыта — в виде хаотичных изменений (флуктуаций)
значений {xi}.

Если случайные отклонения от среднего в большую или меньшую стороны
примерно равновероятны, можно рассчитывать, что при вычислении среднего
арифметического (1.1) эти отклонения скомпенсируются,
и погрешность результирующего значения ⟨x⟩ будем меньше,
чем погрешность отдельного измерения.

Случайные погрешности бывают связаны, например,

  • с особенностями используемых приборов: техническими
    недостатками
    (люфт в механических приспособлениях, сухое трение в креплении стрелки
    прибора), с естественными (тепловой и дробовой шумы в электрических
    цепях, тепловые флуктуации и колебания измерительных устройств из-за
    хаотического движения молекул, космическое излучение) или техногенными
    факторами (тряска, электромагнитные помехи и наводки);

  • с особенностями и несовершенством методики измерения (ошибка
    при отсчёте по шкале, ошибка времени реакции при измерениях с секундомером);

  • с несовершенством объекта измерений (неровная поверхность,
    неоднородность состава);

  • со случайным характером исследуемого явления (радиоактивный
    распад, броуновское движение).

Остановимся несколько подробнее на двух последних случаях. Они отличаются
тем, что случайный разброс данных в них порождён непосредственно объектом
измерения. Если при этом приборные погрешности малы, то «ошибка»
эксперимента возникает лишь в тот момент, когда мы по своей
воле
совершаем замену ряда измеренных значений на некоторое среднее
{xi}→⟨x⟩. Разброс данных при этом
характеризует не точность измерения, а сам исследуемый объект или
явление. Однако с математической точки зрения приборные и
«естественные»
погрешности неразличимы — глядя на одни только
экспериментальные данные невозможно выяснить, что именно явилось причиной
их флуктуаций: сам объект исследования или иные, внешние причины.
Таким образом, для исследования естественных случайных процессов необходимо
сперва отдельно исследовать и оценить случайные инструментальные погрешности
и убедиться, что они достаточно малы.

1.3.2 Систематические погрешности

Систематические погрешности, в отличие от случайных, невозможно обнаружить,
исключить или уменьшить просто многократным повторением измерений.
Они могут быть обусловлены, во-первых, неправильной работой приборов
(инструментальная погрешность), например, сдвигом нуля отсчёта
по шкале, деформацией шкалы, неправильной калибровкой, искажениями
из-за не нормативных условий эксплуатации, искажениями из-за износа
или деформации деталей прибора, изменением параметров прибора во времени
из-за нагрева и т.п. Во-вторых, их причиной может быть ошибка в интерпретации
результатов (методическая погрешность), например, из-за использования
слишком идеализированной физической модели явления, которая не учитывает
некоторые значимые факторы (так, при взвешивании тел малой плотности
в атмосфере необходимо учитывать силу Архимеда; при измерениях в электрических
цепях может быть необходим учет неидеальности амперметров и вольтметров
и т. д.).

Систематические погрешности условно можно разделить на следующие категории.

  1. 1.

    Известные погрешности, которые могут быть достаточно точно вычислены
    или измерены. При необходимости они могут быть учтены непосредственно:
    внесением поправок в расчётные формулы или в результаты измерений.
    Если они малы, их можно отбросить, чтобы упростить вычисления.

  2. 2.

    Погрешности известной природы, конкретная величина которых неизвестна,
    но максимальное значение вносимой ошибки может быть оценено теоретически
    или экспериментально. Такие погрешности неизбежно присутствуют в любом
    опыте, и задача экспериментатора — свести их к минимуму,
    совершенствуя методики измерения и выбирая более совершенные приборы.

    Чтобы оценить величину систематических погрешностей опыта, необходимо
    учесть паспортную точность приборов (производитель, как правило, гарантирует,
    что погрешность прибора не превосходит некоторой величины), проанализировать
    особенности методики измерения, и по возможности, провести контрольные
    опыты.

  3. 3.

    Погрешности известной природы, оценка величины которых по каким-либо
    причинам затруднена (например, сопротивление контактов при подключении
    электронных приборов). Такие погрешности должны быть обязательно исключены
    посредством модификации методики измерения или замены приборов.

  4. 4.

    Наконец, нельзя забывать о возможности существования ошибок, о
    которых мы не подозреваем, но которые могут существенно искажать результаты
    измерений. Такие погрешности самые опасные, а исключить их можно только
    многократной независимой проверкой измерений, разными методами
    и в разных условиях.

В учебном практикуме учёт систематических погрешностей ограничивается,
как правило, паспортными погрешностями приборов и теоретическими поправками
к упрощенной модели исследуемого явления.

Точный учет систематической ошибки возможен только при учете специфики конкретного эксперимента. Особенное внимание надо обратить на зависимость (корреляцию) систематических смещений при повторных измерениях. Одна и та же погрешность в разных случаях может быть интерпретирована и как случайная, и как систематическая.


Пример. 
Калибровка электромагнита производится при помощи внесения в него датчика Холла или другого измерителя магнитного потока. При последовательных измерениях с разными токами (и соотственно полями в зазоре) калибровку можно учитыать двумя различными способами:




Измерить значение поля для разных токов, построить линейную калибровочную кривую и потом использовать значения, восстановленные по этой кривой для вычисления поля по току, используемому в измерениях.



Для каждого измерения проводить допольнительное измерения поля и вообще не испльзовать значения тока.


В первом случае погрешность полученного значения будет меньше, поскльку при проведении прямой, отдельные отклонения усреднятся. При этом погрешность измерения поля будет носить систематический харрактер и при обработке данных ее надо будет учитывать в последний момент. Во втором случае погрешность будет носить статистический (случайный) харрактер и ее надо будет добавить к погрешности каждой измеряемой точки. При этом сама погрешность будет больше. Выбор той или иной методики зависит от конретной ситуации. При большом количестве измерений, второй способ более надежный, поскольку статистическая ошибка при усреднении уменьшается пропорционально корню из количества измерений. Кроме того, такой способ повзоляет избежать методической ошибки, связанной с тем, что зависимость поля от тока не является линейной.


Пример. 
Рассмотрим измерение напряжения по стрелочному вольтметру. В показаниях прибора будет присутствовать три типа погрешности:


1.

Статистическая погрешность, связанная с дрожанием стрелки и ошибкой визуального наблюдения, примерно равная половине цены деления.

2.

Систематическая погрешность, связанная с неправильной установкой нуля.

3.

Систематическая погрешность, связанная с неправильным коэффициентом пропорциональности между напряжением и отклонением стрелки. Как правило приборы сконструированы таким образом, чтобы максимальное значение этой погрешности было так же равно половине цены деления (хотя это и не гарантируется).


В большинстве
случаев при проведении эксперимента
несколькими приборами измеряются
различные величины. Для получения
конечного результата эти измерения
определенным образом комбинируются с
помощью некоторых математических
действий.

При этом может
возникнуть ситуация, когда комбинация
отдельных достаточно точных измерений
приведет к значительным ошибкам, сводящим
на нет цель эксперимента. Поэтому
необходимо еще до проведения эксперимента
тщательно исследовать вопрос о точности
окончательного результата. При проведении
такого анализа обычно предполагается,
что показания всех приборов имеют
случайную ошибку, либо характеризуются
некоторой неопределенностью, которую
можно рассматривать, как случайную
ошибку.

2.4.1. Показатели точности произведения и частного

К числу наиболее
распространенных функций, встречающихся
в экспериментальной работе, относятся
комбинации произведений и частных
(безразмерные величины). Типичными
примерами являются: число Рейнольдса
– произведение скорости, длины и
плотности деленное на вязкость, число
Маха – отношение скорости объекта к
скорости звука, коэффициент усиления,
представляющий отношение измерения
напряжения на выходе к измерению
напряжения на входе и т.п.

Рассмотрим общий
результат, который является линейной
функцией произведения двух измеряемых
величин x
и y:

R=kxy,
(2.6)

где k
– некоторый нормируемый множитель,
значение которого известно точно.

Допустим, что величинам
xиyсоответствуют выборочные средние
квадратичные отклоненияSxиSy.
Еслиx1иy1отклонения
от точного значенияxc
и yc,
обусловленные наличием случайной
ошибки, то для каждой конкретной пары
отсчетов выражение (2.6) примет вид

Rc
+ r
1
= k (x
c
+x
1)(yc
+ y
1),
(2.7.)

где r1
– отклонение результата.

Далее

Rc
+ r
1
= k(x
c
y
c
+ x
1yc
+ x
cy1
+ x
1y1),
(2.8.)

где членом
второго порядка x1
y1
можно пренебречь.

Используя зависимости
(2.6) и (2.8), можно найти отклонения результата
для каждого измерения

r1
= k(x
1yc
+ y
1xc)
,

r2
= k(x
2yc
+ y
2xc)
, ……., r
i
= k(x
iyc
+ y
ixc)
.

Из определения среднеквадратичного отклонения следует

Просуммировав n
уравнений, получим

член
полагаем равным нулю, т. к. любое
произведениеx
и y
с равной вероятностью может быть как
положительным, так и отрицательным, и
для большой выборки сумма таких
произведений будет стремиться к нулю.
Подставив в последнее выражение
зависимость для дисперсии общей ошибки,
находим

(2.9)

откуда легко
получить следующую зависимость

(2.10)

Можно показать,
что полученное соотношение справедливо
для случая, когда R=kx/y
, и что при
R=kxy/z
необходимо
использовать выражение

(2.11)

Член
Sr2/Rc2,
представляющий собой отношение среднего
квадратичного отклонения к точному
отсчету, является показателем точности,
который можно выразить в процентах и
называется вариацией.
Полученное выражение является
математической формулировкой следующего
правила: если результат является функцией
отношений либо произведений нескольких
величин, то квадрат относительной ошибки
результата равен сумме квадратов
относительных ошибок отдельных измерений.

Соседние файлы в папке Сладков (лекции, ккр)

  • #
  • #
  • #
  • #
  • #
  • #
  • #

to continue to Google Sites

Not your computer? Use Guest mode to sign in privately. Learn more

Как рассчитать экспериментальную ошибку в химии

На чтение 1 мин Просмотров 392 Опубликовано 05.06.2021

Ошибка – это мера точности значений в вашем эксперименте. Важно уметь вычислить экспериментальную ошибку, но есть несколько способов ее вычислить и выразить. Вот наиболее распространенные способы вычисления экспериментальной ошибки:

Содержание

  1. Формула ошибки
  2. Формула относительной ошибки
  3. Формула процента ошибки
  4. Пример расчета ошибки

Формула ошибки

В общем, ошибка – это разница между принятым или теоретическое значение и экспериментальное значение.

Ошибка = экспериментальное значение – известное значение

Формула относительной ошибки

Относительная ошибка = ошибка/известное значение

Формула процента ошибки

% Error = относительная ошибка x 100%

Пример расчета ошибки

Допустим, исследователь измеряет массу образца, который должен быть 5,51 грамм. Известно, что фактическая масса образца составляет 5,80 грамма. Рассчитайте погрешность измерения.

Экспериментальное значение = 5,51 грамма
Известное значение = 5,80 грамма

Ошибка = экспериментальное значение – известное значение
Ошибка = 5,51 г – 5,80 грамма
Ошибка = – 0,29 грамма

Относительная ошибка = ошибка/известное значение
Относительная ошибка = – 0,29 г/5,80 г
Относительная ошибка = – 0,050

% Error = относительная ошибка x 100%
% Error = – 0,050 x 100%
% Error = – 5,0%

Проведение
эксперимента

Познакомимся с
вычислением ошибки опыта, или, как ее часто называют, ошибки воспроизводимости.

Ошибки параллельных
опытов

Каждый
эксперимент содержит элемент неопределен­ности вследствие ограниченности
экспериментального ма­териала. Постановка повторных (или параллельных) опытов
не дает полностью совпадающих результатов, потому что всегда существует ошибка
опыта (ошибка воспроиз­водимости). Эту ошибку и нужно оценить по параллель­ным
опытам. Для этого опыт воспроизводится по возмож­ности в одинаковых условиях
несколько раз и затем бе­рется среднее арифметическое всех результатов. Среднее
арифметическое
 равно сумме всех п отдельных резуль­татов, деленной на количество
параллельных опытов п

.

Отклонение
результата любого опыта от среднего арифметического можно представить как
разность
 где  – результат отдельного опыта. Наличие
откло­нения свидетельствует об изменчивости, вариации значе­ний повторных
опытов. Для измерения этой изменчи­вости чаще всего используют дисперсию.
Диспер­сией называется среднее значение квадрата отклонений величины от ее
среднего значения. Дисперсия обозна­чается
s2 и
выражается формулой

.

где (n 1) – число
степеней свободы, равное количе­ству опытов минус единица. Одна степень свободы
исполь­зована для вычисления среднего.

Корень квадратный из
дисперсии, взятый с положи­тельным знаком, называется средним квадратическим от­клонением,
стандартом или квадратичной ошибкой

Стандарт имеет
размерность той величины, для кото­рой он вычислен. Дисперсия и стандарт – это
меры рассеяния, изменчивости. Чем больше дисперсия и стан­дарт, тем больше
рассеяны значения параллельных опы­тов около среднего значения.

Ошибка опыта являемся
суммарной величиной, результатом многих ошибок: ошибок измерений факторов,
ошибок измерений параметра оптимизации и др. Каждую из этих ошибок можно, в свою
очередь, разделить на состав­ляющие.

Вопрос о классификации ошибок
довольно сложный и вызывает много дискуссий. В качестве примера одной из
возможных схем классификации мы приведем схему из книги Ю. В. Кельница «Теория
ошибок измере­ний» (М., изд-во «Недра», 1967).

Все ошибки принято разделять
на два класса: система­тические и случайные.

Систематические ошибки
порождаются причинами, действующими регулярно, в определенном направлении. Чаще
всего эти ошибки можно изучить и определить количественно.

Систематические ошибки
находят, калибруя измери­тельные приборы и сопоставляя опытные данные с изме­няющимися
внешними условиями (например, при градуи­ровке термопары по реперным точкам,
при сравнении с эта­лонным прибором).

Если систематические ошибки
вызываются внешними условиями (переменной температуры, сырья и т. д.), следу­ет
компенсировать их влияние. Как это делать, будет показано ниже.

Случайными ошибками называются
те, которые появ­ляются нерегулярно, причины возникновения которых неизвестны и
которые невозможно учесть заранее.

Систематические и случайные
ошибки состоят из мно­жества элементарных ошибок. Для того, чтобы исключать инструментальные
ошибки, следует проверять приборы перед опытом, иногда в течение опыта и обязательно
после опыта. Ошибки при проведении самого опыта возникают вследствие неравномерного
нагрева реакционной среды, раз­ного способа перемешивания и т.п. При повторении
опытов такие ошибки могут вызвать большой разброс эксперимен­тальных
результатов.

Очень важно исключить из экспе­риментальных
данных грубые ошибки, так называемый брак при повторных опытах. Для отброса оши­бочных
опытов существуют правила. Для определения брака используют, например, кри­терий
Стьюдента

.

Значение t берут из таблицы t-распределения Стьюдента. Опыт считается
бракованным, если эксперименталь­ное значение критерия
t по модулю больше табличного значения.

Дисперсия параметра
оптимизации

Дисперсия всего эксперимента
получается в результате усреднения дисперсий всех опытов. По терми­нологии,
принятой в планировании эксперимента, речь идет о подсчете дисперсии параметра
оптимизации
 или, что то же самое, дисперсии воспроизводимости эксперимента

При подсчете дисперсии
параметра оптимизации квад­рат разности между значением
yq в каждом опыте и средним значением из n повторных наблюдений y нужно просумми­ровать по числу опытов в
матрице
N, а затем разделить на N(n1):

,

Где i = 1, 2, …, N;      q = 1, 2, …, n.

Такой формулой можно
пользоваться в случаях, когда число повторных опытов одинаково во всей матрице.

Дисперсию воспроизводимости
проще всего рассчиты­вать, когда соблюдается равенство числа повторных опы­тов
во всех экспериментальных точках. На практике весь­ма часто приходится
сталкиваться со случаями, когда число повторных опытов различно. Это происходит
вследствие отброса грубых наблюдений, неуверенности экспе­риментатора в
правильности некоторых результатов (в таких случаях возникает желание еще и еще
раз повторить опыт) и т.п.

Тогда при усреднении
дисперсий приходится пользо­ваться средним взвешенным значением дисперсий,
взятым с учетом числа степеней свободы

,

где

– дисперсия i-го опыта;

 – число степеней свободы i-м опыте, равное числу параллельных опытов
ni минус 1.

Число степеней
свободы средней дисперсии принима­ется равным сумме чисел степеней свободы
дисперсий, из которых она вычислена.

Случай с неравным числом
наблюдений, который мы рассмотрели выше, связан с нарушением ортогональности
матрицы. Поэтому здесь нельзя использовать расчетные формулы для коэффициентов,
приведенные ранее. Этот вопрос будет рассмотрен ниже.

Экспериментатору не следует
забывать о про­верке однородности дисперсий, неоднородные дисперсии усреднять
нельзя. Прежде чем пользоваться приведёнными выше формулами, нужно убедиться в
однородности суммируемых дисперсий.

Проверка
однородности дисперсий

Проверка однородности
дисперсий производится с помощью различных статистических критериев. Простей­шим
из них является критерий Фишера, предназначенный для сравнения двух дисперсий.
Критерий Фишера (
Fкритерий)
представляет собою отношение большей дисперсии к меньшей. Полученная величина
сравнивается с таблич­ной величиной
F-критерия.

Если полученное значение
дисперсионного отно­шения больше приведенного в таблице для соответствую­щих
степеней свободы и выбранного уровня значимости, это означает, что дисперсии
значимо отличаются друг от друга, т. е. что они неоднородны.

Если сравниваемое количество
дисперсий больше двух и одна дисперсия значительно превышает остальные, можно воспользоваться
критерием Кохрена. Этот критерий пригоден для случаев, когда во всех точках
имеется одина­ковое число повторных опытов. При этом подсчитывается дисперсия в
каждой горизонтальной строке матрицы

,

а затем из
всех дисперсий находится наибольшая
 ко­торая делится на сумму всех дисперсий. Критерий Кохрена – это
отношение максимальной дисперсии к сумме всех дисперсий

.

Гипотеза
об однородности дисперсий подтверждается, если экспериментальное значение
критерия Кохрена не превы­шает табличного значения. Тогда можно усреднять дис­персии
и пользоваться формулой

.

Если возникает предположение
о наличии неодно­родности дисперсий для случая, когда число повторных опытов неодина­ково
во всех точках, можно воспользоваться критерием Бартлета. По уже знакомой
формуле подсчитывается дисперсия воспроизводимости

.

Далее
находится величина

,

где

.

Здесь число
степеней свободы равно
N–1, где N – число сравниваемых дисперсий. При планировании экспе­римента типа
2
k это число равно числу опытов в матрице.

Бартлет показал, что величина
 приближенно подчиняется  – распределению с (N–1) степенями свободы. Значимость критерия
Бартлета проверяется обычным способом.

Критерий Бартлета базируется
на нормальном распре­делении. Если имеются отклонения от нормального распре­деления,
то проверка неоднородности дисперсий может привести к ошибочным результатам.

Можно предложить
использование
F-критерия даже в тех случаях, когда число
дисперсий больше двух. Делается это следующим образом. Из всех дисперсий
выделяются наибольшая и наименьшая. По
F-критерию производится проверка, значимо ли они различаются между
собой. Ясно, что если наибольшая и наименьшая дисперсии не отличаются значимо,
то диспер­сии, имеющие промежуточные значения, также не могут значимо
отличаться друг от друга. Тогда всю группу дис­персий можно считать
принадлежащей к единой совокуп­ности. В таких случаях нет надобности применять
кри­терий Бартлета.

Рандомизация

Чтобы исключить влияние
систематических ошибок, вызванных внешними условиями (переменой температуры,
сырья, лаборанта и т. д.), рекомендуется случайная пос­ледовательность при
постановке опытов, запланированных матрицей. Опыты необходимо рандомизировать
во времени. Термин «рандомизация» происходит от английского слова
random – случайный.

Если экспериментатор
располагает сведениями о пред­стоящих изменениях внешней среды, сырья,
аппаратуры и т. п., то целесообразно планировать эксперимент таким образом,
чтобы эффект влияния внешних условий был сме­шан с определенным
взаимодействием, которое не жалко потерять. Так, при наличии двух партий сырья
матрицу 23 можно разбить на два блока таким образом, чтобы эффект
сырья сказался на величине трехфакторного взаимодейст­вия. Тогда все линейные
коэффициенты и парные взаимо­действия будут освобождены от влияния
неоднородности сырья.

№ блока

x0

x1

x2

x3

x1x2

x1x3

x2x3

x1x2x3

y

1

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

2

+

+

+

+

y5

+

+

+

+

y6

+

+

+

+

y7

+

+

+

+

y8

В этой матрице при
составлении блока 1 отобраны все строки, для которых
, а при составления бло­ка 2 – все строки,
для которых
. Различие в сырье можно рассматривать как
новый фактор
. Тогда матрица 23, разбитая на
два блока, представляет собой полуреплику 24-1 с определяющим
контрастом
.

,                 ;

,                ;

,               ;

,                  ;

,                 ;

,              ;

,              ;

,                ;

Эффект сырья
отразился на подсчете свободного члена
b0 и
эффекта взаимодействия второго порядка
b123.

Аналогично можно разбить на
два блока любой экспе­римент типа 23. Главное – правильно выбрать
взаимодей­ствие, которым можно безболезненно пожертвовать. При отсутствии
априорных сведений выбирают взаимодействие самого высокого порядка:
x1x2x3 для 23, x1x2x3х4 для 24, x1x2x3x4x5 25 и т. д. Но если
экспериментатору известно, что одно из парных взаимодействий лишено, например,
физико-химического смысла, то можно пожертвовать парным взаимодействием.

Матрицу типа 2k можно разбить на количество блоков 2n (n степень
двойки) при
. Так, матрица 23
разбивается на два блока по четыре опыта в каждом и на четыре блока по
два опыта в каждом. Матрица 24 – на два блока по 8 опытов в каждом,
на четыре блока по четыре опыта и на восемь блоков по два опыта и т.д.

  • Ошибка экскаватора комацу lo3
  • Ошибка экскаватор вольво 128 psid 96 1
  • Ошибка эксель формула не охватывает смежные ячейки
  • Ошибка эксель формат или расширение этого файла являются недопустимыми
  • Ошибка эксель файл поврежден