Ошибка округления формула физика

Округление результатов

Обработка
результатов измерений в лабораториях
проводятся на калькуляторах и ПК. Иногда
можно увидеть, как магически действует
на многих студентов после вычислений
длинный ряд цифр после запятой. Однако
легко видеть, например, что запись
бессмысленна. При ошибке 0.076 последние
пять цифр числа не означает ровно ничего.

Если
допустить ошибку в сотых долях, то
тысячным, тем более десятитысячным
долям веры нет. Грамотная запись
результата была бы 2.87 ± 0.08. Всегда нужно
производить необходимые округления,
чтобы не было ложного впечатления о
большей, чем это есть на самом деле,
точности результатов.

Правила
округления:

1. Погрешность
измерения округляют до первой значащей
цифры, всегда увеличивая ее на единицу.

Примеры:
8.27 ≈ 9; 0.237 ≈ 0.3;

0.0862
≈ 0.09; 0.00035 ≈ 0.0004;

857.3
≈ 900; 43.5 ≈ 50.

2. Результаты
измерения округляют с точностью «до
погрешности», т.е. последняя значащая
цифра в результате должна находиться
в том же разряде, что и в погрешности.

Примеры:
243.871 ± 0.026 ≈ 243.87 ± 0.03;

243.871 ± 2.6 ≈ 244 ± 3;

1053 ± 47 ≈ 1050 ± 50.

3. Округление
результата измерения достигается
простым отбрасыванием цифр, если первая
из отбрасываемых цифр меньше 5.

Примеры:
8.337 (округлить до десятых) ≈ 8.3;

833.438
(округлить до целых) ≈ 833;

0.27375
(округлить до сотых) ≈ 0.27.

4. Если
первая из отбрасываемых цифр больше
или равна 5, (а за ней одна или несколько
цифр отличны от нуля), то последняя из
остающихся цифр увеличивается на
единицу.

Примеры:
8.3351 (округлить дл сотых) ≈ 8.34;

0.2510
(округлить до десятых) ≈ 0.3;

271.515
(округлить до целых) ≈ 272.

5. Если
отбрасываемая цифра равна 5, а за ней
нет значащих цифр (или стоят одни нули),
то последнюю оставляемую цифру увеличивают
на единицу, когда она нечетная, и оставляют
неизменной, когда она четная.

Примеры:
0.875 (округлить до сотых) ≈ 0.88;

0.5450 (округлить до
сотых) ≈ 0.54;

275.500
(округлить до целых) ≈ 276;

276.500
(округлить до целых) ≈ 276.

Обработка результатов косвенного измерения

К
косвенным измерениям прибегают, когда
физическую величину нельзя измерить
непосредственно или ее непосредственное
измерение затруднительно. В табл. 30
приведены формулы вычисления погрешностей
для различных видов математических
операций между измеряемыми величинами.

В
лабораторной практике большинство
измерений – косвенные и интересующая
величина является функцией одной или
нескольких непосредственно измеряемых
величин:

.

(10)

Как
следует из теории вероятностей, среднее
значение величины определяется
подстановкой в формулу (10) средних
значений непосредственно измеряемых
величин, т.е.

.

(11)

Требуется
найти абсолютную и относительную ошибки
этой функции, если известны ошибки
независимых переменных.

Рассмотрим
два крайних случая, когда ошибки являются
либо систематическими, либо случайными.
Единого мнения относительно вычисления
систематической ошибки косвенных
измерений нет. Однако если исходить из
определения систематической ошибки
как максимально возможной ошибки, то
целесообразно находить систематическую
ошибку
по
формулам

,

(12)

или

,

(13)

где
– частные производные функции (10) по
аргументу
найденные
в предположении, что все остальные
аргументы, кроме того, по которому
находится производная, постоянные;

– систематические ошибки аргументов.

Формулой
(12) удобно пользоваться в случае, если
функция имеет вид суммы или разности
аргументов. Выражение (13) применять
целесообразно, если функция имеет вид
произведения или частного аргументов.

Для
нахождения случайной ошибки
косвенных
измерений следует пользоваться формулами:

,

(14)

или

,

(15)

где
– доверительные интервалы при заданных
доверительных вероятностях (надежностях)
для аргументов
.
Следует иметь в виду, что доверительные
интервалы
должны быть взяты при одинаковой
доверительной вероятности.

В
этом случае надежность для доверительного
интервала
будет тоже P.

Часто
наблюдается случай, когда систематическая
ошибка и случайная ошибка близки друг
к другу, и они обе в одинаковой степени
определяют точность результата. В этом
случае общая ошибка ∑ находится как
квадратичная сумма случайной Δ и
систематической δ ошибок с вероятностью
не менее чем P, где P – доверительная
вероятность случайной ошибки:

.

При
проведении косвенных измерений в
невоспроизводимых условиях функцию
находят для каждого отдельного измерения,
а доверительный интервал вычисляют для
получения значений искомой величины
по тому же методу, что и для прямых
измерений.

Следует
отметить, что в случае функциональной
зависимости, выраженной формулой,
удобной для логарифмирования, проще
сначала определить относительную
погрешность, а затем из выражения
найти абсолютную погрешность.

Прежде
чем приступать к измерениям, всегда
нужно подумать о последующих расчетах
и выписать формулы, по которым будут
рассчитываться погрешности. Эти формулы
позволят понять, какие измерения следует
производить особенно тщательно, а на
какие не нужно тратить больших усилий.

При
обработке результатов косвенных
измерений предлагается следующий
порядок операций:

1. Все
величины, находимые прямыми измерениями,
обработать в соответствии с правилами
обработки результатов прямых измерений.
При этом для всех измеряемых величин
задать одно и то же значение надежности
P.

2. Оценить
точность результата косвенных измерений
по формулам (12) – (13), где производные
вычислить при средних значениях величин.
Если ошибка отдельных измерений входит
в результат дифференцирования несколько
раз, то надо сгруппировать все члены,
содержащие одинаковый дифференциал, и
выражения в скобках, стоящие перед
дифференциалом
взять
по модулю; знак d
заменить
на Δ.

3. Случайную
и систематическую ошибки необходимо
сложить по правилу сложения ошибок.

4. Определите
относительную погрешность результата
серии косвенных измерений

.

5. Результат
измерения записать в виде:

.

Пример.
Находится объем цилиндра по формуле

,

где
d
– диаметр цилиндра, h
– высота цилиндра.

Обе
эти величины определяются непосредственно.
Пусть измерение этих величин дало
следующие результаты:

,

,

при
одинаковой надежности
.

Среднее
значение объема, согласно (11) равно

.

Воспользовавшись
выражением (15) имеем:

;

,
;

;

.

Так
как измерения производились микрометром,
цена деления которого 0.01 мм, то
систематические ошибки
.
На основании (13) систематическая ошибкабудет

.

Абсолютная
погрешность измерения равна

.

Таким
образом, результат измерения равен

или
после округления имеет вид

.

Относительная
погрешность

.

Окончательно можно
записать

при
,.

Соседние файлы в папке 07-02-2013_14-00-36

  • #
  • #
  • #
  • #
  • #

Содержание

        • 0.0.0.1 Правила округления
  • 1 Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!
  • 2 Физика — рефераты, конспекты, шпаргалки, лекции, семинары
  • 3 Правила округления значений погрешностей и результатов измерения

Обработка результатов измерений в лабораториях проводятся на калькуляторах и ПК, и просто удивительно, как магически действует на многих студентов длинных ряд цифр после запятой. «Так точнее» – считают они. Однако легко видеть, например, что запись a = 2.8674523 ± 0.076 бессмысленна. При ошибке 0.076 последние пять цифр числа не означает ровно ничего.

Если мы допускаем ошибку в сотых долях, то тысячным, тем более десятитысячным долям веры нет. Грамотная запись результата была бы 2.87 ± 0.08. Всегда нужно производить необходимые округления, чтобы не было ложного впечатления о большей, чем это есть на самом деле, точности результатов.

Правила округления
  1. Погрешность измерения округляют до первой значащей цифры, всегда увеличивая ее на единицу.
    Примеры:

    8.27 ≈ 9 0.237 ≈ 0.3
    0.0862 ≈ 0.09 0.00035 ≈ 0.0004
    857.3 ≈ 900 43.5 ≈ 50
  2. Результаты измерения округляют с точностью «до погрешности», т.е. последняя значащая цифра в результате должна находиться в том же разряде, что и в погрешности.
    Примеры:

243.871 ± 0.026 ≈ 243.87 ± 0.03;
243.871 ± 2.6 ≈ 244 ± 3;
1053 ± 47 ≈ 1050 ± 50.

Округление результата измерения достигается простым отбрасыванием цифр, если первая из отбрасываемых цифр меньше 5.
Примеры:

8.337 (округлить до десятых) ≈ 8.3;
833.438 (округлить до целых) ≈ 833;
0.27375 (округлить до сотых) ≈ 0.27.

Если первая из отбрасываемых цифр больше или равна 5 , (а за ней одна или несколько цифр отличны от нуля), то последняя из остающихся цифр увеличивается на единицу.
Примеры:

8.3351 (округлить дл сотых) ≈ 8.34;
0.2510 (округлитьь до десятых) ≈ 0.3;
271.515 (округлить до целых) ≈ 272.

Если отбрасываемая цифра равна 5 , а за ней нет значащих цифр (или стоят одни нули), то последнюю оставляемую цифру увеличивают на единицу, когда она нечетная, и оставляют неизменной, когда она четная.
Примеры:

0.875 (округлить до сотых) ≈ 0.88;
0.5450 (округлить до сотых) ≈ 0.54;
275.500 (округлить до целых) ≈ 276;
276.500 (округлить до целых) ≈ 276.

Примечание.

  1. Значащими называют верные цифры числа, кроме нулей, стоящих впереди числа. Например, 0,00807 – в этом числе имеется три значащих цифры: 8, ноль между 8 и 7 и 7 ; первые три нуля незначащие.
    8.12 · 10 3 – в этом числе 3 значащих цифры.
  2. Записи 15,2 и 15,200 различны. Запись 15,200 означает, что верны сотые и тысячные доли. В записи 15,2 – верны целые и десятые доли.
  3. Результаты физических экспериментов записывают только значащими цифрами. Запятую ставят сразу после отличной от нуля цифры, а число умножают на десять в соответствующей степени. Нули, стоящие в начале или конце числа, как правило, не записывают. Например, числа 0,00435 и 234000 записывают так: 4,35&middot10 -3 и 2,34·10 5 . Подобная запись упрощает вычисления, особенно в случае формул, удобных для логарифмирования.

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Физика — рефераты, конспекты, шпаргалки, лекции, семинары

Правила округления значений погрешностей и результатов измерения

Погрешности измерений показывают также, какие цифры в полученном результате измерения сомнительны, поэтому нет смысла в записи погрешности с большим числом знаков.

По обычаю ограничиваются одной значащей цифрой и только при особо точных измерениях погрешность записывается двумя или тремя цифрами.

Используют 3 правила округления рассчитанного значения погрешности и полученного экспериментального результата измерения:

1. Погрешность результата измерения показывается двумя значащими цифрами, если первая из них 1 или 2, и одной — если первая цифра 3 и более.

2. Результат измерения округляется до того же десятичного разряда, которым заканчивается округления значение абсолютной погрешности.

3. Округление производится только в конечной ответы, а все предварительные расчеты проводят с одним — двумя лишними знаками.

В соответствии с правилом 1 установлены и нормированные значения погрешностей 3В: в числах 1,5% или 2,5% показываются два знака, но в числах 0,5%, 4%, 6%; показывается только один знак.

При округлении результатов измерения используют еще такие правила:

1) лишние цифры в целых чисел заменяют нулями, а в дробных десятичных отвергают; н., 732 «700.

2) если первая из заменяемых нулями или откидываемых цифр 5, то последняя из оставшихся цифр увеличивается на 1;

3) если отвергаем цифра = 5 со следующими нулями, то округление производится до ближнего четного числа.

Результаты измерения можно записать некоторыми значимыми цифрами и рядом нулей, но в этом случае и нули должны полностью определенное значение и характеризуют погрешность измерения. Н., пусть результат измерения их = 9,5 B, который можно записать цифрами: 9,5; 9,50; 9,500. В этих случаях нули после последней значащей цифры определяют показатель достоверности результатов измерения. С этой точки зрения эти записи необходимо читать так: 9,45

Правила записи чисел по СТ СЭВ 543 — 77

1. Значащие цифры данного числа — все цифры от первой слева, не равной нулю, до последней справа. При этом нули, следующие из множителя 10, не учитывают.

а) Число 12,0 имеет три значащие цифры.

б) Число 30 имеет две значащие цифры.

в) Число 120 . 10 имеет три значащие цифры.

г) 0,514 . 10 имеет три значащие цифры.

д) 0,0056 имеет две значащие цифры.

2. Если необходимо указать, что число является точным, после числа указывают слово «точно» или последнюю значащую цифру печатают жирным шрифтом. Например, в печатном тексте: 1 кВт . ч = 3600 Дж (точно).

3. Различают записи приближенных чисел по количеству значащих цифр.

а) Различают числа 2,4 и 2,40. Запись 2,4 означает, что верны только целые и десятые доли, истинное значение числа может быть, например, 2,43 и 2,38. Запись 2,40 означает, что верны и сотые доли: истинное значение числа может быть 2,403 и 2,398, но не 2,41 и не 2,382.

б) Запись 382 означает, что все цифры верны: если за последнюю цифру ручаться нельзя, то число должно быть записано 3,8 . 10 .

в) Если в числе 4720 верны лишь две первые цифры, оно должно быть быть записано 47 * 10 или 4,7 * 10 .

4. Число, для которого указывают допустимое отклонение, должно иметь последнюю значащую цифру того же разряда, как и последняя значащая цифра отклонения.

а) Правильно: 17,0 + 0,2. Неправильно: 17 + 0,2 или 17,00 + 0,2.

б) Правильно: 12,13 + 0,17. Неправильно: 12,13 + 0,2.

в) Правильно: 46,40 + 0,15. Неправильно: 46,4 + 0,15 или 46,402 + 0,15.

5. Числовые значения величины и её погрешности (отклонения) целесообразно записывать с указанием одной и той же единицы величины.

6. Интервалы между числовыми значениями величин целесообразно записывать:

от 60 до 100, свыше 120 до 150.

Правила округления чисел по СТ СЭВ 543 — 77

1. Округление числа представляет собой отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда.

2. В случае, если первая из отбрасываемых цифр (считая слева направо) менее 5, то последнюю сохраняемую цифру не меняют.

Пример: Округление числа 12,23 до трех значащих цифр дает 12,2.

3. В случае, если первая из отбрасываемых цифр (считая слева направо) равна 5, то последнюю сохраняемую цифру увеличивают на единицу.

Пример: Округление числа 0,145 до двух цифр дает 0,15.

Примечание. В тех случаях, когда следует учитывать результаты предыдущих округлений, поступают следующим образом.

Если отбрасываемая цифра получена в результате округления в меньшую сторону, то последнюю оставшуюся цифру увеличивают на единицу (с переходом при необходимости в следующие разряды).

Пример: Округление числа 0,25 (полученного в результате предыдущего округления числа 0,252) дает 0,3 .

4. В случае, если первая из отбрасываемых цифр (считая слева направо) более 5, то последнюю сохраняемую цифру увеличивают на единицу.

Пример: Округление числа 0,156 до двух значащих цифр дает 0,16.

Округление выполняют сразу до желаемого количества значащих цифр, а не по этапам.

Пример: Округление числа 565,46 до трех значащих цифр дает 565.

6. Целые числа округляют по тем же правилам , что и дробные.

Пример: Округление числа 23456 до двух значащих цифр дает 23* 10 .

Из книги Л.И. Любимов, И.Д. Форсилова, Е.З. Шапиро

«Поверка средств электрических измерений. Справочная книга».

Ленинград, Энергоатомиздат, Ленинградское отделение, 1987 год

стр. 47 . 2.7. Правила округления и записи результатов измерений

Погрешность результата измерений позволяет определить те цифры результата, которые являются достоверными. Нецелесообразно удерживать в выражении для измеренного значения физической величины большое число цифр, т.к. цифры младших разрядов могут оказаться недостоверными.

Существуют определенные правила округления.

1. В выражении погрешности удерживается не более двух значащих цифр, причем последняя цифра обычно округляется до нуля или пяти. Две цифры следует обязательно удерживать в том случае, когда цифра старшего разряда менее 3.

2 . Числовое значение результата измерения должно оканчиваться цифрой того же разряда, что и значение погрешности.

Пример. 235,732 + 0,15 округляется до 235,73 + 0,15, но не до 235,7 + 0,15.

При промежуточных вычислениях целесообразно, чтобы используемые числа содержали на одну значащую цифру больше, чем будет в окончательном результате. Это позволяет уменьшить погрешность от округления.

3. Если первая из отбрасываемых цифр (считая слева направо) меньше пяти, то остающиеся цифры не меняются.

Пример. 442,749 + 0,4 округляется до 442,7 + 0,4.

4. Если первая из отбрасываемых цифр больше или равна пяти, то последняя сохраняемая цифра увеличивается на единицу.

Пример. 37,268 + 0,5 округляется до 37,3 + 0,5; 37,253 + 0,5 округляется до 37,3 + 0,5.

5. Округление следует выполнять сразу до желаемого числа значащих цифр, поэтапное округление может привести к ошибкам.

Пример. Поэтапное округление результата измерения 220,46 + 4 дает на первом этапе 220,5 + 4 и на втором 221 + 4, в то время как правильный результат округления 220 + 4.

Особенно внимательно нужно относиться к записи результата измерения без указания погрешности (что в общем случае крайне нежелательно). В этом случае в записываемом числе оставляются только те цифры, за достоверность которых можно ручаться, т.е. все значащие цифры записанного числа должны быть достоверными. Значащими цифрами числа считаются все цифры от первой слева, не равной нулю, до последней записанной справа цифры, при этом нули, записанные в виде множителя 10 в степени п, не учитываются. Поэтому записи 2,4 х 10 В в степени 3 и 2400 В не являются тождественными. Первая запись означает, что верны цифры тысяч и сотен вольт и истинное значение может быть, например, 2,42 или 2,38 кВ. Запись 2400 В означает, что верны и единицы вольт, истинное значение может быть 2400,2 или 2390,8 В, но не 2420 или 2380 В.

Из книги П.В. Новицкий и И.А. Зограф

«Оценка погрешностей результатов измерений»

Ленинград, Энергоатомиздат, Ленинградское отделение, 1991 год

стр. 25 1 — 4. ПРАВИЛА ОКРУГЛЕНИЯ ЗНАЧЕНИЙ ПОГРЕШНОСТИ И РЕЗУЛЬТАТА ИЗМЕРЕНИЙ

Рассчитывая значения погрешности, особенно при пользовании электронным калькулятором, значения погрешностей получают с большим числом знаков. Однако исходными данными для расчета являются нормируемые значения погрешности средств измерения, которые указываются всего с одной или двумя значащими цифрами. Вследствие этого и в окончательном значении рассчитанной погрешности должны быть оставлены только первые одна — две значащие цифры. При этом приходится учитывать следующее. Если полученное число начинается с цифр 1 или 2, то отбрасывание второго знака приводит к очень большой ошибке (до 30 — 50 %), что недопустимо. Если же полученное число начинается, например, с цифры 9, то сохранение второго знака, т. е. указание погрешности, например, 0,94 вместо 0,9, является дезинформацией, так как исходные данные не обеспечивают такой точности.

Исходя из этого на практике установилось такое правило: если полученное число начинается с цифры, равной или большей 3, то в нем сохраняется лишь один знак; если же оно начинается с цифр, меньших 3, т. е. с цифр 1 и 2, то в нем сохраняют два знака. В соответствии с этим правилом установлены и нормируемые значения погрешностей средств измерений: в числах 1,5 и 2,5 % указываются два знака, но в числах 0,5; 4; 6 % указывается

В итоге можно сформулировать три правила округления рассчитанного значения погрешности и полученного экспериментального результата измерения.

1 . Погрешность результата измерения указывается двумя значащими цифрами, если первая из них равна 1 или 2, и одной, — если первая есть 3 и более.

2 . Результат измерения округляется до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности.

3 . Округление производится лишь в окончательном ответе, а все предварительные вычисления проводят с одним — двумя лишними знаками.

Пример . На вольтметре класса точности 2,5 с пределом измерений 300 В был получен отсчет измеряемого напряжения Х = 267,5 В.

Расчет погрешности удобнее вести в следующем порядке: сперва необходимо найти абсолютную погрешность, а затем — относительную. Абсолютная погрешность / (Х) = jo X к /100; при jo = 2,5 % и Х к = 300 В это даёт / (Х) = 2,5 х 300 / 100 = 7,5 В

8 В; относительная

jo = / o x 100 / X = 7,5 x 100 / 267,5 = 2,81 %

Так как первая значащая цифра значения абсолютной погрешности (7,5 В) больше трех, то это значение должно быть округлено по обычным правилам округления до 8 В, но в значении относительной погрешности (2,81 %) первая значащая цифра меньше 3, поэтому здесь должны быть сохранены в ответе два десятичных разряда и указано j ( x ) = 2,8 %. Полученное значение Х = 267,5 В должно быть округлено до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности , т. е. до целых единиц вольт.

Таким образом, в окончательном ответе должно быть сообщено: «Измерение произведено с относительной погрешностью j ( x ) = 2,8 % . Измеренное напряжение Х = (268 + 8) В или Х = 268 В + 8 В.

При этом более наглядно указать пределы интервала неопределенности измеренной величины в виде Х = (260 — 276) В или 260 В X

Наряду с изложенными правилами округления значений погрешностей результатов измерения иногда предлагаются более обоснованные, но и более сложные правила. Недостаток изложенных правил состоит в том, что относительная погрешность от округления изменяется скачком при переходе, например, от числа 0,29, когда она составляет (0,30 — 0,29) / 0,30 = 3 %, к числу 0,3, когда она будет (0,4 — 0,3) / 0,3 = 30 %. Для устранения столь резкого скачка относительной погрешности округления предлагается каждую декаду возможных значений округляемой погрешности делить на три части: от 0,1 до 0,2, от 0,2 до

0,5 и от 0,5 до 1,0, и в каждой из этих частей использовать свой шаг округления, соответственно равный 0,02, 0,05 и 0,1. Тогда ряд разрешенных к употреблению округленных значений погрешностей получает вид: 0,10 — 0,12 — 0,14 — 0,16 — 0,18 — 0,20 — 0,25 — 0,30 — 0,35 — 0,40 — 0,45 — 0,5 — 0,6 — 0,7 — 0,8 — 0,9 — 1,0. Бесспорное преимущество такого ряда состоит в том, что погрешность от округления на границах участков изменяется лишь от 5 до 10 % . Однако при использовании такого правила округления погрешности последние цифры результата, оставляемые после округления, также должны соответствовать приведенному ряду.

Из книги В.А.Кузнецова и Г.В.Ялунина » МЕТРОЛОГИЯ

теоретические, прикладные и законодательные основы «

Москва, Изд — во стандартов, 1998 г.

стр. 215 7.6 Рекомендуемые правила по округлению результатов измерений

Результаты измерений следует округлять по сложившимся правилам. В основе этих правил лежит следующее положение: числовое значение результата измерений представляется так, чтобы оно оканчивалось десятичным знаком того же разряда, какой имеет погрешность этого результата.

Правила округления результата измерений для случаев обычных измерений, не связанных с необходимостью получения высокоточных результатов:

1) погрешность результата измерений представляется с одной или двумя значащими цифрами. Две значащие цифры приводятся в случае выполнения точных измерений;

2) результат измерений округляется так, чтобы он оканчивался цифрой того же разряда, что и значение погрешности. Если числовое значение результата измерения представляется десятичной дробью, оканчивающейся нулями, то нули отбрасываются только до того разряда, который соответствует разряду числового значения погрешности;

3) если цифра старшего из отбрасываемых разрядов меньше 5, то остающиеся цифры в

числе не изменяют. Если эта цифра равна или больше 5, то последнюю оставляемую цифру увеличивают на единицу. Лишние цифры в целых числах заменяют нулями, а в десятичных дробях отбрасывают. Например, числовое значение результата измерения составляет 25,458 при погрешности результата, выраженной пределами + 0 ,02; округление результата будет 25,46. Если пределы погрешности имеют + 0,002, то числовое значение результата сохраняется полностью. Числовое значение результата измерений 105553 получено с погрешностью + 0,0005. В нем сохраняются четыре значащие цифры и округление даст число 105600; если числовое значение результата 105,553, то при тех же условиях округление дает число 105,6;

4) если отбрасываемая цифра равна пяти, а следующие за ней цифры неизвестны (отсутствуют) или нули, то последнюю сохраняемую цифру числа не изменяют, если она четная, и увеличивают на единицу, если она нечетная. Число 105,5 при сохранении трех значащих цифр округляют до 106;

5) правила, изложенные в п.1. 4, применяются только при округлении окончательных результатов. Все промежуточные результаты целесообразно представлять тем числом разрядов, которые удается получить

Ошибки округления , [1] также называется ошибка округления , [2] представляют собой разность между результатом полученного по заданному алгоритму с использованием точного арифметическим и результат получает тем же самый алгоритм с использованием конечной точности, округленная арифметики. [3] Ошибки округления возникают из-за неточности в представлении действительных чисел и выполняемых с ними арифметических операций. Это форма ошибки квантования . [4] При использовании приближенных уравнений или алгоритмов, особенно при использовании конечного числа цифр для представления действительных чисел (которые теоретически имеют бесконечное количество цифр), одна из целейчисленный анализ предназначен для оценки ошибок вычислений. [5] Ошибки вычислений, также называемые числовыми ошибками , включают как ошибки усечения, так и ошибки округления.

Когда выполняется последовательность вычислений с вводом, включающим любую ошибку округления, ошибки могут накапливаться, иногда доминируя в вычислении. В плохо обусловленных проблемах может накапливаться значительная ошибка. [6]

Короче говоря, есть два основных аспекта ошибок округления, связанных с численными расчетами: [7]

  1. Цифровые компьютеры имеют ограничения по величине и точности их способности представлять числа.
  2. Некоторые численные операции очень чувствительны к ошибкам округления. Это может быть связано как с математическими соображениями, так и с тем, как компьютеры выполняют арифметические операции.

Ошибка представления

Ошибка, возникающая при попытке представить число с помощью конечной строки цифр, является формой ошибки округления, называемой ошибкой представления . [8] Вот несколько примеров ошибок представления в десятичных представлениях:

Обозначение
Представление
Приближение
Ошибка
1/7 0. 142 857 0,142 857 0,000 000 142 857
пер 2 0,693 147 180 559 945 309 41 … 0,693 147 0,000 000 180 559 945 309 41 …
журнал 10 2 0,301 029 995 663 981 195 21 … 0,3010 0,000 029 995 663 981 195 21 …
32 1,259 921 049 894 873 164 76 … 1,25992 0,000 001 049 894 873 164 76 …
2 1,414 213 562 373 095 048 80 … 1,41421 0,000 003 562 373 095 048 80 …
е 2,718 281 828 459 045 235 36 … 2,718 281 828 459 045 0,000 000 000 000 000 235 36 …
π 3,141 592 653 589 793 238 46 … 3,141 592 653 589 793 0,000 000 000 000 000 238 46 …

Увеличение числа цифр, разрешенных в представлении, снижает величину возможных ошибок округления, но любое представление, ограниченное конечным числом цифр, все равно вызовет некоторую степень ошибки округления для несчетного количества действительных чисел. Дополнительные цифры, используемые на промежуточных этапах вычислений, называются защитными цифрами . [9]

Многократное округление может привести к накоплению ошибок. [10] Например, если 9,945309 округляется до двух десятичных знаков (9,95), а затем снова округляется до одного десятичного знака (10,0), общая ошибка составляет 0,054691. Округление 9,945309 до одного десятичного знака (9,9) за один шаг приводит к меньшей ошибке (0,045309). Обычно это происходит при выполнении арифметических операций (см. « Потеря значимости» ).

Система счисления с плавающей точкой

По сравнению с системой счисления с фиксированной запятой, система счисления с плавающей запятой более эффективна при представлении действительных чисел, поэтому она широко используется в современных компьютерах. Пока реальные цифры бесконечны и непрерывны, система счисления с плавающей запятой конечно и дискретно. Таким образом, ошибка представления, которая приводит к ошибке округления, возникает в системе счисления с плавающей запятой.

Обозначение системы счисления с плавающей запятой

Система счисления с плавающей запятой характеризуется целые числа:

: основание или основание
: точность
: диапазон экспоненты, где это нижняя граница и это верхняя граница
  • Любой имеет следующий вид:
куда целое число такое, что для , а также целое число такое, что .

Нормализованная система с плавающей запятой

  • Система счисления с плавающей запятой нормализуется, если первая цифра всегда отличен от нуля, если только число не равно нулю. [3] Поскольку мантиссамантисса ненулевого числа в нормированной системе удовлетворяет . Таким образом, нормализованная форма ненулевого числа с плавающей запятой IEEE : куда . В двоичном формате первая цифра всегдапоэтому он не записывается и называется неявным битом. Это дает дополнительный бит точности, так что ошибка округления, вызванная ошибкой представления, уменьшается.
  • Поскольку система счисления с плавающей запятой является конечным и дискретным, он не может представлять все действительные числа, что означает, что бесконечные действительные числа могут быть аппроксимированы только некоторыми конечными числами с помощью правил округления . Приближение заданного действительного числа с плавающей запятой к можно обозначить.

    • Общее количество нормализованных чисел с плавающей запятой равно
, куда

считает выбор знака, положительный или отрицательный
считает выбор первой цифры
считает оставшуюся мантиссу
считает выбор показателей
считает тот случай, когда число .

Стандарт IEEE

В стандарте IEEE база двоичная, т.е., и используется нормализация. Стандарт IEEE хранит знак, показатель степени и мантиссу в отдельных полях слова с плавающей запятой, каждое из которых имеет фиксированную ширину (количество бит). Два наиболее часто используемых уровня точности для чисел с плавающей запятой — это одинарная точность и двойная точность.

Точность
Знак (биты)
Экспонента (биты)
Мантисса (биты)
Одинокий 1 8 23
Двойной 1 11 52

Машинный эпсилон

Машинный эпсилон может использоваться для измерения уровня ошибки округления в системе счисления с плавающей запятой. Вот два разных определения. [3]

  • Машинный эпсилон, обозначаемый , — максимально возможная абсолютная относительная ошибка представления ненулевого действительного числа в системе счисления с плавающей запятой.
  • Машинный эпсилон, обозначаемый , это наименьшее число такой, что . Таким образом, в любое время .

Ошибка округления при разных правилах округления

Существует два распространенных правила округления: округление за отрезком и округление до ближайшего. Стандарт IEEE использует округление до ближайшего.

  • По очереди : Основание- расширение усекается после цифра.

    • Это правило округления смещено, потому что оно всегда приближает результат к нулю.
  • Округление до ближайшего : устанавливается равным ближайшему числу с плавающей запятой к . При равенстве используется число с плавающей запятой, последняя сохраненная цифра которого четная.

    • Для стандарта IEEE, где базовый является , это означает, что когда есть ничья, она округляется так, чтобы последняя цифра была равна .
    • Это правило округления более точное, но более затратное с точки зрения вычислений.
    • Округление таким образом, чтобы последняя сохраненная цифра была даже при равенстве, гарантирует, что она не округляется систематически в большую или меньшую сторону. Это сделано для того, чтобы избежать возможности нежелательного медленного отклонения в длинных вычислениях просто из-за смещения округления.
  • В следующем примере показан уровень ошибки округления в соответствии с двумя правилами округления. [3] Правило округления, округление до ближайшего, в целом приводит к меньшей ошибке округления.
Икс
По очереди
Ошибка округления
Округление до ближайшего
Ошибка округления
1,649 1.6 0,049 1.6 0,049
1,650 1.6 0,050 1,7 0,050
1,651 1.6 0,051 1,7 -0,049
1,699 1.6 0,099 1,7 -0,001
1,749 1,7 0,049 1,7 0,049
1,750 1,7 0,050 1,8 -0,050

Расчет ошибки округления в стандарте IEEE

Предположим, что используется округление до ближайшего и двойная точность IEEE.

  • Пример: десятичное число может быть преобразован в

Поскольку бит справа от двоичной точки — это и за ним следуют другие ненулевые биты, правило округления до ближайшего требует округления, то есть добавления немного к немного. Таким образом, нормализованное представление с плавающей запятой в стандарте IEEE является

.
  • Теперь ошибку округления можно вычислить при представлении с участием .

Это представление получается путем отбрасывания бесконечного хвоста

из правого хвоста, а затем добавил на этапе округления.

потом .
Таким образом, ошибка округления равна .

Измерение ошибки округления с помощью машинного эпсилона

Машина эпсилон может использоваться для измерения уровня ошибки округления при использовании двух вышеупомянутых правил округления. Ниже приведены формулы и соответствующие доказательства. [3] Здесь используется первое определение машинного эпсилон.

Теорема

  1. По очереди:
  2. Округление до ближайшего:

Доказательство

Позволять куда , и разреши быть представлением с плавающей запятой . Поскольку используется последовательное нарезание,
* Чтобы определить максимум этой величины, необходимо найти максимум числителя и минимум знаменателя. С (нормализованная система), минимальное значение знаменателя равно . Числитель ограничен сверху. Таким образом,. Следовательно,для порезки. Доказательство для округления до ближайшего аналогично.

  • Обратите внимание, что первое определение машинного эпсилон не совсем эквивалентно второму определению при использовании правила округления до ближайшего, но оно эквивалентно для последовательного перехода.

Ошибка округления, вызванная арифметикой с плавающей запятой

Даже если некоторые числа могут быть представлены точно числами с плавающей запятой и такие числа называются машинными числами , выполнение арифметических операций с плавающей запятой может привести к ошибке округления в окончательном результате.

Дополнение

Машинное сложение состоит из выравнивания десятичных знаков двух добавляемых чисел, их сложения и последующего сохранения результата как числа с плавающей запятой. Само сложение может быть выполнено с более высокой точностью, но результат должен быть округлен до указанной точности, что может привести к ошибке округления. [3]

Например, добавив к в IEEE двойной точности следующим образом:

  • Это сохранено как поскольку в стандарте IEEE используется округление до ближайшего. Следовательно, равно в IEEE двойной точности и ошибка округления .

Из этого примера видно, что при сложении большого числа и малого числа может возникнуть ошибка округления, поскольку сдвиг десятичных знаков в мантиссах для согласования показателей степени может вызвать потерю некоторых цифр.

Умножение

В общем, продукт -цифровые мантиссы содержат до цифр, поэтому результат может не соответствовать мантиссе. [3] Таким образом, в результат будет включена ошибка округления.

  • Например, рассмотрим нормализованную систему счисления с плавающей запятой с основанием и цифры мантиссы не более . потом а также . Обратите внимание, что но так как там самое большее цифры мантиссы. Ошибка округления будет.

Подразделение

В общем, частное -цифровые мантиссы могут содержать более -цифры. [3] Таким образом, в результат будет включена ошибка округления.

  • Например, если приведенная выше нормализованная система счисления с плавающей запятой все еще используется, то но . Итак, хвост отрезан.

Вычитающая отмена

Вычитание двух почти равных чисел называется вычитанием . [3]

  • Когда начальные цифры отменяются, результат может быть слишком маленьким для точного представления, и он будет представлен просто как .

    • Например, пусть и здесь используется второе определение машинного эпсилон. Какое решение?
      Известно, что а также почти равные числа, и . Однако в системе счисления с плавающей запятой. Несмотря на то что достаточно большой, чтобы быть представленным, оба экземпляра были округлены, давая .
  • Даже с несколько большим , в типичных случаях результат по-прежнему существенно ненадежен. Нет особой веры в точность значения, потому что наибольшая неопределенность в любом числе с плавающей запятой — это цифры в крайнем правом углу.

    • Например, . Результат ясно представима, но в это мало веры.

Накопление ошибки округления

Ошибки могут увеличиваться или накапливаться, когда последовательность вычислений применяется к начальному входу с ошибкой округления из-за неточного представления.

Нестабильные алгоритмы

Алгоритм или численный процесс называется стабильным, если небольшие изменения на входе вызывают только небольшие изменения на выходе, и называется нестабильным, если производятся большие изменения на выходе. [11]

Последовательность вычислений обычно происходит при запуске какого-либо алгоритма. Количество ошибок в результате зависит от стабильности алгоритма . Ошибка округления будет увеличиваться нестабильными алгоритмами.

Например, для с участием данный. Легко показать, что. Предполагать это наше начальное значение и имеет небольшую ошибку представления , что означает, что начальный вход в этот алгоритм вместо того . Затем алгоритм выполняет следующую последовательность вычислений.

Ошибка округления увеличивается в последующих вычислениях, поэтому этот алгоритм нестабилен.

Плохо обусловленные проблемы

Даже если используется стабильный алгоритм, решение проблемы может быть неточным из-за накопления ошибок округления, когда сама проблема плохо обусловлена .

Число обусловленности проблемы — это отношение относительного изменения решения к относительному изменению входных данных. [3] Проблема хорошо обусловлена, если небольшие относительные изменения входных данных приводят к небольшим относительным изменениям в решении. В противном случае проблема плохо обусловлена . [3] Другими словами, проблема является плохо обусловленной, если ее число условий «намного больше», чем.

Число обусловленности вводится как мера ошибок округления, которые могут возникнуть при решении плохо обусловленных задач. [7]

Пример из реального мира: отказ ракеты «Патриот» из-за увеличения ошибки округления

Американская ракета Пэтриот

25 февраля 1991 года, во время войны в Персидском заливе, американская ракетная батарея «Пэтриот» в Дхаране, Саудовская Аравия, не смогла перехватить приближающуюся иракскую ракету «Скад». Скад врезался в казармы американской армии и убил 28 солдат. Отчет тогдашней Главной бухгалтерииозаглавленный «Противоракетная оборона Patriot: проблема программного обеспечения, приведшая к отказу системы в Дахране, Саудовская Аравия», сообщает о причине сбоя: неточный расчет времени с момента загрузки из-за компьютерных арифметических ошибок. В частности, время в десятых долях секунды, измеренное внутренними часами системы, было умножено на 10, чтобы получить время в секундах. Этот расчет был выполнен с использованием 24-битного регистра с фиксированной запятой. В частности, значение 1/10, которое имеет неограниченное двоичное расширение, было прервано на 24 бита после точки счисления. Небольшая ошибка прерывания, умноженная на большое число, дающее время в десятых долях секунды, привела к значительной ошибке. Действительно, батарея Patriot проработала около 100 часов,и простой расчет показывает, что результирующая временная ошибка из-за увеличенной ошибки прерывания составила около 0,34 секунды. (Число 1/10 равно. Другими словами, двоичное разложение 1/10 равно. Теперь 24-битный регистр в Патриоте хранится вместо вводя ошибку двоичный, или около десятичный. Умножая на количество десятых долей секунды в часов дает ). Скад едет примерно1676 метров в секунду, то есть за это время проходит более полукилометра. Этого было достаточно, чтобы приближающийся Скад находился за пределами «ворот дальности», которые отслеживал Патриот. По иронии судьбы, тот факт, что вычисление плохого времени было улучшено в некоторых частях кода, но не во всех, способствовал возникновению проблемы, поскольку это означало, что неточности не отменялись. [12]

См. Также

  • Точность (арифметика)
  • Усечение
  • Округление
  • Потеря значимости
  • Плавающая запятая
  • Алгоритм суммирования Кахана
  • Машина эпсилон
  • Полином Уилкинсона

Ссылки

  1. Butt, Rizwan (2009), Введение в численный анализ с использованием MATLAB , Jones & Bartlett Learning, стр. 11–18, ISBN 978-0-76377376-2
  2. ^ Ueberhuber, Christoph W. (1997), Численный 1: Методы, программное обеспечение и анализ ., М., С. 139-146, ISBN 978-3-54062058-7
  3. ^ Б с д е е г ч я J K Форрестер, Дик (2018). Math / Comp241 Численные методы (конспекты лекций) . Колледж Дикинсона .
  4. ^ Аксой, Пелин; ДеНардис, Лаура (2007), Информационные технологии в теории , Cengage Learning, стр. 134, ISBN 978-1-42390140-2
  5. ^ Ральстон, Энтони; Рабиновиц, Филип (2012), Первый курс численного анализа , Dover Books on Mathematics (2-е изд.), Courier Dover Publications, стр. 2–4, ISBN 978-0-48614029-2
  6. ^ Чапман, Стивен (2012), Программирование MATLAB с приложениями для инженеров , Cengage Learning, стр. 454, ISBN 978-1-28540279-6
  7. ^ a b Чапра, Стивен (2012). Прикладные численные методы с MATLAB для инженеров и ученых (3-е изд.). ISBN компании McGraw-Hill Companies, Inc. 9780073401102.
  8. ^ Laplante, Филип А. (2000). Словарь компьютерных наук, инженерии и технологий . CRC Press . п. 420. ISBN 978-0-84932691-2.
  9. ^ Хайэм, Николас Джон (2002). Точность и устойчивость численных алгоритмов (2-е изд.). Общество промышленной и прикладной математики (SIAM). С. 43–44. ISBN 978-0-89871521-7.
  10. Перейти ↑ Volkov, EA (1990). Численные методы . Тейлор и Фрэнсис . п. 24. ISBN 978-1-56032011-1.
  11. ^ Коллинз, Чарльз (2005). «Состояние и стабильность» (PDF) . Департамент математики Университета Теннесси . Проверено 28 октября 2018 .
  12. ^ Арнольд, Дуглас. «Неудача ракеты» Патриот » . Проверено 29 октября 2018 .

Дальнейшее чтение

  • Мэтт Паркер (2021). Humble Pi: Когда математика идет не так в реальном мире . Книги Риверхеда. ISBN 978-0593084694.

Внешние ссылки

  • Ошибка округления в MathWorld.
  • Гольдберг, Дэвид (март 1991). «Что должен знать каждый компьютерный ученый об арифметике с плавающей запятой» (PDF) . ACM Computing Surveys . 23 (1): 5–48. DOI : 10.1145 / 103162.103163 . Проверено 20 января 2016 .( [1] , [2] )
  • 20 известных программных катастроф

При
измерениях показания приборов часто
лежат между делениями шкалы. Отсчет “на
глаз” долей деления затруднителен.
Поэтому показания приборов, как правило,
округляются – возникает погрешность
округления

при измерениях.

Интервал
округления может быть различным. Чаще
всего это либо цена наименьшего деления
шкалы – ,
либо половина цены деления. Очевидно,
максимальная
погрешность
округления равна половине интервала
округления, т.е. величина /2.
Действительная же погрешность меньше,
и при доверительной вероятности 
за погрешность за погрешность округления
принимают величину

(1.8)

2.3.3. Погрешность округления при вычислениях.

Этот
вид погрешности приходится учитывать
только при косвенных измерениях.

При
косвенных измерениях в расчетные формулы
могут входить известные физические
константы (ускорение свободного падения
g,
скорость света в вакууме с
и
т.д.), числа типа λ,
,
дробные множители 13, 16,… Эти величины
при вычислениях округляются. При этом,
естественно, в расчет вносятся g,
c,
,
λ
– погрешности округления при вычислениях,
которые должны учитываться.

Принято
считать, что погрешность округления
приближенного числа равна половине
единицы того разряда, до которого это
число было округлено. Например, 
=
3,14159… Если взять 
=
3,1, то 
=
0,05, если 
=
3,14, то 
=0,005…
и т.д. Вопрос о том, до какого разряда
округлять приближенное число, решается
так: относительная ошибка, вносимая
округлением, должна быть того же порядка
или на порядок меньше, что и максимальная
из относительных ошибок других видов.
Таким же образом оценивается абсолютная
ошибка табличных данных. Например, в
таблице указано ρ
=
13,6·103 кг/м3,
следовательно, ρ
=
0,05·103 кг/м3.

Ошибка
значений универсальных постоянных
часто указывается вместе с их принятыми
за средние значениями: с = (299793,0
+ 0,3)·103 м/c,
где с
=
0,3·103 м/с.

Иногда
при косвенных измерениях условия опыта
при повторных наблюдениях не совпадают.
В этом случае значение функции z
вычисляется для каждого отдельного
измерения, а доверительный интервал
вычисляется через значение z
так же, как при прямых измерениях (все
погрешности здесь входят в одну случайную
погрешность измерения z).
Величины, которые не измеряются, а
задаются (если они есть), должны быть
указаны при этом с достаточно большой
точностью.

Например,
при определении вязкости жидкости
методом Стокса (лабораторная работа
№2) при использовании нескольких шариков
разного диаметра абсолютная погрешность
будет (см. (1.4))

, (1.9)

где
i
– номер опыта, n
– число опытов.

2.4. Полная погрешность.

Как
уже отмечалось, в реальных условиях
присутствуют как случайные, так и
систематические погрешности. В теории
вероятности показывается, что погрешность,
обусловленная несколькими независимыми
причинами, определяется квадратичным
суммированием, т.е.

полная
абсолютная погрешность прямого измерения

.(1.10)

Относительная
погрешность

(1.11)

При
этом доверительная вероятность
выбирается одинаковой для всех видов
погрешностей.

Некоторые
из слагаемых под знаком корня могут
быть настолько малыми по сравнению с
другими, что ими можно пренебречь (малыми
считаются ошибки, которые не превышают
30% от максимальной).

В
заключение отметим, что количество
необходимых измерений определяется
соотношением приборной и случайной
погрешностей. Если при повторных
измерениях получается одно и то же
значение, то это означает, что случайная
погрешность в данном методе измерений
значительно меньше приборной и большее
число измерений не изменит общей ошибки.

При
значительной случайной погрешности
(при повторных измерениях получаются
отличные друг от друга значения) число
измерений лучше выбрать таким, чтобы
случайная погрешность среднего
арифметического была меньше приборной
или, по крайней мере, одного с ней порядка.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Обработка результатов измерений в лабораториях проводятся на калькуляторах и ПК, и просто удивительно, как магически действует на многих студентов длинных ряд цифр после запятой. «Так точнее» – считают они. Однако легко видеть, например, что запись a = 2.8674523 ± 0.076 бессмысленна. При ошибке 0.076 последние пять цифр числа не означает ровно ничего.

Если мы допускаем ошибку в сотых долях, то тысячным, тем более десятитысячным долям веры нет. Грамотная запись результата была бы 2.87 ± 0.08. Всегда нужно производить необходимые округления, чтобы не было ложного впечатления о большей, чем это есть на самом деле, точности результатов.

Правила округления
  1. Погрешность измерения округляют до первой значащей цифры, всегда увеличивая ее на единицу.
    Примеры:
    8.27 ≈ 9 0.237 ≈ 0.3
    0.0862 ≈ 0.09 0.00035 ≈ 0.0004
    857.3 ≈ 900 43.5 ≈ 50
  2. Результаты измерения округляют с точностью «до погрешности», т.е. последняя значащая цифра в результате должна находиться в том же разряде, что и в погрешности.
    Примеры:

243.871 ± 0.026 ≈ 243.87 ± 0.03;
243.871 ± 2.6 ≈ 244 ± 3;
1053 ± 47 ≈ 1050 ± 50.

Округление результата измерения достигается простым отбрасыванием цифр, если первая из отбрасываемых цифр меньше 5.
Примеры:

8.337 (округлить до десятых) ≈ 8.3;
833.438 (округлить до целых) ≈ 833;
0.27375 (округлить до сотых) ≈ 0.27.

Если первая из отбрасываемых цифр больше или равна 5 , (а за ней одна или несколько цифр отличны от нуля), то последняя из остающихся цифр увеличивается на единицу.
Примеры:

8.3351 (округлить дл сотых) ≈ 8.34;
0.2510 (округлитьь до десятых) ≈ 0.3;
271.515 (округлить до целых) ≈ 272.

Если отбрасываемая цифра равна 5 , а за ней нет значащих цифр (или стоят одни нули), то последнюю оставляемую цифру увеличивают на единицу, когда она нечетная, и оставляют неизменной, когда она четная.
Примеры:

0.875 (округлить до сотых) ≈ 0.88;
0.5450 (округлить до сотых) ≈ 0.54;
275.500 (округлить до целых) ≈ 276;
276.500 (округлить до целых) ≈ 276.

Примечание.

  1. Значащими называют верные цифры числа, кроме нулей, стоящих впереди числа. Например, 0,00807 – в этом числе имеется три значащих цифры: 8, ноль между 8 и 7 и 7 ; первые три нуля незначащие.
    8.12 · 10 3 – в этом числе 3 значащих цифры.
  2. Записи 15,2 и 15,200 различны. Запись 15,200 означает, что верны сотые и тысячные доли. В записи 15,2 – верны целые и десятые доли.
  3. Результаты физических экспериментов записывают только значащими цифрами. Запятую ставят сразу после отличной от нуля цифры, а число умножают на десять в соответствующей степени. Нули, стоящие в начале или конце числа, как правило, не записывают. Например, числа 0,00435 и 234000 записывают так: 4,35&middot10 -3 и 2,34·10 5 . Подобная запись упрощает вычисления, особенно в случае формул, удобных для логарифмирования.

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Физика — рефераты, конспекты, шпаргалки, лекции, семинары

Правила округления значений погрешностей и результатов измерения

Погрешности измерений показывают также, какие цифры в полученном результате измерения сомнительны, поэтому нет смысла в записи погрешности с большим числом знаков.

По обычаю ограничиваются одной значащей цифрой и только при особо точных измерениях погрешность записывается двумя или тремя цифрами.

Используют 3 правила округления рассчитанного значения погрешности и полученного экспериментального результата измерения:

1. Погрешность результата измерения показывается двумя значащими цифрами, если первая из них 1 или 2, и одной — если первая цифра 3 и более.

2. Результат измерения округляется до того же десятичного разряда, которым заканчивается округления значение абсолютной погрешности.

3. Округление производится только в конечной ответы, а все предварительные расчеты проводят с одним — двумя лишними знаками.

В соответствии с правилом 1 установлены и нормированные значения погрешностей 3В: в числах 1,5% или 2,5% показываются два знака, но в числах 0,5%, 4%, 6%; показывается только один знак.

При округлении результатов измерения используют еще такие правила:

1) лишние цифры в целых чисел заменяют нулями, а в дробных десятичных отвергают; н., 732 «700.

2) если первая из заменяемых нулями или откидываемых цифр 5, то последняя из оставшихся цифр увеличивается на 1;

3) если отвергаем цифра = 5 со следующими нулями, то округление производится до ближнего четного числа.

Результаты измерения можно записать некоторыми значимыми цифрами и рядом нулей, но в этом случае и нули должны полностью определенное значение и характеризуют погрешность измерения. Н., пусть результат измерения их = 9,5 B, который можно записать цифрами: 9,5; 9,50; 9,500. В этих случаях нули после последней значащей цифры определяют показатель достоверности результатов измерения. С этой точки зрения эти записи необходимо читать так: 9,45

Правила записи чисел по СТ СЭВ 543 — 77

1. Значащие цифры данного числа — все цифры от первой слева, не равной нулю, до последней справа. При этом нули, следующие из множителя 10, не учитывают.

а) Число 12,0 имеет три значащие цифры.

б) Число 30 имеет две значащие цифры.

в) Число 120 . 10 имеет три значащие цифры.

г) 0,514 . 10 имеет три значащие цифры.

д) 0,0056 имеет две значащие цифры.

2. Если необходимо указать, что число является точным, после числа указывают слово «точно» или последнюю значащую цифру печатают жирным шрифтом. Например, в печатном тексте: 1 кВт . ч = 3600 Дж (точно).

3. Различают записи приближенных чисел по количеству значащих цифр.

а) Различают числа 2,4 и 2,40. Запись 2,4 означает, что верны только целые и десятые доли, истинное значение числа может быть, например, 2,43 и 2,38. Запись 2,40 означает, что верны и сотые доли: истинное значение числа может быть 2,403 и 2,398, но не 2,41 и не 2,382.

б) Запись 382 означает, что все цифры верны: если за последнюю цифру ручаться нельзя, то число должно быть записано 3,8 . 10 .

в) Если в числе 4720 верны лишь две первые цифры, оно должно быть быть записано 47 * 10 или 4,7 * 10 .

4. Число, для которого указывают допустимое отклонение, должно иметь последнюю значащую цифру того же разряда, как и последняя значащая цифра отклонения.

а) Правильно: 17,0 + 0,2. Неправильно: 17 + 0,2 или 17,00 + 0,2.

б) Правильно: 12,13 + 0,17. Неправильно: 12,13 + 0,2.

в) Правильно: 46,40 + 0,15. Неправильно: 46,4 + 0,15 или 46,402 + 0,15.

5. Числовые значения величины и её погрешности (отклонения) целесообразно записывать с указанием одной и той же единицы величины.

6. Интервалы между числовыми значениями величин целесообразно записывать:

от 60 до 100, свыше 120 до 150.

Правила округления чисел по СТ СЭВ 543 — 77

1. Округление числа представляет собой отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда.

2. В случае, если первая из отбрасываемых цифр (считая слева направо) менее 5, то последнюю сохраняемую цифру не меняют.

Пример: Округление числа 12,23 до трех значащих цифр дает 12,2.

3. В случае, если первая из отбрасываемых цифр (считая слева направо) равна 5, то последнюю сохраняемую цифру увеличивают на единицу.

Пример: Округление числа 0,145 до двух цифр дает 0,15.

Примечание. В тех случаях, когда следует учитывать результаты предыдущих округлений, поступают следующим образом.

Если отбрасываемая цифра получена в результате округления в меньшую сторону, то последнюю оставшуюся цифру увеличивают на единицу (с переходом при необходимости в следующие разряды).

Пример: Округление числа 0,25 (полученного в результате предыдущего округления числа 0,252) дает 0,3 .

4. В случае, если первая из отбрасываемых цифр (считая слева направо) более 5, то последнюю сохраняемую цифру увеличивают на единицу.

Пример: Округление числа 0,156 до двух значащих цифр дает 0,16.

Округление выполняют сразу до желаемого количества значащих цифр, а не по этапам.

Пример: Округление числа 565,46 до трех значащих цифр дает 565.

6. Целые числа округляют по тем же правилам , что и дробные.

Пример: Округление числа 23456 до двух значащих цифр дает 23* 10 .

Из книги Л.И. Любимов, И.Д. Форсилова, Е.З. Шапиро

«Поверка средств электрических измерений. Справочная книга».

Ленинград, Энергоатомиздат, Ленинградское отделение, 1987 год

стр. 47 . 2.7. Правила округления и записи результатов измерений

Погрешность результата измерений позволяет определить те цифры результата, которые являются достоверными. Нецелесообразно удерживать в выражении для измеренного значения физической величины большое число цифр, т.к. цифры младших разрядов могут оказаться недостоверными.

Существуют определенные правила округления.

1. В выражении погрешности удерживается не более двух значащих цифр, причем последняя цифра обычно округляется до нуля или пяти. Две цифры следует обязательно удерживать в том случае, когда цифра старшего разряда менее 3.

2 . Числовое значение результата измерения должно оканчиваться цифрой того же разряда, что и значение погрешности.

Пример. 235,732 + 0,15 округляется до 235,73 + 0,15, но не до 235,7 + 0,15.

При промежуточных вычислениях целесообразно, чтобы используемые числа содержали на одну значащую цифру больше, чем будет в окончательном результате. Это позволяет уменьшить погрешность от округления.

3. Если первая из отбрасываемых цифр (считая слева направо) меньше пяти, то остающиеся цифры не меняются.

Пример. 442,749 + 0,4 округляется до 442,7 + 0,4.

4. Если первая из отбрасываемых цифр больше или равна пяти, то последняя сохраняемая цифра увеличивается на единицу.

Пример. 37,268 + 0,5 округляется до 37,3 + 0,5; 37,253 + 0,5 округляется до 37,3 + 0,5.

5. Округление следует выполнять сразу до желаемого числа значащих цифр, поэтапное округление может привести к ошибкам.

Пример. Поэтапное округление результата измерения 220,46 + 4 дает на первом этапе 220,5 + 4 и на втором 221 + 4, в то время как правильный результат округления 220 + 4.

Особенно внимательно нужно относиться к записи результата измерения без указания погрешности (что в общем случае крайне нежелательно). В этом случае в записываемом числе оставляются только те цифры, за достоверность которых можно ручаться, т.е. все значащие цифры записанного числа должны быть достоверными. Значащими цифрами числа считаются все цифры от первой слева, не равной нулю, до последней записанной справа цифры, при этом нули, записанные в виде множителя 10 в степени п, не учитываются. Поэтому записи 2,4 х 10 В в степени 3 и 2400 В не являются тождественными. Первая запись означает, что верны цифры тысяч и сотен вольт и истинное значение может быть, например, 2,42 или 2,38 кВ. Запись 2400 В означает, что верны и единицы вольт, истинное значение может быть 2400,2 или 2390,8 В, но не 2420 или 2380 В.

Из книги П.В. Новицкий и И.А. Зограф

«Оценка погрешностей результатов измерений»

Ленинград, Энергоатомиздат, Ленинградское отделение, 1991 год

стр. 25 1 — 4. ПРАВИЛА ОКРУГЛЕНИЯ ЗНАЧЕНИЙ ПОГРЕШНОСТИ И РЕЗУЛЬТАТА ИЗМЕРЕНИЙ

Рассчитывая значения погрешности, особенно при пользовании электронным калькулятором, значения погрешностей получают с большим числом знаков. Однако исходными данными для расчета являются нормируемые значения погрешности средств измерения, которые указываются всего с одной или двумя значащими цифрами. Вследствие этого и в окончательном значении рассчитанной погрешности должны быть оставлены только первые одна — две значащие цифры. При этом приходится учитывать следующее. Если полученное число начинается с цифр 1 или 2, то отбрасывание второго знака приводит к очень большой ошибке (до 30 — 50 %), что недопустимо. Если же полученное число начинается, например, с цифры 9, то сохранение второго знака, т. е. указание погрешности, например, 0,94 вместо 0,9, является дезинформацией, так как исходные данные не обеспечивают такой точности.

Исходя из этого на практике установилось такое правило: если полученное число начинается с цифры, равной или большей 3, то в нем сохраняется лишь один знак; если же оно начинается с цифр, меньших 3, т. е. с цифр 1 и 2, то в нем сохраняют два знака. В соответствии с этим правилом установлены и нормируемые значения погрешностей средств измерений: в числах 1,5 и 2,5 % указываются два знака, но в числах 0,5; 4; 6 % указывается

В итоге можно сформулировать три правила округления рассчитанного значения погрешности и полученного экспериментального результата измерения.

1 . Погрешность результата измерения указывается двумя значащими цифрами, если первая из них равна 1 или 2, и одной, — если первая есть 3 и более.

2 . Результат измерения округляется до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности.

3 . Округление производится лишь в окончательном ответе, а все предварительные вычисления проводят с одним — двумя лишними знаками.

Пример . На вольтметре класса точности 2,5 с пределом измерений 300 В был получен отсчет измеряемого напряжения Х = 267,5 В.

Расчет погрешности удобнее вести в следующем порядке: сперва необходимо найти абсолютную погрешность, а затем — относительную. Абсолютная погрешность / (Х) = jo X к /100; при jo = 2,5 % и Х к = 300 В это даёт / (Х) = 2,5 х 300 / 100 = 7,5 В

8 В; относительная

jo = / o x 100 / X = 7,5 x 100 / 267,5 = 2,81 %

Так как первая значащая цифра значения абсолютной погрешности (7,5 В) больше трех, то это значение должно быть округлено по обычным правилам округления до 8 В, но в значении относительной погрешности (2,81 %) первая значащая цифра меньше 3, поэтому здесь должны быть сохранены в ответе два десятичных разряда и указано j ( x ) = 2,8 %. Полученное значение Х = 267,5 В должно быть округлено до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности , т. е. до целых единиц вольт.

Таким образом, в окончательном ответе должно быть сообщено: «Измерение произведено с относительной погрешностью j ( x ) = 2,8 % . Измеренное напряжение Х = (268 + 8) В или Х = 268 В + 8 В.

При этом более наглядно указать пределы интервала неопределенности измеренной величины в виде Х = (260 — 276) В или 260 В X

Наряду с изложенными правилами округления значений погрешностей результатов измерения иногда предлагаются более обоснованные, но и более сложные правила. Недостаток изложенных правил состоит в том, что относительная погрешность от округления изменяется скачком при переходе, например, от числа 0,29, когда она составляет (0,30 — 0,29) / 0,30 = 3 %, к числу 0,3, когда она будет (0,4 — 0,3) / 0,3 = 30 %. Для устранения столь резкого скачка относительной погрешности округления предлагается каждую декаду возможных значений округляемой погрешности делить на три части: от 0,1 до 0,2, от 0,2 до

0,5 и от 0,5 до 1,0, и в каждой из этих частей использовать свой шаг округления, соответственно равный 0,02, 0,05 и 0,1. Тогда ряд разрешенных к употреблению округленных значений погрешностей получает вид: 0,10 — 0,12 — 0,14 — 0,16 — 0,18 — 0,20 — 0,25 — 0,30 — 0,35 — 0,40 — 0,45 — 0,5 — 0,6 — 0,7 — 0,8 — 0,9 — 1,0. Бесспорное преимущество такого ряда состоит в том, что погрешность от округления на границах участков изменяется лишь от 5 до 10 % . Однако при использовании такого правила округления погрешности последние цифры результата, оставляемые после округления, также должны соответствовать приведенному ряду.

Из книги В.А.Кузнецова и Г.В.Ялунина » МЕТРОЛОГИЯ

теоретические, прикладные и законодательные основы «

Москва, Изд — во стандартов, 1998 г.

стр. 215 7.6 Рекомендуемые правила по округлению результатов измерений

Результаты измерений следует округлять по сложившимся правилам. В основе этих правил лежит следующее положение: числовое значение результата измерений представляется так, чтобы оно оканчивалось десятичным знаком того же разряда, какой имеет погрешность этого результата.

Правила округления результата измерений для случаев обычных измерений, не связанных с необходимостью получения высокоточных результатов:

1) погрешность результата измерений представляется с одной или двумя значащими цифрами. Две значащие цифры приводятся в случае выполнения точных измерений;

2) результат измерений округляется так, чтобы он оканчивался цифрой того же разряда, что и значение погрешности. Если числовое значение результата измерения представляется десятичной дробью, оканчивающейся нулями, то нули отбрасываются только до того разряда, который соответствует разряду числового значения погрешности;

3) если цифра старшего из отбрасываемых разрядов меньше 5, то остающиеся цифры в

числе не изменяют. Если эта цифра равна или больше 5, то последнюю оставляемую цифру увеличивают на единицу. Лишние цифры в целых числах заменяют нулями, а в десятичных дробях отбрасывают. Например, числовое значение результата измерения составляет 25,458 при погрешности результата, выраженной пределами + 0 ,02; округление результата будет 25,46. Если пределы погрешности имеют + 0,002, то числовое значение результата сохраняется полностью. Числовое значение результата измерений 105553 получено с погрешностью + 0,0005. В нем сохраняются четыре значащие цифры и округление даст число 105600; если числовое значение результата 105,553, то при тех же условиях округление дает число 105,6;

4) если отбрасываемая цифра равна пяти, а следующие за ней цифры неизвестны (отсутствуют) или нули, то последнюю сохраняемую цифру числа не изменяют, если она четная, и увеличивают на единицу, если она нечетная. Число 105,5 при сохранении трех значащих цифр округляют до 106;

5) правила, изложенные в п.1. 4, применяются только при округлении окончательных результатов. Все промежуточные результаты целесообразно представлять тем числом разрядов, которые удается получить

 

Точность, абсолютная погрешность и округление

Сообщение11.10.2021, 21:35 

Аватара пользователя


17/03/17
683
Львів

Здравствуйте.
Запутался в следующем.
Пусть нам сообщили или мы посмотрели в какой-то таблице значение некоторой физической величины, например $l_0=38.52 text{см}$. Далее говорится, что такая запись означает, что величина $l$ задана с точностью, равной половине младшего разряда, то есть разряда сомнительной цифры, то есть последней цифры. В нашем случаем эта точность равна $frac{0.01 text{см}}{2}=0.005 text{см}$. Тогда величина $l$ находится в пределах: $38.515 text{см}<l<38.525 text{см}$.

С другой стороны, есть формула $l=l_0pmDelta l$, где $l_0$ — результат измерения величины $l$, $Delta l$ — абсолютная погрешность (или точнее граница абсолютной погрешности). Абсолютная погрешность может складываться из разных слагаемых, допустим нам сообщили, что она равна $0.007 text{см}$ (мы пишем только одну значащую цифру). Далее говорится, что одним из правил округления является то, что количество значащих цифр в результате измерения должно быть таким, чтобы сомнительная цифра имела порядок абсолютной погрешности. Пусть у нас есть неокруглённый результат косвенного измерения $l_0=28.3147...$, тогда получается, что мы должны его округлить до тысячных: $l_0=28.315 text{см}$, и можем написать: $l=(28.315pm0.007) text{см}$.

Тогда мне непонятно, почему в первой части нам дано значение $l_0=38.52 text{см}$ с точностью до сотых, но при этом существует правило для нахождения точности этого значения, которое (правило) дает для этой точности порядок тысячных ($0.005 text{см}$), а не сотых. Или первая и вторая части никак не связанны? Точность и абсолютная погрешность это одно и то же? Просто получается разница на один порядок.

И можно ли в первой части вместо строгих неравенств написать нестрогие: $38.515 text{см}leqslant lleqslant38.525 text{см}$ по аналогии со знаком равенства во второй части: $l=(28.315pm0.007) text{см}$?

Профиль  

Pphantom 

Re: Точность, абсолютная погрешность и округление

Сообщение11.10.2021, 22:57 

Заслуженный участник


09/05/12
25191

Далее говорится, что такая запись означает, что величина $l$ задана с точностью, равной половине младшего разряда, то есть разряда сомнительной цифры, то есть последней цифры. В нашем случаем эта точность равна $frac{0.01 text{см}}{2}=0.005 text{см}$.

Это один из вариантов правила. Не менее часто встречается вариант с единицей младшего разряда, а главное во всем этом — то, что фактически это порядковая оценка погрешности.

абсолютная погрешность (или точнее граница абсолютной погрешности).

А еще точнее — характерная оценка абсолютной погрешности. Случайные ошибки распределены по гауссиане, так что в принципе абсолютная погрешность однократного измерения может быть сколь угодно большой (просто это крайне маловероятно).

Так что если для погрешности хочется чего-то лучшего, чем порядковая оценка, то правилом числа значащих цифр пользоваться не стоит — для таких целей оно слишком грубое.

Профиль  

wrest 

Re: Точность, абсолютная погрешность и округление

Сообщение11.10.2021, 23:17 


05/09/16
10662

(О Гауссе)

Случайные ошибки распределены по гауссиане, так что в принципе абсолютная погрешность однократного измерения может быть сколь угодно большой (просто это крайне маловероятно).

Вы прям как мой преподаватель по терверу. Ну он говорил что обычно случайные ошибки по Гауссу и т.п. Я у него спросил как-то «ну хорошо, вот есть пруток диаметром пять и исправнй штангенциркуль, я меряю и вы говорите, что могу намерить десять?» На что он сказал «можете, но это крайне маловероятно». Запомнил на всю жизнь. Но так и не понял как

можно намерить диаметр десять штангенциркулем, у прутка диаметром пять…

Профиль  

realeugene 

Re: Точность, абсолютная погрешность и округление

Сообщение12.10.2021, 02:32 


27/08/16
8647

Просто получается разница на один порядок.

Нет, 0.005 отличается от 0.01 не на порядок, а в два раза. При оценке погрешностей это чаще всего несущественная разница.

Кроме того, нередко при инженерных расчётах берут больше цифр, чем нужно, просто чтобы не накапливалась погрешность округления промежуточных результатов.

А погрешности в каждом конкретном случае могут означать разные вещи. В одном случае это будет среднеквадратичное отклонение, сигма, в другом — три сигмы, в третьем — максимальное отклонение. Для грубых оценок разница некритична. В любом случае, если требуется большая точность, то, скорее всего, требуется, также, учитывать реальное распределение вероятности ошибки, а не только её приближение гауссовой кривой. Которая нередко хорошо описывает распределение суммы большого числа случайных величин, но не всегда.

Профиль  

Александрович 

Re: Точность, абсолютная погрешность и округление

Сообщение12.10.2021, 02:52 

Аватара пользователя


21/01/09
3914
Дивногорск

Но так и не понял как можно намерить диаметр десять штангенциркулем, у прутка диаметром пять…

Никак. В данном случае применяется ограниченный нормальный закон.

Профиль  

Emergency 

Re: Точность, абсолютная погрешность и округление

Сообщение12.10.2021, 09:31 

Аватара пользователя


07/03/16

3167

как можно намерить диаметр десять штангенциркулем, у прутка диаметром пять…

А вы попробуйте измерить пруток несколько миллионов раз подряд. Первый десяток уложится в погрешность 0,1 мм, а через миллион, вы можете и пруток вместе с пальцем измерить. :)

Профиль  

Alex-Yu 

 Re: Точность, абсолютная погрешность и округление

Сообщение12.10.2021, 09:41 

Заслуженный участник


21/08/10
2376

Ну он говорил что обычно случайные ошибки по Гауссу и т.п.

В физике все формулы приближенные. Кроме того, они всегда относятся (даже приближенно) лишь к ограниченной области. Распределение Гаусса здесь не исключение. Далеко на «хвостах» оно вообще неверно. Но в районе «макушки» очень даже не плохо.

Кстати, математики обычно (не всегда, но обычно) эту банальную для физика вещь не понимают напрочь.

Профиль  

realeugene 

Re: Точность, абсолютная погрешность и округление

Сообщение12.10.2021, 10:02 


27/08/16
8647

Далеко на «хвостах» оно вообще неверно.

Это, тоже, не совсем правильное утверждение. При большом количестве одинаково распределённых слагаемых, вносящих вклад в этот гаусс, распределение бывает верным и достаточно далеко на хвостах, чтобы изучать именно хвосты. В каком-нибудь тепловом шуме.

Профиль  

wrest 

 Re: Точность, абсолютная погрешность и округление

Сообщение12.10.2021, 10:24 


05/09/16
10662

Распределение Гаусса здесь не исключение. Далеко на «хвостах» оно вообще неверно. Но в районе «макушки» очень даже не плохо.

Да, и поскольку изучался именно Гаусс (с бесконечными хвостами), и это была математика (тервер) а не физика, то и ответ был такой. Видимо, преподаватель не хотел вдаваться в детали, а исходил из того, что «если» распределение по Гауссу, «то» намерить можно что угодно.

(Оффтоп)

Просто это был очень такой яркий момент в жизни и мы, студенты, потом часто повторяи между собой как присказку, мол «Можно! Но вероятность этого очень

мала!». С этим преподавателем таких моментов было два, первый я описал. А второй был такой. Обсуждалось, на семинаре (или коллоквиуме, не помню), что значит «велика» или «мала» вероятность чего-либо. И вот он говорит «Вот вы говорите что 5% это небольшая вероятность. Но если вам скажут, что если вы пойдете под этой аркой и на вас с вероятностью 5% упадёт кирпич, то вероятность 5% уже не покажется вам «малой», не так ли? Пойдете ли вы в эту арку?»
Очень доходчиво.

— 12.10.2021, 10:33 —

А вы попробуйте измерить пруток несколько миллионов раз подряд. Первый десяток уложится в погрешность 0,1 мм, а через миллион, вы можете и пруток вместе с пальцем измерить. :)

Не совсем правильный подход. Правильный был бы такой, что вот в мире есть миллионы исправных штангенциркулей и каждый день ими измеряют прутки в том числе диаметром пять. И вот, примерно раз в год, в результате измерения у кого-то таки выходит десять. В это поверить уже легче, но все равно непросто. И особенно непросто поверить в то что такой хвост и будет. Дальше ессно встает вопрос если реальный хвост при измерени прутка штангенциркулем не такой как у Гаусса, то какой тогда, почему, и где этот хвост ещё как у Гаусса и где уже нет. Я думаю, что преподаватель не хотел вдаваться именно в это разбирательство, поскольку это уже была бы не математика, а физика.

Профиль  

Alex-Yu 

 Re: Точность, абсолютная погрешность и округление

Сообщение12.10.2021, 11:23 

Заслуженный участник


21/08/10
2376

При большом количестве одинаково распределённых слагаемых, вносящих вклад в этот гаусс, распределение бывает верным и достаточно далеко на хвостах

Это смотря насколько далеко. Конечно, в каждом конкретном случае область, где гауссиан еще работает, своя. Но она всегда конечна.

— Вт окт 12, 2021 15:25:18 —

5% это небольшая вероятность.

5% — это большая вероятность. Во всех смыслах. А вот, скажем, $10^{-40}}$ — это вероятность малая. И никакие гауссианы на таком уровне не работают.

— Вт окт 12, 2021 15:29:51 —

Первый десяток уложится в погрешность 0,1 мм, а через миллион, вы можете и пруток вместе с пальцем измерить.

Если дисперсия порядка 0.1, то (формальная) вероятность ~5 (в разумном интервале) будет $sim e^{-2500}$. Грубо говоря, порядка $1/10^{1000}$. Никакими миллионами и даже триллионами тут и «не пахнет». Для справки: число элементарных частиц во всей (!!!) вселенной что-то то ли $10^{40}$ то ли $10^{80}$. Что ну никак сравнить нельзя. В общем таких чисел, как $10^{1000}$,в физике вообще не бывает. Этом математическая фантазия, к реальности не имеющая никакого отношения. $1/10^{1000}$ равняется нулю. Причем точно равняется нулю (в физике).

Профиль  

wrest 

 Re: Точность, абсолютная погрешность и округление

Сообщение12.10.2021, 11:40 


05/09/16
10662

5% — это большая вероятность. Во всех смыслах.

Вот как раз в смыслах и был смысл той беседы.
Допустим вам говорят — купите лотерейный билет за 100 рублей и с вероятностью 5% выиграйте 200 рублей. Нет, говорите вы, в предлагаемом смысле вероятность слишком мала. Тогда вам говорят — ну хорошо, оставляем цену билета 100 и вероятность 5% а выигрыш увеличиваем до 2000 рублей. Вы опять говорите «ну такое себе, даш на даш, можно и попробовать». И вот когда вам предложат выигрыш 20 000 при цене билета 100 и вероятности 5%, тогда вероятность становится уже очень большой. Но тут вы, конечно, тоже отказываетесь, в виду очевидности такого «лохотрона».

Профиль  

Pphantom 

Re: Точность, абсолютная погрешность и округление

Сообщение12.10.2021, 12:08 

Заслуженный участник


09/05/12
25191

Для определенности лучше отделять мух от котлет. Гауссово распределение — математическая модель, реализующаяся в предположении, что все ошибки случайны. Понятно, что это предположение хорошо работает только в некотором диапазоне величин ошибок, но это все-таки проблема не модели самой по себе, а ее применимости к тому или иному случаю. Однако оценки погрешности, которые интересовали ТС, делаются в предположении о применимости этой модели.

Профиль  

sergey zhukov 

 Re: Точность, абсолютная погрешность и округление

Сообщение12.10.2021, 14:42 


17/10/16
2393

misha.physics

Что вообще означает $l=(28.315pm0.007 text{см})$?
Если у нас прибор с делениями по $2 times 70=140$ микрон, и мы уверены, что вся погрешность измерения происходит только от округления результата измерения до ближайшего целого деления этого прибора, то мы может сказать совершенно достоверно: точное значение измеряемой величины с вероятностью 100% отклоняется от результата измерения не более, чем на пол-деления шкалы прибора. Это ошибка округления, про которую все известно точно.
Но обычно запись $l=(28.315pm0.007 text{см})$ означает «результат измерения лежит в указанных пределах с заданной вероятностью», а не с вероятностью 100%. Так что эта запись мало что означает, если не указана эта самая вероятность.
Более точно будет так: результат измерения считается случайной величиной с каким-то распределением. Обычно считают, что это распределение Гаусса, у которого есть два параметра: среднее значение и дисперсия. Вот при этих предположениях в выражении $l=(28.315pm0.007 text{см})$ фактически и указаны оценки среднего значения и дисперсии (точнее одиночного или удвоенного или утроенного и т.д. среднеквадратичного отклонения) этого распределения для величины результата измерения.
Если не говорить о вероятности, на ваш вопрос четкого ответа дать нельзя.

Профиль  

misha.physics 

Re: Точность, абсолютная погрешность и округление

Сообщение12.10.2021, 15:59 

Аватара пользователя


17/03/17
683
Львів

Спасибо всем.

Что вообще означает $l=(28.315pm0.007 text{см})$?
Если у нас прибор с делениями по $2 times 70=140$ микрон, и мы уверены, что вся погрешность измерения происходит только от округления результата измерения до ближайшего целого деления этого прибора, то мы может сказать совершенно достоверно: точное значение измеряемой величины с вероятностью 100% отклоняется от результата измерения не более, чем на пол-деления шкалы прибора. Это ошибка округления, про которую все известно точно.
Но обычно запись $l=(28.315pm0.007 text{см})$ означает «результат измерения лежит в указанных пределах с заданной вероятностью», а не с вероятностью 100%. Так что эта запись мало что означает, если не указана эта самая вероятность.

Да, я подразумевал «простую ситуацию» без случайной погрешности, но при этом кроме погрешности округления (погрешности отсчёта) может быть ещё погрешность прибора. Вообще, меня запутало и я здесь больше имел ввиду, почему в первом моем случае абсолютная погрешность составляет половину единицы округлённого результата измерения, а во втором случае результат измерения округляется до единиц абсолютной погрешности. Но теперь, я кажется понял, принимая во внимание:

Это один из вариантов правила. Не менее часто встречается вариант с единицей младшего разряда, а главное во всем этом — то, что фактически это порядковая оценка погрешности.

Нет, 0.005 отличается от 0.01 не на порядок, а в два раза. При оценке погрешностей это чаще всего несущественная разница.

А может ли существовать следующий вариант. Мы приводим в какой-то таблице значение $l_0=38.520 text{см}$, подразумевая здесь все цифры значащами и договариваемся считать абсолютную погрешность равной половине единицы предпоследнего разряда, то есть при таком подходе абсолютная погрешность будет равна $frac{0.01 text{см}}{2}=0.005 text{см}$. Тогда и в результате измерения ($l_0=38.520 text{см}$), и в абсолютной погрешности ($0.005 text{см}$) будет одинаковое количество цифр после запятой. Просто интересно, может ли в принципе существовать такой вариант правила округления?

Профиль  

sergey zhukov 

 Re: Точность, абсолютная погрешность и округление

Сообщение12.10.2021, 16:33 


17/10/16
2393

misha.physics

Да, я подразумевал «простую ситуацию» без случайной погрешности, но при этом кроме погрешности округления (погрешности отсчёта) может быть ещё погрешность прибора.

Так вот эта погрешность прибора и превращает результат измерения в случайную величину с распределение Гаусса. Это уже и есть «сложный» случай.

А может ли существовать следующий вариант.

Например, нужно привести в таблице число $e=2,7182818281...$ с точностью до двух цифр после запятой. Я записываю $2,72$ с точностью $0,005$. А вы предлагаете записывать его, как $2,718$ (или даже $2,710$) с той же точностью $0,005$, хотя на самом деле здесь либо более высокая точность $0,0005$, либо просто лишние нули в конце каждого числа.

Профиль  

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы

Как определять погрешности измерений

Измерение – нахождение значения физической величины
опытным путем с                   помощью средств измерений.

Прямое
измерение

– определение значения физической
величины непосредственно средствами измерения.

Косвенное
измерение

– определение значения физической
величины по формуле, связывающей ее с другими физическими величинами, определяемыми
прямыми измерениями.

          А,  В, С, — физические величины.

          Апр. – приближенное значение физической величины.

         А – абсолютная погрешность измерения физической
величины.

          — относительная погрешность измерения
физической величины.

          иА
– абсолютная
инструментальная погрешность, определяемая конструкцией прибора.

          оА – абсолютная погрешность отсчета, она равна в
большинстве случаев

                     половине цены деления; при
измерении времени – цене деления секундомера или часов.

          Абсолютную погрешность измерения
обычно округляют до одной значащей цифры:

         

          Численное значение результата
измерений округляют так, чтобы его последняя цифра оказалась в том же разряде,
что и цифра погрешности:

          

          
Результат
измерения записывается так:

       %

                                                    

      
Определение погрешности методом среднего арифметического

          При многократных
измерениях величины погрешность можно оценить следующим образом:

1.    
Определить среднее
значение величины
А:

 (при трех
измерениях).

2.Определить отклонение каждого значения от среднего:

       

     3.Определить среднее значение отклонения,
его и принимают за абсолютную погрешность:

   4.Определить
относительную погрешность и выразить ее в процентах:

№ опыта

1

2

3

          Многократные измерения
предпочтительнее, так как при их проведении возможна компенсация случайных
факторов, влияющих на результат. Обычно многократные измерения проводят, слегка
изменяя условия опыта, но предполагая, что значение величины А не изменяются

Определение
погрешности косвенных измерений

          При косвенных измерениях значение
физической величины находится путем    расчетов по формуле.

      Относительную погрешность
определяют так, как показано в таблице:

Формула величины

Формула
относительной погрешности

1.

2.

3.

4.

     Абсолютную погрешность определяют
по формуле:

(  выражается десятичной дробью)

    Пример:  пусть измеряется сопротивление проводника. .

   Результаты прямых измерений:     

    Тогда ;                                                                                                    
,    ;                                                                
,       ;                                             
,     ,   .

Графическое
представление результатов эксперимента

                                   Правила  построения
 графиков

Ÿ  выберите соответствующую бумагу;

Ÿ  выберите масштаб по осям координат;

Ÿ  напишите обозначения измеряемых физических величин;

Ÿ  нанесите на график данные;

Ÿ  нанесите на график доверительные интервалы;

Ÿ  проведите кривую через нанесенные точки;

Ÿ  составьте заголовок графика.

          Для построения графиков выпускают
специальную бумагу-миллиметровку.

          При выборе масштабов по осям
координат следует руководствоваться следующими правилами:

         — значение независимой переменной
откладывают вдоль оси абсцисс, функции – вдоль оси ординат;

         — цена наименьшего деления масштабной
сетки должна быть сравнимой с величиной погрешности измерения;

         — точка пересечения оси абсцисс и оси
ординат не обязательно должна иметь координаты (0,0).

          При построении графиков следует
иметь в виду, что по результатам опытов мы получаем не точку, а прямоугольник
со сторонами  и.

  

                    
В

 

 

                                                                                             
 

                                                                                           

                                                                                           

                       0                                                                        
А

          При выполнении простых лабораторных
работ достаточно обвести экспериментальную точку кружком или пометить
крестиком, не указывая доверительных интервалов.

          Этот кружок или крестик будут
обозначать, что данная точка получена с каким-то приближением и истинное
значение измеряемой величины лежит где-то в ее окрестности. 

Правила
приближенных вычислений

 1. Основное
правило округления.

Если первая
отброшенная цифра равна 5 или больше, то последнюю из сохраняемых цифр
увеличивают на единицу; если первая отброшенная цифра меньше 5, то последнюю из
сохраняемых цифр оставляют без изменения, например:

                              

 2. При сложении и
вычитании
приближенных чисел
в полученном результате сохраняют столько десятичных знаков, сколько их в числе
с наименьшим количеством десятичных знаков, например:

      

 3. При умножении
и делении
приближенных чисел
в полученном результате нужно сохранить столько значащих цифр, сколько их имеет
приближенное число с наименьшим количеством значащих цифр, например:

                        

 4. При возведении
в квадрат
приближенного числа
нужно в результате сохранять столько значащих цифр, сколько их имеет возводимое
в степень число, например:

                   

 5. При извлечении
квадратного корня
в результате
нужно сохранять столько значащих цифр, сколько их имеет подкоренное число,
например:

                   

 6. При вычислении
промежуточных результатов
в
них следует сохранять на одну цифру больше, чем требуют правила 2-5. Причем при
подсчете значащих цифр запасные цифры не учитываются. В окончательном
результате
запасная цифра отбрасывается   по основному правилу округления.

 7. При нахождении
углов или тригонометрических функций
значение соответствующего угла записывают с точностью до градуса, если
значение тригонометрической функции имеет две значащие цифры; если угол задан с
точностью до градусов, то в значении тригонометрической функции сохраняют две
значащие цифры, например:

                   

  • Ошибка ограничения мощности на рендж ровер эвок
  • Ошибка озу 1621 ваз 2115
  • Ошибка ое на машинке стиральной лджи
  • Ошибка ограничение частоты вращения ауди q5
  • Ошибка озон не удалось скачать картинки