Ошибки измерений бывают следующих видов

Результат
измерения всегда отличается от
вычисленного или измеренного значения,
принимаемого за истинное, и от других
результатов. Эти отличия названы ошибками
измерений. Преодоление ошибок составляет
основную задачу техники точных измерений.
Однако возрастание точности ограничено,
ибо на определенном этапе мы подходим
к пределу, когда само понятие об измеряемой
величине теряет смысл. Например, длина
концевой меры может быть измерена с
точностью до части размера молекулы
материала, если измерения выполнялись
при температуре абсолютного нуля; и с
меньшей точностью, вследствие теплового
движения молекул, при более высокой
температуре. А при измерении снимков,
достигнув точности, соответствующей
размеру зерен серебра в фотоэмульсии,
мы не можем говорить об измерении
контура, так как последний есть полоса
перекрытия множеств крупных и мелких
зерен.

Существование
предельной точности измерения и ошибок
измерения ограничивает справа число
значащих цифр результата измерений.
Поэтому измеренное значение всегда
есть приближенное число.

Приведенные
примеры показывают также, что результат
зависит в первом случае от условий
внешней среды, от метрологических
свойств объекта — во втором. Следовательно,
это факторы, влияющие на результаты
измерений. В процессе измерений участвуют
наряду с внешней средой и объектом еще
измерительное средство, исполнитель,
методика измерений и принятая модель
измеряемой величины. Реально все эти
факторы в процессе измерений непрерывно
изменяются. Их изменение и взаимодействие
приводят к непрерывному изменению
условий измерения. Так как результат
измерения фиксирует размер величины в
случайный момент времени, то результат
есть случайная величина.

Вероятность
получения конкретного результата
измерения при бесконечной точности
отсчета бесконечно мала, так как значения
факторов непрерывно изменяются. Однако
вероятность того, что конкретный
результат лежит в некотором диапазоне
колебаний значений величины, может быть
весьма высокой, если при измерениях
стремятся ограничить колебания факторов.
Например, длина отрезка со временем
изменяется (рис. 2.1) в диапазоне Q.
Измеряем длину li

в случайный момент .
Если
L
истинное значение длины, то разность
i=li-L
— будет истинной ошибкой данного
измерения. Если l0
будет усредненным значением, то разность
vi=li-l0,
называют «вероятной ошибкой».

Для
анализа ошибок измерения мы можем
рассматривать влияние каждого из
упомянутых факторов отдельно. Каждый
фактор вносит составляющую общей ошибки
измерения. Следовательно, составляющими
будут

1)
ошибки средств измерения,

2)
ошибки, обусловленные метрологическими
свойствами объекта измерений,

3)
ошибки, порождаемые изменением внешних
условий при измерениях,

4)
ошибки, вносимые наблюдателем,

5)
ошибки, вносимые методикой измерений
и их обработки,

6)
ошибки моделирования, обусловленные
неадекватностью принятой модели
измеряемой величины ее реальным
свойствам.

Четкой
границы между составляющими провести
нельзя. Например, ошибки промежуточ-ного
преобразователя можно отнести и к
ошибкам средств измерений, ибо реапьно
существующий преобразователь вносит
ошибки вследствие погрешностей его
изготовления, и к ошибкам модели, так
как он создавался на основе некоторых
теоретических представлений о связи
между измеряемой и преобразованной
величинами.

Складываясь
и взаимодействуя, составляющие образуют
сложную общую ошибку измерения. С
изменением факторов общая ошибка также
изменяется. Эти изменения служат для
разложения ее на случайную и систематическую
составляющие. К случайной относят ту
ее часть, которая изменяется случайным
образом. К систематической — ту часть,
для которой удается проследить закон
ее изменения.

Случайная
ошибка
обусловлена тем, что во время измерений
факторы изменяются колебательно, а
результат регистрируется в произвольный
момент времени (рис. 2.2а).

Систематические
ошибки
вызваны
постоянно действующими или медленно
изменяющи-мися факторами (рис. 2.2б).
Четкой границы провести здесь нельзя:
в одних условиях влияние факторов будет
случайно, в других систематическое.
Например, неприжатие пленки в АФА будет
оказывать для разных залетов случайное
влияние, а для маршрута систематическое.

Рассматривая
конкретную ошибку, мы не можем отделить
ее случайную часть от систематической,
если не знаем закономерности проявления
последней. Выявление таких закономерностей
осуществляется постановкой специальных
измерений и проведением корреляционного
анализа.

Относительно
случайной ошибки измерений предполагается,
что каждому положительному значению
ошибки в ряду ошибок соответствует
близкое отрицательное значение. Тогда
в сумме они должны почти компенсироваться.
Отсюда среднее из ряда избыточных
равноточных измерений должно быть более
свободно от случайных влияний. Так как
появление различных значений ошибки в
каждой серии измерений индивидуально,
то случайные ошибки в свою очередь
различают по характеру поведения,
который определяется законами
распределения этих ошибок.

Систематическую
ошибку
обычно рассматривают как линейную
функцию
=a+b
х

от
х
,
где a
— постоянная, а
b x

прогрессивно изменяющаяся составляющая.
На практике используют и более сложные
выражения, например, формулы, предложенные
для учета рефракции атмосферы.

Различают
постоянную (аддитивную), линейную
(мультипликативную, прогрессивную,
тренд) и нелинейные систематические
ошибки, а также ошибку обратного хода.
Теоретически мы можем, повышая знания
об объекте измерений, переводить все
большую случайную часть в систематическую
и учитывать ее до тех пор, пока объект
измерений (контур фотоизображения)
сохраняет придаваемый ему физический
смысл. Когда он перейдет в набор пятен,
то вопрос о повышении точности измерений
лишается смысла. Практически точность
измерений ограничивается требованиями
производства. Повышение ее сверх
необходимой ведет к бесполезным затратам.
С этой точки зрения выгоднее оценивать
измерения по систематическому и
случайному влиянию. При обнаружении
значительного систематического влияния
ставят специальные исследования. Для
их постановки необходимо знать характер
поведения каждого из элементов процесса
измерения, т.е. проанализировать влияние
каждого из факторов. Знание общего
характера ошибок позволяет устанавливать
оптимальные условия и методики измерений,
формулировать модель процесса или
явления, что в конечном счете приводит
к снижению затрат при обеспечении
требуемой точности измерений.

Соседние файлы в папке Коршунов

  • #

    26.04.201531.23 Кб14NORMDIS.XLS

  • #

    26.04.201542.5 Кб14АнализИдемпотМТР к МО1Анализ.xls

  • #
  • #
  • #
  • #
  • #
  • #

Погре́шность измере́ния — оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.

Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в БСЭ, термины ошибка измерения и погрешность измерения используются как синонимы.) Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. При этом за истинное значение принимается среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2.8±0.1 c. означает, что истинное значение величины T лежит в интервале от 2.7 с. до 2.9 с. некоторой оговоренной вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка).

В 2006 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений».

Содержание

  • 1 Определение погрешности
  • 2 Классификация погрешностей
    • 2.1 По форме представления
    • 2.2 По причине возникновения
    • 2.3 По характеру проявления
    • 2.4 По способу измерения
  • 3 См. также
  • 4 Литература

Определение погрешности

В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

  • Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:
Delta x=frac{x_{max}-x_{min}}{2}
  • Средняя квадратическая погрешность:
S =left. sqrt{sum_{i=1}^{n}frac{(x_i-x)^2}{n-1}} right.
  • Средняя квадратическая погрешность среднего арифметического:
S _x= frac{S} {sqrt{n}} = left. sqrt{sum_{i=1}^{n}frac{(x_i-x)^2}{n(n-1)}} right.

Классификация погрешностей

По форме представления

  • Абсолютная погрешностьΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины Xmeas. При этом равенство:

ΔX = | XtrueXmeas | ,

где Xtrue — истинное значение, а Xmeas — измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина Xmeas распределена по нормальному закону, то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

  • Относительная погрешность — отношение абсолютной погрешности к тому значению, которое принимается за истинное:

delta_x =frac{ Delta x}{X}.

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.

  • Приведенная погрешность — относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

delta_x =frac{ Delta x}{X_n},

где Xn — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

— если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то Xn определяется равным верхнему пределу измерений;
— если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведенная погрешность — безразмерная величина (может измеряться в процентах).

По причине возникновения

  • Инструментальные / приборные погрешности — погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.
  • Методические погрешности — погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
  • Субъективные / операторные / личные погрешности — погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.

В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.

Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.

Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведенных основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где n = 1; 0; -1; -2 и т.д.

По характеру проявления

  • Случайная погрешность — погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т.п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).
  • Систематическая погрешность — погрешность, изменяющаяся во времени по определенному закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т.п.), неучтёнными экспериментатором.
  • Прогрессирующая (дрейфовая) погрешность — непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
  • Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора, если произошло замыкание в электрической цепи).

По способу измерения

  • Погрешность прямых измерений
  • Погрешность косвенных измерений — погрешность вычисляемой (не измеряемой непосредственно) величины:

Если F = F(x1,x2xn), где xi — непосредственно измеряемые независимые величины, имеющие погрешность Δxi, тогда:

Delta F = sqrt{sum_{i=1}^n left(Delta x_i frac{partial F}{partial x_i}right)^2}

См. также

  • Измерение физических величин
  • Класс точности
  • Метрология
  • Система автоматизированного сбора данных со счетчиков по радиоканалу
  • Методы электроаналитической химии

Литература

  • Назаров Н. Г. Метрология. Основные понятия и математические модели. М.: Высшая школа, 2002. 348 с.
  • Лабораторные занятия по физике. Учебное пособие/Гольдин Л. Л., Игошин Ф. Ф., Козел С. М. и др.; под ред. Гольдина Л. Л. — М.: Наука. Главная редакция физико-математичекой литературы, 1983. — 704 с.

Wikimedia Foundation.
2010.

Статья обновлена 10.07.2022

Что такое погрешность измерения

Любой расчет состоит из истинного и вычисляемого значения. При этом всегда должны учитываться значения ошибки или погрешности. Погрешность — это расхождение между истинным значением и вычисляемым. В маркетинге выделяют следующие виды погрешностей.

  1. Математическая погрешность. Она описывается алгебраической формулой и бывает абсолютной, относительной и приведенной. Абсолютная погрешность измерения — это разница между вычисляемым и истинным значением. Относительная погрешность вычисляется в процентном соотношении истинного значения и полученного. Вычисление погрешности приведенной схоже с относительной, указывается она также в процентах, но дает разницу между нормирующей шкалой и полученными данными, то есть между эталонными и полученными значениями.
  2. Оценочная погрешность. В маркетинге она бывает случайной и систематической. Случайная погрешность возникает из-за любых факторов, которые случайным образом влияют на измерение переменной в выборке. Систематическая погрешность вызывается факторами, которые систематически влияют на измерение переменной в выборке.

Математическая погрешность: формула для каждого типа

Если определение погрешности можно провести точным путем, она считается математической. Зачем нужно вычисление этого значения в маркетинге?

Погрешности возникают настолько часто, что популярной практикой в исследованиях является включение значения погрешности в окончательные результаты. Для этого используются формулы. Математическая погрешность — это значение, которое отражает разницу между выборкой и фактическим результатом. Если при расчетах учитывалась  погрешность, в тексте исследования указывается что-то вроде: «Абсолютная погрешность для этих данных составляет 3,25%». Погрешность можно вычислить с любыми цифрами: количество человек, участвующих в опросе, погрешность суммы, затраченной на маркетинговый бюджет, и так далее.

Формулы погрешностей вычисляются следующим образом.

Абсолютная погрешность измерений: формула

Формула дает разницу между измеренным и реальным значением.

Формула абсолютной погрешности

Формула абсолютной погрешности

Относительная погрешность: формула

Формула использует значение абсолютной погрешности и вычисляется в процентах по отношению к фактическому  значению.

Формула относительной погрешности

Формула относительной погрешности

Приведенная погрешность: формула

Формула также использует значение абсолютной погрешности. В чем измеряется приведенная погрешность? Тоже в процентах, но в качестве «эталона» используется не реальное значение, а единица измерения любой нормирующей шкалы. Например, для обычной линейки это значение равно 1 мм.

Формула приведенной погрешности

Формула приведенной погрешности

Классификация оценочной погрешности

Определение погрешности в оценках — это всегда методическая погрешность, то есть допустимое значение ошибки, основанное на методах проведения исследования. Погрешность метода вызывает два типа погрешностей — случайные и систематические. Таблица погрешностей в графической форме покажет все возможные типы.

Классификация оценочной погрешности

Классификация оценочной погрешности

Что такое случайная погрешность

Случайная погрешность бывает статической и динамической. Динамическая погрешность возникает, когда мы имеем дело с меняющимися значениями — например, количество человек в выборке при маркетинговом исследовании. Статическая погрешность описывает ошибки при вычислении неизменных величин — вроде количества вопросов в вопроснике. Все они относятся к случайным погрешностям.

Типичный пример возникновения случайной погрешности — настроение участников маркетингового опроса. Как известно, эмоциональный настрой человека всегда влияет на его производительность. В ходе тестирования одни люди могут быть в хорошем расположении духа, а другие — в «миноре». Если настроение влияет на их ответы по заданному критерию выборки, это может искусственно завышать или занижать наблюдаемые оценки. Например, в случае с истинным значением 1 случайная погрешность может дать как -0,8, так и +0,5 к этому числу. Очень часто это случается при оценке времени ответа, например.

Случайная погрешность добавляет изменчивости данным, но не оказывает постоянного влияния на всю выборку. Вместо этого она произвольно изменяет измеряемые значения в диапазоне. В маркетинговой практике считается, что все случайные погрешности в распределении перекрывают друг друга и практически не влияют на конечный результат. Поэтому случайная погрешность считается «шумом» и в расчет не принимается. Эту погрешность нельзя устранить совсем, но можно уменьшить, просто увеличив размер выборки.

Что такое систематическая погрешность

Систематическая погрешность существует в результатах исследования, если эти результаты показывают устойчивую тенденцию к отклонению от истинных значений. Иными словами, если полученные цифры постоянно выше или ниже расчетных, речь идет о том, что в данных имеется систематическая погрешность.

В маркетинговых исследованиях есть два основных типа систематической погрешности: погрешность выборки и погрешность измерения. 

Погрешность выборки

Погрешность выборки возникает, когда выборка, используемая в исследовании, не репрезентативна для всей совокупности данных. Типы такой погрешности включают погрешность структуры, погрешность аудитории и погрешность отбора.

Погрешность структуры

Погрешность структуры возникает из-за использования неполной или неточной основы для выборки. Распространенным источником такой погрешности в рамках маркетинговых исследований является проведение какого-либо опроса по телефону на основе существующего телефонного справочника или базы данных абонентов. Многие данные там указаны неполно или неточно — например, если люди недавно переехали или изменили свой номер телефона. Также такие данные часто указывают неполную или неверную демографию.

Если в качестве основы для исследования взят телефонный справочник, оно подвержено погрешности структуры, так как не учитывает всех возможных респондентов.

Погрешность аудитории

Погрешность аудитории возникает, если исследователь не знает, как определить аудиторию для исследования. Пример — оценка результатов исследования, проведенного среди клиентов крупного банка. Доля ответов на анкету составила чуть менее 1%. Анализ профессий всех опрошенных показал, что процент пенсионеров среди них в 20 раз выше, чем в целом по городу. Если эта группа значительно различается по интересующим переменным, то результаты будут неверными из-за погрешности аудитории.

Погрешность отбора

Даже если маркетологи правильно определили структуру и аудиторию, они не застрахованы от погрешности отбора. Она возникает, когда процедуры отбора являются неполными, неправильными или не соблюдаются должным образом. Например, интервьюеры при полевом исследовании могут избегать людей, которые живут в муниципальных домах. Потому что, по их мнению, жители вряд ли согласятся пройти такой опрос. Если жители муниципальных домов отличаются от тех, кто проживает в домах бизнес-класса, в результаты опроса будет внесена погрешность отбора.

Как минимизировать погрешность выборки

  • Знайте свою аудиторию.
    Знайте, кто покупает ваш продукт, использует его, работает с вами и так далее. Имея базовую социально-экономическую информацию, можно составить стабильную выборку целевой аудитории. Маркетинговые исследования часто касаются одной конкретной группы населения — например, пользователей Facebook или молодых мам.
  • Разделите аудиторию на группы.
    Вместо случайной выборки разбейте аудиторию на группы в соответствии с их численностью в общей совокупности данных. Например, если люди с определенной демографией составляют 35% населения, убедитесь, что 35% респондентов исследования отвечают этому условию.
  • Увеличьте размер выборки.
    Больший размер выборки приводит к более точному результату.

Погрешность измерения

Погрешность измерения представляет собой серьезную угрозу точности исследования. Она возникает, когда существует разница между искомой информацией — то есть истинным значением, и информацией, фактически полученной в процессе измерения. К таким погрешностям приводят различные недостатки процесса исследования. Погрешность измерения, в основном, вызывается человеческим фактором — например, формулировкой вопросника, ошибками ввода данных и необъективными выводами.

К погрешностям измерения приводят следующие виды ошибок.

Ошибка цели

Ошибка цели возникает, когда существует несоответствие между информацией, фактически необходимой для решения проблемы, и данными , которые собирает исследование. Например, компания Kellogg впустую потратила миллионы на разработку завтраков для снижения уровня холестерина. Реальный вопрос, который нужно было бы задать в исследовании, заключался в том, купят ли люди овсяные хлопья для решения своей проблемы. Ответ «Нет» обошелся бы компании дешевле.

Предвзятость ответов

Некоторые люди склонны отвечать на конкретный вопрос определенным образом. Тогда возникает предвзятость ответа. Предвзятость ответа может быть результатом умышленной фальсификации или неосознанного искажения фактов.

Умышленная фальсификация происходит, когда респонденты целенаправленно дают неверные ответы на вопросы. Есть много причин, по которым люди могут сознательно искажать информацию. Например, они хотят скрыть  или хотят казаться лучше, чем есть на самом деле.

Бессознательное искажение информации происходит, когда респондент пытается быть правдивым, но дает неточный ответ. Этот тип предвзятости может возникать из-за формата вопроса, его содержания или по другим причинам.

Предвзятость интервьюера

Интервьюер оказывает влияние на респондента — сознательно или бессознательно. Одежда, возраст, пол, выражение лица, язык тела или тон голоса могут повлиять на ответы некоторых или всех респондентов.

Ошибка обработки

Примеры включают наводящие вопросы или элементы дизайна анкеты, которые затрудняют запись ответов или приводят к ошибкам в них.

Ошибка ввода

Это ошибки, возникающие при вводе информации. Например, документ может быть отсканирован неправильно, и его данные по ошибке перенесутся неверно. Или люди, заполняющие опросы на смартфоне или ноутбуке, могут нажимать не те клавиши.

Виды проводимых маркетинговых исследований различны, поэтому универсальных рецептов не существует. Мы дадим несколько общих советов, используемых для минимизации систематических погрешностей разного типа.

Как минимизировать погрешность измерения

  • Предварительно протестируйте.
    Погрешностей обработки и предвзятости можно избежать, если проводить предварительные тесты вопросника до начала основных интервью.
  • Проводите выборку случайным образом.
    Чтобы устранить предвзятость, при выборке респондентов можно включать каждого четвертого человека из общего списка.
  • Тренируйте команду интервьюеров и наблюдателей.
    Отбор и обучение тех, кто проводит исследования, должен быть тщательным. Особое внимание нужно уделять соблюдению инструкций в ходе каждого исследования.
  • Всегда выполняйте проверку сделанных записей.
    Чтобы исключить ошибки ввода, все данные, вводимые для компьютерного анализа, должны быть перепроверены как минимум дважды.

Мир без ошибок  не может существовать. Но понимание факторов, влияющих на маркетинговые исследования и измеряемые погрешности, имеет важное значение для сбора качественных данных.

Любое
измерение производят при наличии
следующих факторов:

  • объект
    измерения

  • субъект
    измерения – наблюдатель

  • мерный
    прибор

  • метод
    измерений – совокупность правил и
    действий при измерении

  • внешняя
    среда – где производят измерение

Измерения
бывают:

  • Равноточные
    – в процессе измерений ни один из
    факторов не меняется

  • Неравноточные
    – хотя бы 1 из факторов меняется

Каждый
из факторов рождает погрешность.
Погрешности
бывают:

  • Грубые

  • Систематические

  • Случайные

Грубые
погрешности:

Резко
отклоняют результат от истинного
значения. Пример: просчет по измерительным
приборам. Их обнаруживают и устраняют
путем повторных измерений.

Систематические
погрешности:

Входят
в каждый результат измерений по строго
определенному закону.

Систематические
ошибки делят на:

  • Постоянные
    (неизменные по знаку и величине)

  • Переменные
    (по определенному закону изменяют свою
    величину)

Источники
систематических ошибок: неправильная
длина мерного прибора, отклонение
визирного луча от горизонтали при
нивелировании, личная погрешность
наблюдателя…

Их
обнаруживают и исключают путем введения
соответствующих поправок.

Случайные
погрешности:

Их
возникновение не подчиняется законам,
связаны между собой статистической
закономерностью (проявляются в массовых
явлениях)

20. Свойства случайных ошибок.

Случайные
погрешности – разность между измеряемым
значением l
величины и ее истинным значением Х

Δ=lX

Свойства
случайных погрешностей.

  • при
    определенных условиях измерений,
    случайные погрешности по абсолютной
    величине не могут превышать известного
    предела;

  • малые
    по абсолютной величине погрешности
    появляются чаще, чем большие.

  • положительные
    погрешности встречаются так же часто,
    как и отрицательные

  • среднее
    арифметическое из всех случайных
    погрешностей равноточных измерений
    одной и той же величины при неограниченном
    возрастании числа измерений n стремится
    к нулю

21. Средняя квадратическая, предельная и относительная ошибки.

В
практике геодезических измерений
определяемые величины обычно являются
функциями других, непосредственно
измеряемых величин. Рассмотрим функцию u
и м
независимых
переменных xyz, …

u
= f 
(x,y,z…).
(5.5)

Продифференцируем
функцию (5.5) по всем переменным и заменим
дифференциалы dudx, dy, dz,
…. погрешностями Du,
Dx,Dy,Dz,
….

Получили
выражение случайной погрешности Du в
зависимости от случайной комбинации
погрешностей Dx,Dy,Dz,
…. Положим, что имеем n таких
комбинаций, которым соответствует n выражений:

 (i =
1, 2, …, n)

Возведем
полученные выражения в квадрат, сложим
и разделим на n:

 

где
квадратными скобками обозначены суммы.

Утроенную
среднюю квадратическую ошибку
считают предельной

lim=3m.

Часто
точность произведенных измерений лучше
оценивается относительной
ошибкой
,
то есть отношением абсолютной ошибки
к измеряемой величине, выражаемой
правильной дробью с числителем, равным
1. Эта ошибка характеризует в основном
линейные измерения и измерения площади
участков. Например, в замкнутом полигоне
теодолитного хода линейные измерения
оцениваются относительной ошибкой ;
где – абсолютная ошибка, Р – периметр
полигона.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    10.02.201528.82 Mб13Gistologia_tsitologia_i_embriologia_Yu_I_Afana.pdf

  • #

Погре́шность измере́ния — оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.

Поскольку выяснить с абсолютной точностью истинное значение любой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например, в БСЭ, термины ошибка измерения и погрешность измерения используются как синонимы.) Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. При этом за истинное значение принимается среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2.8±0.1 c. означает, что истинное значение величины T лежит в интервале от 2.7 с. до 2.9 с. некоторой оговоренной вероятностью (см. доверительный интервал, доверительная вероятность, стандартная ошибка).

В 2006 году на международном уровне был принят новый документ, диктующий условия проведения измерений и установивший новые правила сличения государственных эталонов. Понятие «погрешность» стало устаревать, вместо него было введено понятие «неопределенность измерений».

Содержание

  • 1 Определение погрешности
  • 2 Классификация погрешностей
    • 2.1 По форме представления
    • 2.2 По причине возникновения
    • 2.3 По характеру проявления
    • 2.4 По способу измерения
  • 3 См. также
  • 4 Литература

Определение погрешности

В зависимости от характеристик измеряемой величины для определения погрешности измерений используют различные методы.

  • Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:
 Delta x=frac{x_{max}-x_{min}}{2}
  • Средняя квадратическая погрешность:
  S =left. sqrt{sum_{i=1}^{n}frac{(x_i-x)^2}{n-1}} right.
  • Средняя квадратическая погрешность среднего арифметического:
  S _x= frac{S} {sqrt{n}} = left. sqrt{sum_{i=1}^{n}frac{(x_i-x)^2}{n(n-1)}} right.

Классификация погрешностей

По форме представления

  • Абсолютная погрешностьΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины Xmeas. При этом равенство:

ΔX = | XtrueXmeas | ,

где Xtrue — истинное значение, а Xmeas — измеренное значение, должно выполняться с некоторой вероятностью близкой к 1. Если случайная величина Xmeas распределена по нормальному закону, то, обычно, за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

  • Относительная погрешность — отношение абсолютной погрешности к тому значению, которое принимается за истинное:

 delta_x =frac{ Delta x}{X} .

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.

  • Приведенная погрешность — относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

 delta_x =frac{ Delta x}{X_n} ,

где Xn — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

— если шкала прибора односторонняя, т.е. нижний предел измерений равен нулю, то Xn определяется равным верхнему пределу измерений;
— если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведенная погрешность — безразмерная величина (может измеряться в процентах).

По причине возникновения

  • Инструментальные / приборные погрешности — погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.
  • Методические погрешности — погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
  • Субъективные / операторные / личные погрешности — погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.

В технике применяют приборы для измерения лишь с определенной заранее заданной точностью – основной погрешностью, допускаемой нормали в нормальных условиях эксплуатации для данного прибора.

Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора. К дополнительным погрешностям относятся: температурная, вызванная отклонением температуры окружающей среды от нормальной, установочная, обусловленная отклонением положения прибора от нормального рабочего положения, и т.п. За нормальную температуру окружающего воздуха принимают 20°С, за нормальное атмосферное давление 01,325 кПа.

Обобщенной характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведенных основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где n = 1; 0; -1; -2 и т.д.

По характеру проявления

  • Случайная погрешность — погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т.п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).
  • Систематическая погрешность — погрешность, изменяющаяся во времени по определенному закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т.п.), неучтёнными экспериментатором.
  • Прогрессирующая (дрейфовая) погрешность — непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.
  • Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора, если произошло замыкание в электрической цепи).

По способу измерения

  • Погрешность прямых измерений
  • Погрешность косвенных измерений — погрешность вычисляемой (не измеряемой непосредственно) величины:

Если F = F(x1,x2xn), где xi — непосредственно измеряемые независимые величины, имеющие погрешность Δxi, тогда:

 Delta F = sqrt{sum_{i=1}^n left(Delta x_i frac{partial F}{partial x_i}right)^2}

См. также

  • Измерение физических величин
  • Класс точности
  • Метрология
  • Система автоматизированного сбора данных со счетчиков по радиоканалу
  • Методы электроаналитической химии

Литература

  • Назаров Н. Г. Метрология. Основные понятия и математические модели. М.: Высшая школа, 2002. 348 с.
  • Лабораторные занятия по физике. Учебное пособие/Гольдин Л. Л., Игошин Ф. Ф., Козел С. М. и др.; под ред. Гольдина Л. Л. — М.: Наука. Главная редакция физико-математичекой литературы, 1983. — 704 с.

Wikimedia Foundation.
2010.

Статья обновлена 10.07.2022

Что такое погрешность измерения

Любой расчет состоит из истинного и вычисляемого значения. При этом всегда должны учитываться значения ошибки или погрешности. Погрешность — это расхождение между истинным значением и вычисляемым. В маркетинге выделяют следующие виды погрешностей.

  1. Математическая погрешность. Она описывается алгебраической формулой и бывает абсолютной, относительной и приведенной. Абсолютная погрешность измерения — это разница между вычисляемым и истинным значением. Относительная погрешность вычисляется в процентном соотношении истинного значения и полученного. Вычисление погрешности приведенной схоже с относительной, указывается она также в процентах, но дает разницу между нормирующей шкалой и полученными данными, то есть между эталонными и полученными значениями.
  2. Оценочная погрешность. В маркетинге она бывает случайной и систематической. Случайная погрешность возникает из-за любых факторов, которые случайным образом влияют на измерение переменной в выборке. Систематическая погрешность вызывается факторами, которые систематически влияют на измерение переменной в выборке.

Математическая погрешность: формула для каждого типа

Если определение погрешности можно провести точным путем, она считается математической. Зачем нужно вычисление этого значения в маркетинге?

Погрешности возникают настолько часто, что популярной практикой в исследованиях является включение значения погрешности в окончательные результаты. Для этого используются формулы. Математическая погрешность — это значение, которое отражает разницу между выборкой и фактическим результатом. Если при расчетах учитывалась  погрешность, в тексте исследования указывается что-то вроде: «Абсолютная погрешность для этих данных составляет 3,25%». Погрешность можно вычислить с любыми цифрами: количество человек, участвующих в опросе, погрешность суммы, затраченной на маркетинговый бюджет, и так далее.

Формулы погрешностей вычисляются следующим образом.

Абсолютная погрешность измерений: формула

Формула дает разницу между измеренным и реальным значением.

Формула абсолютной погрешности
Формула абсолютной погрешности

Относительная погрешность: формула

Формула использует значение абсолютной погрешности и вычисляется в процентах по отношению к фактическому  значению.

Формула относительной погрешности
Формула относительной погрешности

Приведенная погрешность: формула

Формула также использует значение абсолютной погрешности. В чем измеряется приведенная погрешность? Тоже в процентах, но в качестве «эталона» используется не реальное значение, а единица измерения любой нормирующей шкалы. Например, для обычной линейки это значение равно 1 мм.

Формула приведенной погрешности
Формула приведенной погрешности

Классификация оценочной погрешности

Определение погрешности в оценках — это всегда методическая погрешность, то есть допустимое значение ошибки, основанное на методах проведения исследования. Погрешность метода вызывает два типа погрешностей — случайные и систематические. Таблица погрешностей в графической форме покажет все возможные типы.

Классификация оценочной погрешности
Классификация оценочной погрешности

Что такое случайная погрешность

Случайная погрешность бывает статической и динамической. Динамическая погрешность возникает, когда мы имеем дело с меняющимися значениями — например, количество человек в выборке при маркетинговом исследовании. Статическая погрешность описывает ошибки при вычислении неизменных величин — вроде количества вопросов в вопроснике. Все они относятся к случайным погрешностям.

Типичный пример возникновения случайной погрешности — настроение участников маркетингового опроса. Как известно, эмоциональный настрой человека всегда влияет на его производительность. В ходе тестирования одни люди могут быть в хорошем расположении духа, а другие — в «миноре». Если настроение влияет на их ответы по заданному критерию выборки, это может искусственно завышать или занижать наблюдаемые оценки. Например, в случае с истинным значением 1 случайная погрешность может дать как -0,8, так и +0,5 к этому числу. Очень часто это случается при оценке времени ответа, например.

Случайная погрешность добавляет изменчивости данным, но не оказывает постоянного влияния на всю выборку. Вместо этого она произвольно изменяет измеряемые значения в диапазоне. В маркетинговой практике считается, что все случайные погрешности в распределении перекрывают друг друга и практически не влияют на конечный результат. Поэтому случайная погрешность считается «шумом» и в расчет не принимается. Эту погрешность нельзя устранить совсем, но можно уменьшить, просто увеличив размер выборки.

Что такое систематическая погрешность

Систематическая погрешность существует в результатах исследования, если эти результаты показывают устойчивую тенденцию к отклонению от истинных значений. Иными словами, если полученные цифры постоянно выше или ниже расчетных, речь идет о том, что в данных имеется систематическая погрешность.

В маркетинговых исследованиях есть два основных типа систематической погрешности: погрешность выборки и погрешность измерения. 

Погрешность выборки

Погрешность выборки возникает, когда выборка, используемая в исследовании, не репрезентативна для всей совокупности данных. Типы такой погрешности включают погрешность структуры, погрешность аудитории и погрешность отбора.

Погрешность структуры

Погрешность структуры возникает из-за использования неполной или неточной основы для выборки. Распространенным источником такой погрешности в рамках маркетинговых исследований является проведение какого-либо опроса по телефону на основе существующего телефонного справочника или базы данных абонентов. Многие данные там указаны неполно или неточно — например, если люди недавно переехали или изменили свой номер телефона. Также такие данные часто указывают неполную или неверную демографию.

Если в качестве основы для исследования взят телефонный справочник, оно подвержено погрешности структуры, так как не учитывает всех возможных респондентов.

Погрешность аудитории

Погрешность аудитории возникает, если исследователь не знает, как определить аудиторию для исследования. Пример — оценка результатов исследования, проведенного среди клиентов крупного банка. Доля ответов на анкету составила чуть менее 1%. Анализ профессий всех опрошенных показал, что процент пенсионеров среди них в 20 раз выше, чем в целом по городу. Если эта группа значительно различается по интересующим переменным, то результаты будут неверными из-за погрешности аудитории.

Погрешность отбора

Даже если маркетологи правильно определили структуру и аудиторию, они не застрахованы от погрешности отбора. Она возникает, когда процедуры отбора являются неполными, неправильными или не соблюдаются должным образом. Например, интервьюеры при полевом исследовании могут избегать людей, которые живут в муниципальных домах. Потому что, по их мнению, жители вряд ли согласятся пройти такой опрос. Если жители муниципальных домов отличаются от тех, кто проживает в домах бизнес-класса, в результаты опроса будет внесена погрешность отбора.

Как минимизировать погрешность выборки

  • Знайте свою аудиторию.
    Знайте, кто покупает ваш продукт, использует его, работает с вами и так далее. Имея базовую социально-экономическую информацию, можно составить стабильную выборку целевой аудитории. Маркетинговые исследования часто касаются одной конкретной группы населения — например, пользователей Facebook или молодых мам.
  • Разделите аудиторию на группы.
    Вместо случайной выборки разбейте аудиторию на группы в соответствии с их численностью в общей совокупности данных. Например, если люди с определенной демографией составляют 35% населения, убедитесь, что 35% респондентов исследования отвечают этому условию.
  • Увеличьте размер выборки.
    Больший размер выборки приводит к более точному результату.

Погрешность измерения

Погрешность измерения представляет собой серьезную угрозу точности исследования. Она возникает, когда существует разница между искомой информацией — то есть истинным значением, и информацией, фактически полученной в процессе измерения. К таким погрешностям приводят различные недостатки процесса исследования. Погрешность измерения, в основном, вызывается человеческим фактором — например, формулировкой вопросника, ошибками ввода данных и необъективными выводами.

К погрешностям измерения приводят следующие виды ошибок.

Ошибка цели

Ошибка цели возникает, когда существует несоответствие между информацией, фактически необходимой для решения проблемы, и данными , которые собирает исследование. Например, компания Kellogg впустую потратила миллионы на разработку завтраков для снижения уровня холестерина. Реальный вопрос, который нужно было бы задать в исследовании, заключался в том, купят ли люди овсяные хлопья для решения своей проблемы. Ответ «Нет» обошелся бы компании дешевле.

Предвзятость ответов

Некоторые люди склонны отвечать на конкретный вопрос определенным образом. Тогда возникает предвзятость ответа. Предвзятость ответа может быть результатом умышленной фальсификации или неосознанного искажения фактов.

Умышленная фальсификация происходит, когда респонденты целенаправленно дают неверные ответы на вопросы. Есть много причин, по которым люди могут сознательно искажать информацию. Например, они хотят скрыть  или хотят казаться лучше, чем есть на самом деле.

Бессознательное искажение информации происходит, когда респондент пытается быть правдивым, но дает неточный ответ. Этот тип предвзятости может возникать из-за формата вопроса, его содержания или по другим причинам.

Предвзятость интервьюера

Интервьюер оказывает влияние на респондента — сознательно или бессознательно. Одежда, возраст, пол, выражение лица, язык тела или тон голоса могут повлиять на ответы некоторых или всех респондентов.

Ошибка обработки

Примеры включают наводящие вопросы или элементы дизайна анкеты, которые затрудняют запись ответов или приводят к ошибкам в них.

Ошибка ввода

Это ошибки, возникающие при вводе информации. Например, документ может быть отсканирован неправильно, и его данные по ошибке перенесутся неверно. Или люди, заполняющие опросы на смартфоне или ноутбуке, могут нажимать не те клавиши.

Виды проводимых маркетинговых исследований различны, поэтому универсальных рецептов не существует. Мы дадим несколько общих советов, используемых для минимизации систематических погрешностей разного типа.

Как минимизировать погрешность измерения

  • Предварительно протестируйте.
    Погрешностей обработки и предвзятости можно избежать, если проводить предварительные тесты вопросника до начала основных интервью.
  • Проводите выборку случайным образом.
    Чтобы устранить предвзятость, при выборке респондентов можно включать каждого четвертого человека из общего списка.
  • Тренируйте команду интервьюеров и наблюдателей.
    Отбор и обучение тех, кто проводит исследования, должен быть тщательным. Особое внимание нужно уделять соблюдению инструкций в ходе каждого исследования.
  • Всегда выполняйте проверку сделанных записей.
    Чтобы исключить ошибки ввода, все данные, вводимые для компьютерного анализа, должны быть перепроверены как минимум дважды.

Мир без ошибок  не может существовать. Но понимание факторов, влияющих на маркетинговые исследования и измеряемые погрешности, имеет важное значение для сбора качественных данных.

  • Ошибки игроков ворлд оф танк
  • Ошибки игроков букмекерских контор
  • Ошибки игроков state of survival
  • Ошибки ивеко траккер 420
  • Ошибки ивеко стралис на табло расшифровка bc