Предельная ошибка прогноза формула

  1. Модели временных рядов

    1. Основные понятия
      и показатели

Временные ряды
(ряды динамики, хронологические ряды,
Time Series) — это ряды чисел, показывающие
изменение изучаемого явления во времени.

Временные ряды
бывают интервальными и моментными.

В интервальных
рядах приводятся уровни явления за
последовательные интервалы времени.

Пример интервального
ряда дается ниже.

Таблица 4.1. Добыча
угля в Ростовской области, млн. т

Год

Добыча
угля, млн. т

1995

19,4

1996

16,7

1997

14,1

1998

10,9

1999

10,1

В моментных рядах
данные приводятся на последовательные
моменты времени.

Пример моментного
ряда:

Таблица 4.2.
Численность наличного населения
Ростовской области на начало года, тыс.
чел.

Год

1996

1997

1998

1999

2000

Наличное население, тыс. чел.



4420,0

4403,9

4384,2

4357,9

К числу показателей,
характеризующих временные ряды, относятся
следующие:

— средний уровень
ряда,

— абсолютные
приросты (цепные и базисные),

— темпы (коэффициенты)
роста (цепные и базисные),

— темпы (коэффициенты)
прироста (цепные и базисные),

— абсолютное
содержание одного процента прироста,

— средний абсолютный
прирост,

— средний темп
роста,

— средний темп
прироста2и др.

    1. Анализ и
      прогнозирование временных рядов

Уровни временного
ряда формируются под влиянием действия
множества факторов, часть из которых
определяет основную тенденцию развития
явления (тренд), а остальные – обусловливают
колебания уровней ряда вокруг линии
тренда. При этом колеблемость вокруг
линии тренда также можно разложить на
части: некую систематическую составляющую
(например, сезонные колебания) и случайную
колеблемость.

Таким образом,
динамика уровней ряда включает три
составляющих:

— основную тенденцию
развития (тренд);

— систематическую
колеблемость вокруг линии тренда;

— случайную
(несистематическую) колеблемость вокруг
линии тренда.

4.2.1. Анализ и прогнозирование временных рядов с трендом

К числу приемов
выявления основной тенденции временных
рядов можно отнести укрупнение интервалов,
сглаживание и аналитическое выравнивание.

Укрупнение
интервалов
представляет собой замену
данных, имеющих отношение к мелким
временным периодам, данными по более
крупным периодам. Например, можно
заменить суточные данные недельными
или декадными, декадные – месячными,
месячные – квартальными и т.д.

Например, объем
продажи валюты на биржах меняется изо
дня в день под влиянием самых разнообразных
факторов, включая и чисто случайные.
Относительно меньшую колеблемость
обнаруживают недельные объемы продажи
валюты, еще меньшую — месячные и далее
— квартальные. Объединив мелкие интервалы
в крупные, мы погасим известную часть
случайной колеблемости и получим
возможность более отчетливо показать
основную тенденцию развития событий
на валютных биржах.

Недостатком этого
приема является то, что с переходом к
более крупным интервалам длина ряда
сильно укорачивается. Поэтому, имея
очень короткий ряд, выявить с его помощью
какую-либо тенденцию развития невозможно.
Таким образом, применение этого приема
приходится ограничить лишь теми случаями,
когда исходный временной ряд достаточно
длинен.

Сглаживание
временных рядов осуществляется с
помощью скользящей средней. Эта средняя
исчисляется для нескольких уровней,
входящих в интервал сглаживания, и затем
(при центрировании) относится к середине
этого интервала.

Расчет скользящей
средней по данным примера о динамике
добычи угля в Ростовской области (таблица
4.1.) имеет следующий вид:

Таблица 4.3.
Сглаживание ряда добычи угля в Ростовской
области с помощью скользящей средней

Год

Добыча
угля

Фактические
данные

Данные,
сглаженные с помощью скользящей
средней

1995

19,4

1996

16,7

(19,4+16,7+14,1):3
= 16,73

1997

14,1

(16,7+14,1+10,9):3
= 13,9

1998

10,9

(14,1+10,9+10,1):3
= 11,97

1999

10,1

В общем виде расчет
скользящей средней для i-того периода
можно записать так:

(4.1)

Эта формула верна
для сглаживания по трем точкам.

Для для сглаживания
по пяти точкам она примет следующий
вид:

Сглаживание
методом скользящей средней можно
проводить по любому числу членов т,
но удобнее, если т
нечетное
число, так как в этом случае скользящая
средняя сразу относится к конкретной
временной точке — середине (центру)
интервала. Если же т
четное,
то скользящая средняя относится к
промежутку между временными точками:
например, при сглаживании по четырем
членам средняя из первых четырех уровней
будет находиться между второй и третьей
датой, следующая средняя — между третьей
и четвертой и т.д. Тогда, чтобы сглаженные
уровни относились непосредственно к
конкретным временным точкам (датам), из
каждой пары смежных промежуточных
значений скользящих средних находят
среднюю арифметическую, которую и
относят к определенной дате (периоду).
Такой прием называется центрированием.

Недостатком
метода скользящей средней является то,
что сглаженный ряд «укорачивается» по
сравнению с фактическим с двух концов:
при нечетном т
на (m
— 1)/2 с каждого конца, а при четном — на
т/2
с каждого конца.

Применяя этот
метод, надо помнить, что он сглаживает
(устраняет) лишь случайные колебания.

Если же, например,
ряд содержит сезонную волну, она
сохранится и после сглаживания методом
скользящей средней.

Кроме того, этот
метод сглаживания, как и укрупнение
интервалов, является механическим,
эмпирическим и не позволяет выразить
общую тенденцию изменения уровней в
виде математической модели.

Аналитическое
выравнивание.
Более
совершенный метод обработки временных
рядов в целях устранения случайных
колебаний и выявления тренда —
выравнивание уровней ряда по аналитическим
формулам (аналитическое выравнивание).
Суть аналитического выравнивания
заключается в замене эмпирических
(фактических) уровней y
теоретическими
,
которые
рассчитаны по определенному уравнению,
принятому за математическую модель
тренда, где теоретические уровни
рассматриваются как функция времени:

.

При
этом каждый фактический уровень y
рассматривается как сумма двух
составляющих:
,
где

систематическая составляющая, отражающая
тренд и выраженная определенным
уравнением, а

случайная величина, вызывающая колебания
уровней вокруг тренда.

Задача аналитического
выравнивания сводится к следующему:

  • определение
    на основе фактических данных вида
    (формы) гипотетической функции
    ,
    способной наиболее адекватно отразить
    тенденцию развития исследуемого
    показателя;

  • нахождение по
    эмпирическим данным параметров указанной
    функции (уравнения);

  • расчет по найденному
    уравнению теоретических (выравненных)
    уровней.

Наиболее простые
модели аналитического выравнивания:


линейная:
;


показательная:
;


экспоненциальная: ;


гиперболическая:
;


парабола 2-го порядка:

и
др.

Несложно
заметить, что в качестве объясняющей
переменной в трендовых уравнениях
регрессии выступает фактор времени t.

Выбор аналитической
функции для выравнивания временного
ряда осуществляется, как правило, на
основании графического изображения
эмпирических данных, дополняемого
содержательным анализом особенностей
развития исследуемого показателя
(явления). Вспомогательную роль при
выборе аналитической функции играют
механические приемы сглаживания
(укрупнение интервалов и метод скользящей
средней). Частично устраняя случайные
колебания, они помогают более точно
определить тренд и выбрать адекватную
модель для аналитического выравнивания.

Существует ряд
рекомендаций для выбора аналитической
функции:

1.
Выравнивание по прямой (линейной) функции
эффективно для рядов, уровни которых
изменяются примерно в арифметической
прогрессии, т.е. когда первые разности
уровней (абсолютные приросты)
примерно постоянны.

2.
Если примерно постоянны вторые разности
уровней (ускорения), то такое развитие
хорошо описывается параболой 2-го порядка
.
Если постоянны п-е
разности уровней, можно использовать
параболу п-го
порядка ,
позволяющую
«улавливать» перегибы, смену направлений
изменения уровней. Парабола 2-го порядка
отражает развитие с ускоренным или
замедленным изменением уровней ряда.

3.
Если при последовательном расположении
t
(меняющемся в арифметической прогрессии)
значения уровней меняются в геометрической
прогрессии, т.е. цепные коэффициенты
роста примерно постоянны, то такое
развитие можно отразить показательной
или экспоненциальной функцией.

4. Если обнаружено
замедленное снижение уровней ряда,
которые по логике не могут снизиться
до нуля, для описания характера тренда
выбирают гиперболу и т.д.

Рассмотрим выбор
формы уравнения тренда на следующем
примере:

Таблица 4.4. Динамика
среднегодовой численности
промышленно-производственного персонала
в промышленности в Ростовской области
(тыс.чел.)

Годы

Среднегодовая
численность промышленно-производственного
персонала в промышленности

1993

569,7

1994

516,4

1995

472,0

1996

431,0

1997

395,8

1998

365,1

Расчитаем первые
и вторые разности, а также коэффициенты
роста.

yt

1993

569,7

1994

516,4

-53,3

0,906

1995

472,0

-44,4

8,9

0,914

1996

431,0

-41,0

3,4

0,913

1997

395,8

-35,2

5,8

0,918

1998

365,1

-30,7

4,5

0,922

Наибольшей
стабильностью отличаются коэффициенты
роста, поэтому, видимо, для описания
тренда следует выбрать либо показательную,
либо экспоненциальную функцию.

К аналогичным
выводам можно прийти, анализируя график
динамики среднегодовой численности
ППП в Ростовской области (рис. 12).

Судя по графику
динамики среднегодовой численности
ППП в Ростовской области, для прогноза
лучше всего использовать показательную,
экпоненциальную либо линейную функцию.

Рис.12. Динамика
среднегодовой численности ППП в
Ростовской области

Несмотря на эти
выводы, рассмотрим механизм расчета
параметров всех вышеперечисленных
моделей.

Параметры искомых
уравнений при аналитическом выравнивании
могут быть определены различными
способами. Чаще всего для этого
используется метод наименьших квадратов.

В частности для
нахождения параметров уравнения
прямой
может быть использован следующий
алгоритм:

(4.2)

Если периоды или
моменты времени пронумеровать так,
чтобы получилось
,
то вышеприведенные алгоритмы существенно
упростятся и примут следующий вид:

(4.3)

В нашем примере –
6 уровней ряда. Для того, чтобы сумма
порядковых номеров уровней ряда была
равна нулю, нулевым моментом следует
принять промежуток между 1995 и 1996 гг.
Тогда порядковый номер 1993 года будет
равен -2,5, 1994 — -1,5 и т.д. Их сумма равна
нулю, что в дальнейшем упростит расчеты.
Для их осуществления составим рабочую
таблицу 4.5:

Таблица 4.5.

Годы

T

y

Yt

t2

1993

-2,5

569,7

-1424,25

6,25

1994

-1,5

516,4

-774,6

2,25

1995

-0,5

472,0

-236

0,25

1996

0,5

431,0

215,5

0,25

1997

1,5

395,8

593,7

2,25

1998

2,5

365,1

912,75

6,25

Суммы

0

2750

-712,9

17,5

Отсюда:

При таких параметрах
уравнение получит следующий вид:

Дадим интерпретацию
параметров тренда.

Коэффициент
регрессии (b)
в линейном тренде показывает средний
за период цепной абсолютный прирост
уровней ряда. В нашем примере b = -40,73,
следовательно среднегодовая численность
ППП в среднем за год снижается на 40,73
тыс.чел. Свободный член (а)
в линейном тренде выражает начальный
уровень ряда в момент (период времени)
t
= 0. В нашей нумерации t
= 0 приходится на период времени между
1996 и 1997 гг., что несколько затрудняет
его интерпретацию. В нашем случае а
= 458,33 тыс.чел. – это средняя численность
ППП за вторую половину 1996 и первую
половину 1997 гг.

С помощью этого
уравнения найдем выравненные уровни и
рассчитаем стандартную ошибку уравнения
регрессии Syx.

.

Расчеты проведем
в рабочей таблице 4.6:

Таблица 4.6.

T

1994

-2,5

569,7

560,1762

9,5238

90,7029

1995

-1,5

516,4

519,4390

-3,0390

9,2358

1996

-0,5

472,0

478,7019

-6,7019

44,9155

1997

0,5

431,0

437,9648

-6,9648

48,5079

1998

1,5

395,8

397,2276

-1,4276

2,0381

1999

2,5

365,1

356,4905

8,6095

74,1239

Суммы

0

2750

2750

0

269,5242

Чем меньше
стандартная ошибка, тем лучше подобрана
модель тренда. Сравнение Syx
, рассчитанных для различных
моделей дает возможность выбрать лучшую
из них.

Рассмотрим
использование для аналитического
выравнивания других (нелинейных) моделей.

Для определения
параметров нелинейных уравнений
регрессии необходимо привести их к
линейному виду. Рассмотрим алгоритмы
линеаризации некоторыхиз них.

Уравнение
гиперболы:

.

Чтобы привести к
линейному виду уравнение гиперболы,
необходимо ввести переменную
.
Тогда уравнение примет линейный вид:
и
его параметры можно рассчитывать обычным
МНК.

Расчет по данным
нашего примера даст следующие результаты
(при условии, что
):

b= -26,5222;a= 458,3333;Syx= 75,5534.

При таких параметрах
уравнение получит следующий вид:

.

Учитывая, что Syx– намного больше, чем в уравнении прямой,
можно сделать вывод, модель гиперболы
хуже описывает динамику численности
ППП в Ростовской области.

Уравнение
параболы:

.

Аналогичный прием
используется и при определении параметров
уравнения параболы. Приняв
,
получим:

линейное уравнение множественной
регрессии.

Расчет по данным
нашего примера даст следующие результаты
(при условии, что
):

b1= -40,7371;b2= 2,6750;a= 450,5313;Syx= 0,8909.

При таких параметрах
уравнение получит следующий вид:

.

Как мы видим, в
данном случае Syx– меньше, чем в уравнении прямой, т.е.
парабола 2-го порядка лучше других
моделей описывает динамику численности
ППП в Ростовской области.

Показательная
функция:

.

Линеаризация
показательной функции достигается
путем ее логарифмирования:

.

Это – линейное
уравнение. Правда, при определении его
параметров мы получим десятичные
логарифмы aиb.

Расчет по данным
нашего примера даст следующие результаты
(при условии, что
):

lgb= -0,0386;lga= 2,6562;Syx= 2,7977.

При таких параметрах
уравнение получит следующий вид:

.

Найдем aиb.

b
= 10
-0,0386 = 0,915.

Данная величина
является среднегодовым коэффициентом
роста. В нашем примере его величина
указывает на то, что среднегодовая
численность ППП в Ростовской области
снижалась на 8,5 % в среднем за год.

a
= 10
2,6562 = 453,1062.

Таким образом,
искомое уравнение будет иметь такой
вид:

.

Судя по величине
стандартной ошибки Syx= 2,7977, показательная функция лучше, чем
линейная, но хуже, чем параболическая
описывает динамику ППП в Ростовской
области.

Экспоненциальная
функция:

.

В данным случае
для линеаризации лучше использовать
натуральные логарифмы:

.

Снова имеем линейное
уравнение.

Расчет по данным
нашего примера даст следующие результаты
(при условии, что
):

b= -0,089;lna= 6,116;Syx= 2,7573.

При таких параметрах
уравнение получит следующий вид:

.

Найдем
a:

a =
e
6,116 =
453,0489.

b
= -0,089. Данная величина является
среднегодовым коэффициентом прироста.
В нашем примере его величина указывает
на то, что среднегодовая численность
ППП в Ростовской области снижалась на
8,9 % в среднем за год.

Таким образом,
искомое уравнение будет иметь такой
вид:

.

Судя по величине
стандартной ошибки Syx= 2,7573, экспоненциальная функция лучше,
чем линейная, но хуже, чем параболическая
описывает динамику ППП в Ростовской
области.

Разумеется, решение
относительно функциональной формы
уравнения тренда принимаются, не только
исходя из величины стандартной ощибки
уравнения тренда. Необходимо, принимать
во внимание цели аналитического
выравнивания, оценивать значимость
уравнения регрессии в целом, а также
его параметров.

Так, в нашем примере
наименьшую стандартную ошибку имеет
уравнени параболы. Однако его лучше
всего использовать для интерполяции
(расчета промежуточных значений).
Очевидно, что прогноз (экстраполяцию)
с помощью уравнения параболы делать
нельзя.

Так как наименьшую
и примерно одинаковую стандартную
ошибку имеют показательная и
экспоненциальная функции, для
прогнозирования, видимо, лучше использовать
одну из них.

Таким образом, мы
пришли к тем же выводам, что и в начале
анализа данного временного ряда.

Несмотря на все
вышеприведенные соображения, необходимо
проверять значимость трендового
уравнения регрессии. Алгоритм проверки
ничем не отличается от проверки значимости
любого другого уравненния регрессии.

В качестве критерия
проверки статистической гипотезы о
значимости уравнения регрессии
используется критерий F– Фишера-Снедекора.

Несложно убедиться
в том, что в нашем примере на уровне
значимости α = 0,05 можно доверять всем
уравнениям за исключением уравнения
гиперболы.

Прогнозирование
временных рядов с трендом.

Если не учитывать
систематическую колеблемость вокруг
линии тренда (например, сезонную
колеблемость), то прогнозирование
сводится к подстановке в уравнения
регрессии значений t,
относящихся к соответствующему периоду
упреждения.

Прогноз бывает
точечным и интервальным.

Точечный
прогноз по уравнению тренда — это
расчетное значение переменной y,
полученное путем подстановки в уравнение
тренда соответствующих значений t.

По сравнению с
точечным значительно большую практическую
ценность имеет интервальный прогноз,
позволяющий с заданной надежностью
(доверительной вероятностью) γопределить границы интервала, в которых
будет находиться уровень изучаемого
призака в прогнозируемый период времени.
Надежность точечного прогноза равна
нулю.

Интервальный
прогноз определяется двойным неравенством:

,
(4.6)

где
-прогноз
значения переменнойy
на момент (период) времени t;


точечная оценка значения переменной y
на момент (период) времени t;


предельная ошибка прогноза.

Предельная ошибка
прогноза рассчитывается по формуле:

,
(4.7)

где
— табличное значение t — критерия Стьюдента
для уровня значимости α = 1 — γ и числа
степеней свободы (k
= n — 2
);


стандартная ошибка точечного прогноза,
которая, в свою очередь, рассчитывается
по формуле:

,
(4.8)

где
— длина периода упреждения (срок прогноза).

Рассмотрим
использование для прогнозирования
линейного уравнения регрессии в примере
о динамике среднегодовой численности
ППП в Ростовской области.

Дадим точечный и
интервальный прогноз численности ППП
на 1999 год.

В
нашей нумерации 1999 год соответствует
моменту времени t
= 3,5. Линейное уравнение динамики
среднегодовой численности ППП в
Ростовской области имеет вид:

Отсюда,

Следовательно,
точечный прогноз среднегодовой
численности ППП в Ростовской области
на 1999 год составляет 315,75 тыс.чел.

Определим границы
доверительного интервала, в котором с
заданной надежностью γ будет находится
среднегодовая численности ППП в
Ростовской области в 1999 году.

Общепринятый в
экономике уровень надежности γ = 1 — α =
1 — 0,05 = 0,95.

Найдем стандартную
ошибку прогноза:

.

Табличное
значение t — критерия Стьюдента для
уровня значимости α = 0,05 и числа степеней
свободы k = 6 – 2 = 4 составляет 2,78, т.е.
=2,78.

Отсюда,

Таким образом,

;

.

С вероятностью
0,95 можно ожидать, что в 1999 году среднегодовая
численность ППП в Ростовской области
будут находиться в пределах от 280,96 до
350,54 тыс. чел.

Обратите внимание
на то, что приведенные формулы верны
только для уравнения парной регрессии,
линейной по параметрам.

Эконометрика

Вариант 1

Задание 1. Модель парной линейной регрессии.

Имеются данные о размере среднемесячных доходов в разных группах семей

Номер группы

Среднедушевой денежный доход в месяц, руб., X

Доля оплаты труда в структуре доходов семьи, %, Y

1

79,8

64,2

2

152,1

66,1

3

199,3

69,0

4

240,8

70,6

5

282,4

72,4

6

301,8

74,3

7

385,3

76,0

8

457,8

77,1

9

577,4

78,4

Задания:

1. Рассчитать линейный коэффициент парной корреляции, оценить его статистическую значимость и построить для него доверительный интервал с уровнем значимости a =0,05. Сделать выводы

2. Построить линейное уравнение парной регрессии Y на X и оценить статистическую значимость параметров регрессии. Сделать рисунок.

3. Оценить качество уравнения регрессии при помощи коэффициента детерминации. Сделать выводы. Проверить качество уравнения регрессии при помощи F-критерия Фишера.

4. Выполнить прогноз доли оплаты труда структуре доходов семьи Y при прогнозном значении среднедушевого денежного дохода X, составляющем 111% от среднего уровня. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал для уровня значимости a =0,05. Сделать выводы.

Решение: Построим поле корреляции зависимости доли оплаты труда в структуре доходов семьи от среднедушевого денежного дохода в месяц.

Точки на построенном графике размещаются вблизи кривой, напоминающей по форме Прямую, поэтому можно предположить, что между указанными величинами существует Линейная зависимость вида .

Для расчета линейного коэффициента парной корреляции и параметров линейной регрессии составим вспомогательную таблицу.

№ п/п

X

Y

X×Y

X2

Y2

1

79,8

64,2

5123,16

6368,04

4121,64

2

152,1

66,1

10053,81

23134,41

4369,21

3

199,3

69,0

13751,70

39720,49

4761,00

4

240,8

70,6

17000,48

57984,64

4984,36

5

282,4

72,4

20445,76

79749,76

5241,76

6

301,8

74,3

22423,74

91083,24

5520,49

7

385,3

76,0

29282,80

148456,09

5776,00

8

457,8

77,1

35296,38

209580,84

5944,41

9

577,4

78,4

45268,16

333390,76

6146,56

S

2676,7

648,1

198645,99

989468,27

46865,43

Среднее

297,41

72,01

22071,78

109940,92

5207,27

Вычислим коэффициент корреляции. Используем следующую формулу:

= 0,9568.

Можно сказать, что между рассматриваемыми признаками существует Прямая тесная Корреляционная связь.

Среднюю ошибку коэффициента корреляции определим по формуле:

= 0,032.

Найдем табличное значение TТабл по таблице распределения Стьюдента для
a = 0,05 и числе степеней свободы K = NM – 1 = 9 – 1 – 1 = 7.

TТабл(0,05; 7) = 2,36.

Запишем доверительный интервал для коэффициента корреляции.

Доверительный интервал не включает число 0, поэтому при заданном уровне значимости коэффициент корреляции является статистически значимым.

Вычислим параметры уравнения регрессии.

= 0,03.

= 72,01 – 0,03×297,41 = 63,09.

Получим следующее уравнение: .

Для проверки статистической значимости (существенности) линейного коэффициента парной корреляции рассчитаем T-критерий Стьюдента по формуле:

= 23,04.

Фактическое значение по абсолютной величине больше табличного, что свидетельствует о значимости линейного коэффициента корреляции и существенности связи между рассматриваемыми признаками.

Проверим значимость оценок теоретических коэффициентов регрессии с помощью t-статистики Стьюдента и сделаем соответствующие выводы о значимости этих оценок.

Для определения статистической значимости коэффициентов A и B найдем T-статистики Стьюдента:

Рассчитаем по полученному уравнению теоретические значения. Составим вспомогательную таблицу.

№ п/п

X

Y

1

79,8

64,2

65,48

1,6384

47354,1

2

152,1

66,1

67,65

2,4025

21115,0

3

199,3

69,0

69,07

0,0049

9625,6

4

240,8

70,6

70,31

0,0841

3204,7

5

282,4

72,4

71,56

0,7056

225,3

6

301,8

74,3

72,14

4,6656

19,3

7

385,3

76,0

74,65

1,8225

7724,7

8

457,8

77,1

76,82

0,0784

25725,0

9

577,4

78,4

80,41

4,0401

78394,4

S

2676,7

648,1

648,09

15,4421

193388,1

Вычислим стандартные ошибки коэффициентов уравнения.

= 1,2.

= 0,003.

Вычислим T-статистики.

Сравнение расчетных и табличных величин критерия Стьюдента показывает, что и , т. е. оценки A и B теоретических коэффициентов регрессии статистически значимы.

Сделаем рисунок.

Рассчитаем коэффициент детерминации: = 0,95682= 0,915 = 91,5%.

Таким образом, вариация результата Y на 91,5% объясняется вариацией фактора X.

Оценку значимости уравнения регрессии проведем с помощью F-критерия Фишера:

= 75,81.

Найдем табличное значение Fтабл по таблице критических точек Фишера для
a = 0,05; K1 = M = 1 (число факторов), K2 = NM – 1 = 9 – 1 – 1 = 7.

Fтабл(0,05; 1; 7) = 5,59.

Поскольку F > FТабл, уравнение регрессии с вероятностью 0,95 в целом Является статистически значимым.

Выполним прогноз доли оплаты труда структуре доходов семьи y при прогнозном значении среднедушевого денежного дохода x, составляющем 111% от среднего уровня.

XP = 297,41 × 1,11 = 330,1.

Вычислим прогнозное значение Yp с помощью уравнения регрессии.

» 73%.

Доверительный интервал прогноза имеет вид

(УPTкр×My, УP + Tкр×My),

Где , M = 2 – число параметров уравнения.

= 1,695 » 1,7.

Запишем доверительный интервал прогноза:

Þ

Данный прогноз является надежным, поскольку доверительный интервал не включает число 0, точность прогноза составляет 4.

Задание 2. Модель парной нелинейной регрессии.

По территориям Центрального района известны данные за 1995 г.

Район

Прожиточный минимум в среднем на одного пенсионера в месяц, тыс. руб., X

Средний размер назначенных ежемесячных пенсий, тыс. руб., Y

Брянская обл.

178

240

Владимирская обл.

202

226

Ивановская обл.

197

221

Калужская обл.

201

226

Костромская обл.

189

220

Орловская обл.

166

232

Рязанская обл.

199

215

Смоленская обл.

180

220

Тверская обл.

181

222

Тульская обл.

186

231

Ярославская обл.

250

229

Задания:

1. Построить поле корреляции и сформулируйте гипотезу о форме связи. Рассчитать параметры уравнений полулогарифмической () и степенной () парной регрессии. Сделать рисунки.

2. Дать с помощью среднего коэффициента эластичности сравнительную оценку силы связи фактора с результатом для каждой модели. Сделать выводы. Оценить качество уравнений регрессии с помощью средней ошибки аппроксимации и коэффициента детерминации. Сделать выводы.

3. По значениям рассчитанных характеристик выбрать лучшее уравнение регрессии. Дать экономический смысл коэффициентов выбранного уравнения регрессии

4. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости a =0,05. Сделать выводы.

Решение: Решение: Для предварительного определения вида связи между указанными признаками построим поле корреляции. Для этого построим в системе координат точки, у которых первая координата X, а вторая – Y.

Получим следующий рисунок.

По внешнему виду диаграммы рассеяния трудно предположить, какая зависимость существует между указанными показателями.

Построение полулогарифмической модели регрессии.

Уравнение логарифмической кривой: .

Обозначим:

Получим линейное уравнение регрессии:

Y = A + B×X.

Произведем линеаризацию модели путем замены . В результате получим линейное уравнение .

Рассчитаем его параметры, используя данные таблицы.

№ п/п

X

Y

X = ln(X)

Xy

X2

Y2

Ai

1

178

240

5,1818

1243,63

26,85

57600

226,40

206,314

184,904

6,006

2

202

226

5,3083

1199,67

28,18

51076

225,17

0,132

0,694

0,370

3

197

221

5,2832

1167,59

27,91

48841

225,41

21,496

19,464

1,957

4

201

226

5,3033

1198,55

28,13

51076

225,22

0,132

0,615

0,348

5

189

220

5,2417

1153,18

27,48

48400

225,82

31,769

33,833

2,576

6

166

232

5,1120

1185,98

26,13

53824

227,08

40,496

24,172

2,165

7

199

215

5,2933

1138,06

28,02

46225

225,31

113,132

106,362

4,577

8

180

220

5,1930

1142,45

26,97

48400

226,29

31,769

39,601

2,781

9

181

222

5,1985

1154,07

27,02

49284

226,24

13,223

17,968

1,874

10

186

231

5,2257

1207,15

27,31

53361

225,97

28,769

25,273

2,225

11

250

229

5,5215

1264,41

30,49

52441

223,09

11,314

34,980

2,651

Итого

2129

2482

57,862

13054,74

304,48

560528

2482,00

498,545

487,867

27,530

Среднее

193,5

225,6

5,260

1186,79

27,68

50957,091

225,636

45,322

44,352

2,503

= -9,76.

= 225,6 – (-9,76)×5,26 = 276,99.

Уравнение модели имеет вид:

Определим индекс корреляции

Используя данные таблицы, получим:

.

Рассчитаем коэффициент детерминации: = 0,14642= 0,021 = 2,1%.

Вариация результата Y всего на 2,1% объясняется вариацией фактора X.

Сделаем рисунок.

Рассчитаем средний коэффициент эластичности по формуле:

= -0,04%.

Коэффициент эластичности показывает, что при среднем росте признака X на 1% признак Y снижается на 0,04%.

Вычислим среднюю ошибку аппроксимации. Используя данные расчетной таблицы, получаем:

= 2,5%.

Построение степенной модели парной регрессии.

Уравнение степенной модели имеет вид: .

Для построения этой модели необходимо произвести линеаризацию переменных. Для этого произведем логарифмирование обеих частей уравнения:

.

Произведем линеаризацию модели путем замены и . В результате получим линейное уравнение .

Рассчитаем его параметры, используя данные таблицы.

№ п/п

X

Y

X = ln(X)

Y = ln(Y)

XY

X2

Y2

Ai

1

178

240

5,1818

5,4806

28,3995

26,851

30,037

226,3

206,3

188,391

241,661

6,07

2

202

226

5,3083

5,4205

28,7737

28,178

29,382

225,1

0,132

0,835

71,479

0,406

3

197

221

5,2832

5,3982

28,5196

27,912

29,140

225,3

21,496

18,671

11,934

1,918

4

201

226

5,3033

5,4205

28,7467

28,125

29,382

225,1

0,132

0,753

55,570

0,385

5

189

220

5,2417

5,3936

28,2720

27,476

29,091

225,7

31,769

32,607

20,661

2,530

6

166

232

5,1120

5,4467

27,8437

26,132

29,667

226,9

40,496

25,675

758,752

2,233

7

199

215

5,2933

5,3706

28,4284

28,019

28,844

225,2

113,132

104,576

29,752

4,540

8

180

220

5,1930

5,3936

28,0089

26,967

29,091

226,2

31,769

38,059

183,479

2,728

9

181

222

5,1985

5,4027

28,0858

27,024

29,189

226,1

13,223

16,950

157,388

1,821

10

186

231

5,2257

5,4424

28,4407

27,308

29,620

225,9

28,769

26,413

56,934

2,275

11

250

229

5,5215

5,4337

30,0021

30,487

29,525

223,1

11,314

34,846

3187,116

2,646

Итого

2129

2482

57,862

59,603

313,521

304,479

322,969

2480,927

498,545

487,777

4774,727

27,548

Среднее

193,5

225,6

5,260

5,418

28,502

27,680

29,361

225,539

45,322

44,343

434,066

2,504

С учетом введенных обозначений уравнение примет вид: Y = A + BX – линейное уравнение регрессии. Рассчитаем его параметры, используя данные таблицы.

= -0,042.

= 5,418 – 0,959×5,26 = 5,637.

Перейдем к исходным переменным X и Y, выполнив потенцирование данного уравнения.

A = eA = e5,637 = 280,76

Получим уравнение степенной модели регрессии: .

Определим индекс корреляции

Используя данные таблицы, получим:

.

Рассчитаем коэффициент детерминации: = 0,1472= 0,021 = 2,1%.

Вариация результата Y всего на 2,1% объясняется вариацией фактора X.

Сделаем рисунок.

Для степенной модели средний коэффициент эластичности равен коэффициенту B.

= -0,042%.

Коэффициент эластичности показывает, что при среднем росте признака X на 1% признак Y снижается на 0,042%.

Вычислим среднюю ошибку аппроксимации. Используя данные расчетной таблицы, получаем:

= 2,5%.

Сводная таблица вычислений

Параметры

Модель

Полулогарифмическая

Степенная

Уравнение связи

Индекс корреляции

0,1464

0,147

Коэффициент детерминации

0,021

0,021

Средняя ошибка аппроксимации, %

2,5

2,5

Для выявления формы связи между указанными признаками были построены полулогарифмическая и степенная модели регрессии. Анализ показателей корреляции, а также оценка качества моделей с использованием средней ошибки аппроксимации позволил предположить, что из перечисленных моделей более адекватной является степенная модель, поскольку для нее индекс корреляции принимает наибольшее значение R = 0,147, свидетельствующий о том, что между рассматриваемыми признаками наблюдается Слабая корреляционная связь.

Рассчитаем прогнозное значение результата по степенной модели регрессии, если прогнозируется увеличение значения фактора на 10% от среднего уровня.

Прогнозное значение составит:

= 193,5 × 1,1 = 212,9 тыс. р., тогда прогнозное значение Y составит:

= 224,6 тыс. р.

Определим доверительный интервал прогноза для уровня значимости a = 0,05.

Вычислим Среднюю стандартную ошибку прогноза По следующей формуле:

, где

Получаем: = 7,55.

Найдем предельную ошибку прогноза , где для доверительной вероятности 0,95 значение T составляет 1,96.

= 14,8.

Запишем доверительный интервал прогноза.

= 224,6 – 14,8 = 209,8 тыс. р.

= 224,6 + 14,8 = 239,4 тыс. р.

Таким образом, с вероятностью 0,95 можно утверждать, что прогнозное значение среднего размера назначенных ежемесячных пенсий будет находиться в пределах от 209,8 тыс. р. до 239,4 тыс. р.

Задание 3. Моделирование временных рядов

Имеются поквартальные данные по розничному товарообороту России в 1995-1999 гг.

Номер квартала

Товарооборот % к предыдущему периоду

Номер квартала

Товарооборот % к предыдущему периоду

1

100

11

98,8

2

93,9

12

101,9

3

96,5

13

113,1

4

101,8

14

98,4

5

107,8

15

97,3

6

96,3

16

112,1

7

95,7

17

97,6

8

98,2

18

93,7

9

104

19

114,3

10

99

20

108,4

Задания:

1. Построить график данного временного ряда. Охарактеризовать структуру этого ряда.

2. Рассчитать сезонную компоненты временного ряда и построить его Мультипликативную Модель.

3. Рассчитать трендовую компоненту временного ряда и построить его график

4. Оценить качество модели через показатели средней абсолютной ошибки и среднего относительного отклонения.

Решение: Пронумеруем указанные месяцы от 1 до 24 и построим график временного ряда.

Полученный график показывает, что а данном временном ряду присутствуют сезонные колебания.

Построим мультипликативную модель временного ряда.

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (T), сезонной (S) и случайной (E) компонент.

Построение мультипликативной моделей сведем к расчету значений T, S и E для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1)  Выравнивание исходного ряда методом скользящей средней.

2)  Расчет значений сезонной компоненты S.

3)  Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных T×E.

4)  Аналитическое выравнивание уровней T×E и расчет значений T с использованием полученного уравнения тренда.

5)  Расчет полученных по модели значений T×E.

6)  Расчет абсолютных и/или относительных ошибок.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

1.1. Просуммируем уровни ряда последовательно за каждые четыре месяца со сдвигом на один момент времени и определим условные годовые уровни объема продаж (гр. 3 табл. 2.1).

1.2. Разделив полученные суммы на 4, найдем скользящие средние (гр. 4 табл. 2.1). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

1.3. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл. 2.1).

Таблица 2.1

№ месяца, T

Товарооборот, Yi

Итого за четыре месяца

Скользящая средняя за четыре месяца

Центрированная скользящая средняя

Оценка сезонной компоненты

1

2

3

4

5

6

1

100,0

2

93,9

392

98

3

96,5

400

100

99

0,975

4

101,8

402

100,5

100,25

1,015

5

107,8

402

100,5

100,5

1,073

6

96,3

398

99,5

100

0,963

7

95,7

394

98,5

99

0,967

8

98,2

397

99,25

98,875

0,993

9

104,0

400

100

99,625

1,044

10

99,0

404

101

100,5

0,985

11

98,8

413

103,25

102,125

0,967

12

101,9

412

103

103,125

0,988

13

113,1

411

102,75

102,875

1,099

14

98,4

309

77,25

90

1,093

15

97,3

196

49

63,125

1,541

16

112,1

303

75,75

62,375

1,797

17

97,6

418

104,5

90,125

1,083

18

93,7

414

103,5

104

0,901

19

114,3

20

108,4

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 6 табл. 2.1). Эти оценки используются для расчета сезонной компоненты S (табл. 2.2). Для этого найдем средние за каждый месяц оценки сезонной компоненты Si. Так же как и в аддитивной модели считается, что сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем месяцам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.

Таблица 2.2

Показатели

Год

№ квартала, I

I

II

III

IV

1

– 

0,975

1,015

2

1,073

0,963

0,967

0,993

3

1,044

0,985

0,967

0,988

4

1,099

1,093

1,541

1,797

5

1,083

0,901

Всего за I-й квартал

4,299

3,942

4,45

4,793

Средняя оценка сезонной компоненты для I-го квартала,

0,860

0,788

0,890

0,959

Скорректированная сезонная компонента,

0,984

0,901

1,018

1,097

Имеем: 0,860 + 0,788 + 0,890 + 0,959 = 3,497.

Определяем корректирующий коэффициент: K = 4 : 3,497 = 1,144.

Скорректированные значения сезонной компоненты получаются при умножении ее средней оценки на корректирующий коэффициент K.

Проверяем условие: равенство 4 суммы значений сезонной компоненты:

0,984 + 0,901 + 1,018 + 1,097 = 4.

Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины (гр. 4 табл. 2.3), которые содержат только тенденцию и случайную компоненту.

Таблица 2.3

T

Yt

St

T

T×S

1

2

3

4

5

6

7

1

100,0

0,984

101,6

100,02

98,42

1,016

2

93,9

0,901

104,2

100,19

90,27

1,040

3

96,5

1,018

94,8

100,36

102,17

0,945

4

101,8

1,097

92,8

100,53

110,28

0,923

5

107,8

0,984

109,6

100,7

99,09

1,088

6

96,3

0,901

106,9

100,87

90,88

1,060

7

95,7

1,018

94,0

101,04

102,86

0,930

8

98,2

1,097

89,5

101,21

111,03

0,884

9

104,0

0,984

105,7

101,38

99,76

1,043

10

99,0

0,901

109,9

101,55

91,50

1,082

11

98,8

1,018

97,1

101,72

103,55

0,954

12

101,9

1,097

92,9

101,89

111,77

0,912

13

113,1

0,984

114,9

102,06

100,43

1,126

14

98,4

0,901

109,2

102,23

92,11

1,068

15

97,3

1,018

95,6

102,4

104,24

0,933

16

112,1

1,097

102,2

102,57

112,52

0,996

17

97,6

0,984

99,2

102,74

101,10

0,965

18

93,7

0,901

104,0

102,91

92,72

1,011

19

114,3

1,018

112,3

103,08

104,94

1,089

20

108,4

1,097

98,8

103,25

113,27

0,957

Среднее

101,4

1,0011

Шаг 4. Определим компоненту T в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни T×E. Составим вспомогательную таблицу.

Таблица 2.4

T

T2

1

2

3

4

5

6

7

1

101,6

1

101,6

2,5

1,58

2,0

2

104,2

4

208,4

13,2

3,87

56,3

3

94,8

9

284,4

32,1

5,88

24,0

4

92,8

16

371,2

71,9

8,33

0,2

5

109,6

25

548

75,9

8,08

41,0

6

106,9

36

641,4

29,4

5,63

26,0

7

94,0

49

658

51,3

7,48

32,5

8

89,5

64

716

164,6

13,07

10,2

9

105,7

81

951,3

18,0

4,08

6,8

10

109,9

100

1099

56,3

7,58

5,8

11

97,1

121

1068,1

22,6

4,81

6,8

12

92,9

144

1114,8

97,4

9,69

0,3

13

114,9

169

1493,7

160,5

11,20

136,9

14

109,2

196

1528,8

39,6

6,39

9,0

15

95,6

225

1434

48,2

7,13

16,8

20

102,2

400

2044

0,2

0,37

114,5

21

99,2

441

2083,2

12,3

3,59

14,4

22

104,0

484

2288

1,0

1,05

59,3

23

112,3

529

2582,9

87,6

8,19

166,4

24

98,8

576

2371,2

23,7

4,49

49,0

Сумма

230

2035,2

3670

23588

1008,3

122,49

778,2

Среднее

11,5

101,8

183,5

1179,4

50,4

6,12

38,91

Вычислим параметры уравнения тренда.

= 0,17.

= 99,85.

В результате получим уравнение тренда:

T = 99,85 + 0,17×T.

Подставляя в это уравнение значения T = 1,2,…,16, найдем уровни T для каждого момента времени (гр. 5 табл. 2.3).

Шаг 5. Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл. 2.3). На одном графике откладываем фактические значения уровней временного ряда и теоретические, полученные по мультипликативной модели.

Расчет ошибки в мультипликативной модели произведем по формуле:

Средняя абсолютная ошибка составила 1,0011 (см. гр. 7 табл. 2.3).

Рассчитаем сумму квадратов абсолютных ошибок .

Используя 5-й столбец таблицы 2.4, получим:

= 7,099.

Рассчитаем среднюю относительную ошибку: .

Используя 6-й столбец таблицы 2.4, получим, что средняя относительная ошибка составила 6,12%, т. е. построенная модель достаточно точно описывает динамику данного явления.

< Предыдущая   Следующая >

Вариант 1

Задание 1. Модель парной линейной регрессии.

Имеются данные о размере среднемесячных доходов в разных группах семей

Номер группы

Среднедушевой денежный доход в месяц, руб., X

Доля оплаты труда в структуре доходов семьи, %, Y

1

79,8

64,2

2

152,1

66,1

3

199,3

69,0

4

240,8

70,6

5

282,4

72,4

6

301,8

74,3

7

385,3

76,0

8

457,8

77,1

9

577,4

78,4

Задания:

1. Рассчитать линейный коэффициент парной корреляции, оценить его статистическую значимость и построить для него доверительный интервал с уровнем значимости a =0,05. Сделать выводы

2. Построить линейное уравнение парной регрессии Y на X и оценить статистическую значимость параметров регрессии. Сделать рисунок.

3. Оценить качество уравнения регрессии при помощи коэффициента детерминации. Сделать выводы. Проверить качество уравнения регрессии при помощи F-критерия Фишера.

4. Выполнить прогноз доли оплаты труда структуре доходов семьи Y при прогнозном значении среднедушевого денежного дохода X, составляющем 111% от среднего уровня. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал для уровня значимости a =0,05. Сделать выводы.

Решение: Построим поле корреляции зависимости доли оплаты труда в структуре доходов семьи от среднедушевого денежного дохода в месяц.

Точки на построенном графике размещаются вблизи кривой, напоминающей по форме Прямую, поэтому можно предположить, что между указанными величинами существует Линейная зависимость вида .

Для расчета линейного коэффициента парной корреляции и параметров линейной регрессии составим вспомогательную таблицу.

№ п/п

X

Y

X×Y

X2

Y2

1

79,8

64,2

5123,16

6368,04

4121,64

2

152,1

66,1

10053,81

23134,41

4369,21

3

199,3

69,0

13751,70

39720,49

4761,00

4

240,8

70,6

17000,48

57984,64

4984,36

5

282,4

72,4

20445,76

79749,76

5241,76

6

301,8

74,3

22423,74

91083,24

5520,49

7

385,3

76,0

29282,80

148456,09

5776,00

8

457,8

77,1

35296,38

209580,84

5944,41

9

577,4

78,4

45268,16

333390,76

6146,56

S

2676,7

648,1

198645,99

989468,27

46865,43

Среднее

297,41

72,01

22071,78

109940,92

5207,27

Вычислим коэффициент корреляции. Используем следующую формулу:

= 0,9568.

Можно сказать, что между рассматриваемыми признаками существует Прямая тесная Корреляционная связь.

Среднюю ошибку коэффициента корреляции определим по формуле:

= 0,032.

Найдем табличное значение TТабл по таблице распределения Стьюдента для
a = 0,05 и числе степеней свободы K = NM – 1 = 9 – 1 – 1 = 7.

TТабл(0,05; 7) = 2,36.

Запишем доверительный интервал для коэффициента корреляции.

Доверительный интервал не включает число 0, поэтому при заданном уровне значимости коэффициент корреляции является статистически значимым.

Вычислим параметры уравнения регрессии.

= 0,03.

= 72,01 – 0,03×297,41 = 63,09.

Получим следующее уравнение: .

Для проверки статистической значимости (существенности) линейного коэффициента парной корреляции рассчитаем T-критерий Стьюдента по формуле:

= 23,04.

Фактическое значение по абсолютной величине больше табличного, что свидетельствует о значимости линейного коэффициента корреляции и существенности связи между рассматриваемыми признаками.

Проверим значимость оценок теоретических коэффициентов регрессии с помощью t-статистики Стьюдента и сделаем соответствующие выводы о значимости этих оценок.

Для определения статистической значимости коэффициентов A и B найдем T-статистики Стьюдента:

Рассчитаем по полученному уравнению теоретические значения. Составим вспомогательную таблицу.

№ п/п

X

Y

1

79,8

64,2

65,48

1,6384

47354,1

2

152,1

66,1

67,65

2,4025

21115,0

3

199,3

69,0

69,07

0,0049

9625,6

4

240,8

70,6

70,31

0,0841

3204,7

5

282,4

72,4

71,56

0,7056

225,3

6

301,8

74,3

72,14

4,6656

19,3

7

385,3

76,0

74,65

1,8225

7724,7

8

457,8

77,1

76,82

0,0784

25725,0

9

577,4

78,4

80,41

4,0401

78394,4

S

2676,7

648,1

648,09

15,4421

193388,1

Вычислим стандартные ошибки коэффициентов уравнения.

= 1,2.

= 0,003.

Вычислим T-статистики.

Сравнение расчетных и табличных величин критерия Стьюдента показывает, что и , т. е. оценки A и B теоретических коэффициентов регрессии статистически значимы.

Сделаем рисунок.

Рассчитаем коэффициент детерминации: = 0,95682= 0,915 = 91,5%.

Таким образом, вариация результата Y на 91,5% объясняется вариацией фактора X.

Оценку значимости уравнения регрессии проведем с помощью F-критерия Фишера:

= 75,81.

Найдем табличное значение Fтабл по таблице критических точек Фишера для
a = 0,05; K1 = M = 1 (число факторов), K2 = NM – 1 = 9 – 1 – 1 = 7.

Fтабл(0,05; 1; 7) = 5,59.

Поскольку F > FТабл, уравнение регрессии с вероятностью 0,95 в целом Является статистически значимым.

Выполним прогноз доли оплаты труда структуре доходов семьи y при прогнозном значении среднедушевого денежного дохода x, составляющем 111% от среднего уровня.

XP = 297,41 × 1,11 = 330,1.

Вычислим прогнозное значение Yp с помощью уравнения регрессии.

» 73%.

Доверительный интервал прогноза имеет вид

(УPTкр×My, УP + Tкр×My),

Где , M = 2 – число параметров уравнения.

= 1,695 » 1,7.

Запишем доверительный интервал прогноза:

Þ

Данный прогноз является надежным, поскольку доверительный интервал не включает число 0, точность прогноза составляет 4.

Задание 2. Модель парной нелинейной регрессии.

По территориям Центрального района известны данные за 1995 г.

Район

Прожиточный минимум в среднем на одного пенсионера в месяц, тыс. руб., X

Средний размер назначенных ежемесячных пенсий, тыс. руб., Y

Брянская обл.

178

240

Владимирская обл.

202

226

Ивановская обл.

197

221

Калужская обл.

201

226

Костромская обл.

189

220

Орловская обл.

166

232

Рязанская обл.

199

215

Смоленская обл.

180

220

Тверская обл.

181

222

Тульская обл.

186

231

Ярославская обл.

250

229

Задания:

1. Построить поле корреляции и сформулируйте гипотезу о форме связи. Рассчитать параметры уравнений полулогарифмической () и степенной () парной регрессии. Сделать рисунки.

2. Дать с помощью среднего коэффициента эластичности сравнительную оценку силы связи фактора с результатом для каждой модели. Сделать выводы. Оценить качество уравнений регрессии с помощью средней ошибки аппроксимации и коэффициента детерминации. Сделать выводы.

3. По значениям рассчитанных характеристик выбрать лучшее уравнение регрессии. Дать экономический смысл коэффициентов выбранного уравнения регрессии

4. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от его среднего уровня. Определите доверительный интервал прогноза для уровня значимости a =0,05. Сделать выводы.

Решение: Решение: Для предварительного определения вида связи между указанными признаками построим поле корреляции. Для этого построим в системе координат точки, у которых первая координата X, а вторая – Y.

Получим следующий рисунок.

По внешнему виду диаграммы рассеяния трудно предположить, какая зависимость существует между указанными показателями.

Построение полулогарифмической модели регрессии.

Уравнение логарифмической кривой: .

Обозначим:

Получим линейное уравнение регрессии:

Y = A + B×X.

Произведем линеаризацию модели путем замены . В результате получим линейное уравнение .

Рассчитаем его параметры, используя данные таблицы.

№ п/п

X

Y

X = ln(X)

Xy

X2

Y2

Ai

1

178

240

5,1818

1243,63

26,85

57600

226,40

206,314

184,904

6,006

2

202

226

5,3083

1199,67

28,18

51076

225,17

0,132

0,694

0,370

3

197

221

5,2832

1167,59

27,91

48841

225,41

21,496

19,464

1,957

4

201

226

5,3033

1198,55

28,13

51076

225,22

0,132

0,615

0,348

5

189

220

5,2417

1153,18

27,48

48400

225,82

31,769

33,833

2,576

6

166

232

5,1120

1185,98

26,13

53824

227,08

40,496

24,172

2,165

7

199

215

5,2933

1138,06

28,02

46225

225,31

113,132

106,362

4,577

8

180

220

5,1930

1142,45

26,97

48400

226,29

31,769

39,601

2,781

9

181

222

5,1985

1154,07

27,02

49284

226,24

13,223

17,968

1,874

10

186

231

5,2257

1207,15

27,31

53361

225,97

28,769

25,273

2,225

11

250

229

5,5215

1264,41

30,49

52441

223,09

11,314

34,980

2,651

Итого

2129

2482

57,862

13054,74

304,48

560528

2482,00

498,545

487,867

27,530

Среднее

193,5

225,6

5,260

1186,79

27,68

50957,091

225,636

45,322

44,352

2,503

= -9,76.

= 225,6 – (-9,76)×5,26 = 276,99.

Уравнение модели имеет вид:

Определим индекс корреляции

Используя данные таблицы, получим:

.

Рассчитаем коэффициент детерминации: = 0,14642= 0,021 = 2,1%.

Вариация результата Y всего на 2,1% объясняется вариацией фактора X.

Сделаем рисунок.

Рассчитаем средний коэффициент эластичности по формуле:

= -0,04%.

Коэффициент эластичности показывает, что при среднем росте признака X на 1% признак Y снижается на 0,04%.

Вычислим среднюю ошибку аппроксимации. Используя данные расчетной таблицы, получаем:

= 2,5%.

Построение степенной модели парной регрессии.

Уравнение степенной модели имеет вид: .

Для построения этой модели необходимо произвести линеаризацию переменных. Для этого произведем логарифмирование обеих частей уравнения:

.

Произведем линеаризацию модели путем замены и . В результате получим линейное уравнение .

Рассчитаем его параметры, используя данные таблицы.

№ п/п

X

Y

X = ln(X)

Y = ln(Y)

XY

X2

Y2

Ai

1

178

240

5,1818

5,4806

28,3995

26,851

30,037

226,3

206,3

188,391

241,661

6,07

2

202

226

5,3083

5,4205

28,7737

28,178

29,382

225,1

0,132

0,835

71,479

0,406

3

197

221

5,2832

5,3982

28,5196

27,912

29,140

225,3

21,496

18,671

11,934

1,918

4

201

226

5,3033

5,4205

28,7467

28,125

29,382

225,1

0,132

0,753

55,570

0,385

5

189

220

5,2417

5,3936

28,2720

27,476

29,091

225,7

31,769

32,607

20,661

2,530

6

166

232

5,1120

5,4467

27,8437

26,132

29,667

226,9

40,496

25,675

758,752

2,233

7

199

215

5,2933

5,3706

28,4284

28,019

28,844

225,2

113,132

104,576

29,752

4,540

8

180

220

5,1930

5,3936

28,0089

26,967

29,091

226,2

31,769

38,059

183,479

2,728

9

181

222

5,1985

5,4027

28,0858

27,024

29,189

226,1

13,223

16,950

157,388

1,821

10

186

231

5,2257

5,4424

28,4407

27,308

29,620

225,9

28,769

26,413

56,934

2,275

11

250

229

5,5215

5,4337

30,0021

30,487

29,525

223,1

11,314

34,846

3187,116

2,646

Итого

2129

2482

57,862

59,603

313,521

304,479

322,969

2480,927

498,545

487,777

4774,727

27,548

Среднее

193,5

225,6

5,260

5,418

28,502

27,680

29,361

225,539

45,322

44,343

434,066

2,504

С учетом введенных обозначений уравнение примет вид: Y = A + BX – линейное уравнение регрессии. Рассчитаем его параметры, используя данные таблицы.

= -0,042.

= 5,418 – 0,959×5,26 = 5,637.

Перейдем к исходным переменным X и Y, выполнив потенцирование данного уравнения.

A = eA = e5,637 = 280,76

Получим уравнение степенной модели регрессии: .

Определим индекс корреляции

Используя данные таблицы, получим:

.

Рассчитаем коэффициент детерминации: = 0,1472= 0,021 = 2,1%.

Вариация результата Y всего на 2,1% объясняется вариацией фактора X.

Сделаем рисунок.

Для степенной модели средний коэффициент эластичности равен коэффициенту B.

= -0,042%.

Коэффициент эластичности показывает, что при среднем росте признака X на 1% признак Y снижается на 0,042%.

Вычислим среднюю ошибку аппроксимации. Используя данные расчетной таблицы, получаем:

= 2,5%.

Сводная таблица вычислений

Параметры

Модель

Полулогарифмическая

Степенная

Уравнение связи

Индекс корреляции

0,1464

0,147

Коэффициент детерминации

0,021

0,021

Средняя ошибка аппроксимации, %

2,5

2,5

Для выявления формы связи между указанными признаками были построены полулогарифмическая и степенная модели регрессии. Анализ показателей корреляции, а также оценка качества моделей с использованием средней ошибки аппроксимации позволил предположить, что из перечисленных моделей более адекватной является степенная модель, поскольку для нее индекс корреляции принимает наибольшее значение R = 0,147, свидетельствующий о том, что между рассматриваемыми признаками наблюдается Слабая корреляционная связь.

Рассчитаем прогнозное значение результата по степенной модели регрессии, если прогнозируется увеличение значения фактора на 10% от среднего уровня.

Прогнозное значение составит:

= 193,5 × 1,1 = 212,9 тыс. р., тогда прогнозное значение Y составит:

= 224,6 тыс. р.

Определим доверительный интервал прогноза для уровня значимости a = 0,05.

Вычислим Среднюю стандартную ошибку прогноза По следующей формуле:

, где

Получаем: = 7,55.

Найдем предельную ошибку прогноза , где для доверительной вероятности 0,95 значение T составляет 1,96.

= 14,8.

Запишем доверительный интервал прогноза.

= 224,6 – 14,8 = 209,8 тыс. р.

= 224,6 + 14,8 = 239,4 тыс. р.

Таким образом, с вероятностью 0,95 можно утверждать, что прогнозное значение среднего размера назначенных ежемесячных пенсий будет находиться в пределах от 209,8 тыс. р. до 239,4 тыс. р.

Задание 3. Моделирование временных рядов

Имеются поквартальные данные по розничному товарообороту России в 1995-1999 гг.

Номер квартала

Товарооборот % к предыдущему периоду

Номер квартала

Товарооборот % к предыдущему периоду

1

100

11

98,8

2

93,9

12

101,9

3

96,5

13

113,1

4

101,8

14

98,4

5

107,8

15

97,3

6

96,3

16

112,1

7

95,7

17

97,6

8

98,2

18

93,7

9

104

19

114,3

10

99

20

108,4

Задания:

1. Построить график данного временного ряда. Охарактеризовать структуру этого ряда.

2. Рассчитать сезонную компоненты временного ряда и построить его Мультипликативную Модель.

3. Рассчитать трендовую компоненту временного ряда и построить его график

4. Оценить качество модели через показатели средней абсолютной ошибки и среднего относительного отклонения.

Решение: Пронумеруем указанные месяцы от 1 до 24 и построим график временного ряда.

Полученный график показывает, что а данном временном ряду присутствуют сезонные колебания.

Построим мультипликативную модель временного ряда.

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (T), сезонной (S) и случайной (E) компонент.

Построение мультипликативной моделей сведем к расчету значений T, S и E для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1)  Выравнивание исходного ряда методом скользящей средней.

2)  Расчет значений сезонной компоненты S.

3)  Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных T×E.

4)  Аналитическое выравнивание уровней T×E и расчет значений T с использованием полученного уравнения тренда.

5)  Расчет полученных по модели значений T×E.

6)  Расчет абсолютных и/или относительных ошибок.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

1.1. Просуммируем уровни ряда последовательно за каждые четыре месяца со сдвигом на один момент времени и определим условные годовые уровни объема продаж (гр. 3 табл. 2.1).

1.2. Разделив полученные суммы на 4, найдем скользящие средние (гр. 4 табл. 2.1). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

1.3. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл. 2.1).

Таблица 2.1

№ месяца, T

Товарооборот, Yi

Итого за четыре месяца

Скользящая средняя за четыре месяца

Центрированная скользящая средняя

Оценка сезонной компоненты

1

2

3

4

5

6

1

100,0

2

93,9

392

98

3

96,5

400

100

99

0,975

4

101,8

402

100,5

100,25

1,015

5

107,8

402

100,5

100,5

1,073

6

96,3

398

99,5

100

0,963

7

95,7

394

98,5

99

0,967

8

98,2

397

99,25

98,875

0,993

9

104,0

400

100

99,625

1,044

10

99,0

404

101

100,5

0,985

11

98,8

413

103,25

102,125

0,967

12

101,9

412

103

103,125

0,988

13

113,1

411

102,75

102,875

1,099

14

98,4

309

77,25

90

1,093

15

97,3

196

49

63,125

1,541

16

112,1

303

75,75

62,375

1,797

17

97,6

418

104,5

90,125

1,083

18

93,7

414

103,5

104

0,901

19

114,3

20

108,4

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 6 табл. 2.1). Эти оценки используются для расчета сезонной компоненты S (табл. 2.2). Для этого найдем средние за каждый месяц оценки сезонной компоненты Si. Так же как и в аддитивной модели считается, что сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем месяцам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.

Таблица 2.2

Показатели

Год

№ квартала, I

I

II

III

IV

1

– 

0,975

1,015

2

1,073

0,963

0,967

0,993

3

1,044

0,985

0,967

0,988

4

1,099

1,093

1,541

1,797

5

1,083

0,901

Всего за I-й квартал

4,299

3,942

4,45

4,793

Средняя оценка сезонной компоненты для I-го квартала,

0,860

0,788

0,890

0,959

Скорректированная сезонная компонента,

0,984

0,901

1,018

1,097

Имеем: 0,860 + 0,788 + 0,890 + 0,959 = 3,497.

Определяем корректирующий коэффициент: K = 4 : 3,497 = 1,144.

Скорректированные значения сезонной компоненты получаются при умножении ее средней оценки на корректирующий коэффициент K.

Проверяем условие: равенство 4 суммы значений сезонной компоненты:

0,984 + 0,901 + 1,018 + 1,097 = 4.

Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины (гр. 4 табл. 2.3), которые содержат только тенденцию и случайную компоненту.

Таблица 2.3

T

Yt

St

T

T×S

1

2

3

4

5

6

7

1

100,0

0,984

101,6

100,02

98,42

1,016

2

93,9

0,901

104,2

100,19

90,27

1,040

3

96,5

1,018

94,8

100,36

102,17

0,945

4

101,8

1,097

92,8

100,53

110,28

0,923

5

107,8

0,984

109,6

100,7

99,09

1,088

6

96,3

0,901

106,9

100,87

90,88

1,060

7

95,7

1,018

94,0

101,04

102,86

0,930

8

98,2

1,097

89,5

101,21

111,03

0,884

9

104,0

0,984

105,7

101,38

99,76

1,043

10

99,0

0,901

109,9

101,55

91,50

1,082

11

98,8

1,018

97,1

101,72

103,55

0,954

12

101,9

1,097

92,9

101,89

111,77

0,912

13

113,1

0,984

114,9

102,06

100,43

1,126

14

98,4

0,901

109,2

102,23

92,11

1,068

15

97,3

1,018

95,6

102,4

104,24

0,933

16

112,1

1,097

102,2

102,57

112,52

0,996

17

97,6

0,984

99,2

102,74

101,10

0,965

18

93,7

0,901

104,0

102,91

92,72

1,011

19

114,3

1,018

112,3

103,08

104,94

1,089

20

108,4

1,097

98,8

103,25

113,27

0,957

Среднее

101,4

1,0011

Шаг 4. Определим компоненту T в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни T×E. Составим вспомогательную таблицу.

Таблица 2.4

T

T2

1

2

3

4

5

6

7

1

101,6

1

101,6

2,5

1,58

2,0

2

104,2

4

208,4

13,2

3,87

56,3

3

94,8

9

284,4

32,1

5,88

24,0

4

92,8

16

371,2

71,9

8,33

0,2

5

109,6

25

548

75,9

8,08

41,0

6

106,9

36

641,4

29,4

5,63

26,0

7

94,0

49

658

51,3

7,48

32,5

8

89,5

64

716

164,6

13,07

10,2

9

105,7

81

951,3

18,0

4,08

6,8

10

109,9

100

1099

56,3

7,58

5,8

11

97,1

121

1068,1

22,6

4,81

6,8

12

92,9

144

1114,8

97,4

9,69

0,3

13

114,9

169

1493,7

160,5

11,20

136,9

14

109,2

196

1528,8

39,6

6,39

9,0

15

95,6

225

1434

48,2

7,13

16,8

20

102,2

400

2044

0,2

0,37

114,5

21

99,2

441

2083,2

12,3

3,59

14,4

22

104,0

484

2288

1,0

1,05

59,3

23

112,3

529

2582,9

87,6

8,19

166,4

24

98,8

576

2371,2

23,7

4,49

49,0

Сумма

230

2035,2

3670

23588

1008,3

122,49

778,2

Среднее

11,5

101,8

183,5

1179,4

50,4

6,12

38,91

Вычислим параметры уравнения тренда.

= 0,17.

= 99,85.

В результате получим уравнение тренда:

T = 99,85 + 0,17×T.

Подставляя в это уравнение значения T = 1,2,…,16, найдем уровни T для каждого момента времени (гр. 5 табл. 2.3).

Шаг 5. Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл. 2.3). На одном графике откладываем фактические значения уровней временного ряда и теоретические, полученные по мультипликативной модели.

Расчет ошибки в мультипликативной модели произведем по формуле:

Средняя абсолютная ошибка составила 1,0011 (см. гр. 7 табл. 2.3).

Рассчитаем сумму квадратов абсолютных ошибок .

Используя 5-й столбец таблицы 2.4, получим:

= 7,099.

Рассчитаем среднюю относительную ошибку: .

Используя 6-й столбец таблицы 2.4, получим, что средняя относительная ошибка составила 6,12%, т. е. построенная модель достаточно точно описывает динамику данного явления.

< Предыдущая   Следующая >

Ошибка прогнозирования: виды, формулы, примеры

Ошибка прогнозирования — это такая величина, которая показывает, как сильно прогнозное значение отклонилось от фактического. Она используется для расчета точности прогнозирования, что в свою очередь помогает нам оценивать как точно и корректно мы сформировали прогноз. В данной статье я расскажу про основные процентные «ошибки прогнозирования» с кратким описанием и формулой для расчета. А в конце статьи я приведу общий пример расчётов в Excel. Напомню, что в своих расчетах я в основном использую ошибку WAPE или MAD-Mean Ratio, о которой подробно я рассказал в статье про точность прогнозирования, здесь она также будет упомянута.

В каждой формуле буквой Ф обозначено фактическое значение, а буквой П — прогнозное. Каждая ошибка прогнозирования (кроме последней!), может использоваться для нахождения общей точности прогнозирования некоторого списка позиций, по типу того, что изображен ниже (либо для любого другого подобной детализации):

Алгоритм для нахождения любой из ошибок прогнозирования для такого списка примерно одинаковый: сначала находим ошибку прогнозирования по одной позиции, а затем рассчитываем общую. Итак, основные ошибки прогнозирования!


MPE — Mean Percent Error

MPE — средняя процентная ошибка прогнозирования. Основная проблема данной ошибки заключается в том, что в нестабильном числовом ряду с большими выбросами любое незначительное колебание факта или прогноза может значительно поменять показатель ошибки и, как следствие, точности прогнозирования. Помимо этого, ошибка является несимметричной: одинаковые отклонения в плюс и в минус по-разному влияют на показатель ошибки.

Ошибка прогнозирования MPE

  1. Для каждой позиции рассчитывается ошибка прогноза (из факта вычитается прогноз) — Error
  2. Для каждой позиции рассчитывается процентная ошибка прогноза (ошибка прогноза делится на фактический показатель) — Percent Error
  3. Находится среднее арифметическое всех процентных ошибок прогноза (процентные ошибки суммируются и делятся на количество) — Mean Percent Error

MAPE — Mean Absolute Percent Error

MAPE — средняя абсолютная процентная ошибка прогнозирования. Основная проблема данной ошибки такая же, как и у MPE — нестабильность.

Ошибка прогнозирования MAPE

  1. Для каждой позиции рассчитывается абсолютная ошибка прогноза (прогноз вычитается из факта по модулю) — Absolute Error
  2. Для каждой позиции рассчитывается абсолютная процентная ошибка прогноза (абсолютная ошибка прогноза делится на фактический показатель) — Absolute Percent Error
  3. Находится среднее арифметическое всех абсолютных процентных ошибок прогноза (абсолютные процентные ошибки суммируются и делятся на количество) — Mean Absolute Percent Error

Вместо среднего арифметического всех абсолютных процентных ошибок прогноза можно использовать медиану числового ряда (MdAPE — Median Absolute Percent Error), она наиболее устойчива к выбросам.


WMAPE / MAD-Mean Ratio / WAPE — Weighted Absolute Percent Error

WAPE — взвешенная абсолютная процентная ошибка прогнозирования. Одна из «лучших ошибок» для расчета точности прогнозирования. Часто называется как MAD-Mean Ratio, то есть отношение MAD (Mean Absolute Deviation — среднее абсолютное отклонение/ошибка) к Mean (среднее арифметическое). После упрощения дроби получается искомая формула WAPE, которая очень проста в понимании:

Ошибка прогнозирования WAPE MAD-Mean Ratio

  1. Для каждой позиции рассчитывается абсолютная ошибка прогноза (прогноз вычитается из факта, по модулю) — Absolute Error
  2. Находится сумма всех фактов по всем позициям  (общий фактический объем)
  3. Сумма всех абсолютных ошибок делится на сумму всех фактов — WAPE

Данная ошибка прогнозирования является симметричной и наименее чувствительна к искажениям числового ряда.

Рекомендуется к использованию при расчете точности прогнозирования. Более подробно читать здесь.


RMSE (as %) / nRMSE — Root Mean Square Error

RMSE — среднеквадратичная ошибка прогнозирования. Примерно такая же проблема, как и в MPE и MAPE: так как каждое отклонение возводится в квадрат, любое небольшое отклонение может значительно повлиять на показатель ошибки. Стоит отметить, что существует также ошибка MSE, из которой RMSE как раз и получается путем извлечения корня. Но так как MSE дает расчетные единицы измерения в квадрате, то использовать данную ошибку будет немного неправильно.

Ошибка прогнозирования RMSE

  1. Для каждой позиции рассчитывается квадрат отклонений (разница между фактом и прогнозом, возведенная в квадрат) — Square Error
  2. Затем рассчитывается среднее арифметическое (сумма квадратов отклонений, деленное на количество) — MSE — Mean Square Error
  3. Извлекаем корень из полученного результат — RMSE
  4. Для перевода в процентную или в «нормализованную» среднеквадратичную ошибку необходимо:
    1. Разделить на разницу между максимальным и минимальным значением показателей
    2. Разделить на разницу между третьим и первым квартилем значений показателей
    3. Разделить на среднее арифметическое значений показателей (наиболее часто встречающийся вариант)

MASE — Mean Absolute Scaled Error

MASE — средняя абсолютная масштабированная ошибка прогнозирования. Согласно Википедии, является очень хорошим вариантом для расчета точности, так как сама ошибка не зависит от масштабов данных и является симметричной: то есть положительные и отрицательные отклонения от факта рассматриваются в равной степени.

Важно! Если предыдущие ошибки прогнозирования мы могли использовать для нахождения точности прогнозирования некого списка номенклатур, где каждой из которых соответствует фактическое и прогнозное значение (как было в примере в начале статьи), то данная ошибка для этого не предназначена: MASE используется для расчета точности прогнозирования одной единственной позиции, основываясь на предыдущих показателях факта и прогноза, и чем больше этих показателей, тем более точно мы сможем рассчитать показатель точности. Вероятно, из-за этого ошибка не получила широкого распространения.

Здесь данная формула представлена исключительно для ознакомления и не рекомендуется к использованию.

Суть формулы заключается в нахождении среднего арифметического всех масштабированных ошибок, что при упрощении даст нам следующую конечную формулу:

Ошибка прогнозирования MASE

Также, хочу отметить, что существует ошибка RMMSE (Root Mean Square Scaled Error — Среднеквадратичная масштабированная ошибка), которая примерно похожа на MASE, с теми же преимуществами и недостатками.


Это основные ошибки прогнозирования, которые могут использоваться для расчета точности прогнозирования. Но не все! Их очень много и, возможно, чуть позже я добавлю еще немного информации о некоторых из них. А примеры расчетов уже описанных ошибок прогнозирования будут выложены через некоторое время, пока что я подготавливаю пример, ожидайте.

Об авторе

HeinzBr

Автор статей и создатель сайта SHTEM.RU

     
Далее определяется предельная ошибка прогноза по тренду:

. Предельная ошибка определяется с заданной вероятно-

стью оценки прогноза (Р(t)) и с учётом степеней
свободы изучаемой системы (n-m) по таблице значений t-критерия
Стьюдента, здесь n – число уровней ряда, а m – число параметров
тренда. Границы доверительного интервала прогноза по тренду определяются,
исходя из предельной ошибки прогноза:

     
Доверительный интервал прогноза говорит о том, что прогнозное значение
показателя, полученное по тренду, не выйдет за пределы границ доверительного
интервала с заданной вероятностью. Так как колеблемость существенно ухудшает
оценку прогноза, выполняют расчёт доверительного интервала прогноза с учётом
случайных колебаний уровней ряда. Средняя возможная ошибка прогноза с учётом
случайных колебаний рассчитывается по формуле:  Затем определяется предельная ошибка прогноза с учётом
случайных колебаний уровней ряда:  Далее
определяются границы доверительного интервала прогноза с учётом случайных
колебаний уровней ряда:

4.6. Изучение
сезонности в статистике внешней торговли.

Индексы сезонности. Учет сезонных колебаний при

прогнозировании

      Как известно, сезонностью называют процесс
изменения общей тенденции развития явлений и процессов под влиянием смены
времён года.Что касается внешней торговли, то сезонность наблюдается в товаропотоках
тех товаров, производство которых носит сезонный характер. Это, прежде всего,
некоторые виды продовольственных товаров и сельскохозяйственная продукция. Сезонность
наблюдается как в объёмах внешней торговли указанными товарами, так и в ценах
на них. Для изучения сезонности явления или процесса необходимо иметь временной
ряд изучаемого показателя внешней торговли либо по квартальным, либо по
ежемесячным данным за ряд лет. Прежде всего, выявляется тенденция динамики
рассматриваемого показателя в форме линейного или нелинейного уравнения тренда.
Далее определяются теоретические  (выровненные) уровни по полученному тренду  . В
фактических уровнях временного ряда содержатся
как случайные, так и сезонные колебания. В теоретических уровнях ряда какие либо
колебания отсутствуют. Отношения фактических и теоретических уровней отражают
суммарную величину колебаний уровней ряда и называются индексами колеблемости:

  • Предельная ошибка не должна превышать
  • Предельная ошибка не должна геодезия
  • Предельная ошибка находится как
  • Предельная ошибка малой выборки формула
  • Предельная ошибка интервального оценивания полученного результата