Основная задача
выборочного наблюдения состоит в том,
чтобы на основе характеристик выборочной
совокупности получить достоверные
суждения. При этом следует иметь в виду,
что при любых статистических исследованиях
возникают ошибки двух видов: регистрации
и репрезентативности.
Ошибки
репрезентативности присущи только
выборочному наблюдению и возникают в
силу того, что выборочная совокупность
не полностью воспроизводит генеральную.
Они представляют собой расхождения
между значениями показателей этих же
величин, которые были получены при
проведенном с одинаковой степенью
точности сплошном наблюдении, т. е. между
величинами выборных и соотвесвующих
генеральных показателей.
Ошибки
репрезентативности могут быть
систематическими и случайными.
Систематические ошибки возникают при
нарушении установленных правил отбора.
Случайные ошибки репрезентативности
обязаны своим возникновением недостаточно
равномерным представлением в выборочной
совокупности различных категорий единиц
совокупности.
Величина случайной
ошибки репрезентативности зависит от:
степени колеблемости изучаемого
признака генеральной совокупности;
способа формирования выборочной
совокупности; объёма выборки.
Для характеристики
надежности выборочных показателей
различают среднюю и предельную ошибки
выбрки.
Средняя ошибка
выборки —
это средняя из возможных ошибок.
Расчетные формулы
средней ошибки:
1. при повторном
способе отбора
для средней
количественного признака
, где
S2— выборочная дисперсия (дисперсия
признака в выборочной совокупности);
n- объём выборки (число обследованных
единиц/
для доли
(альтернативного признака)
=,
где
— выборочная
доля ( доля единиц, обладающих данным
признаком в выборочной совокупности);
(1 — )
– доля единиц, не обладающих данным
признаком.
2. при бесповторном
способе отбора для средней количественного
признака
, где
N- объем генеральной совокупности (число
входящих в неё единиц);
— доля единиц выборочной совокупности
в генеральной совокупности.
для доли
(альтернативного признака)
.
Например, по
выборочным данным об успеваемости
студентов имеется информация
Экзаменационные |
Число |
X*f |
|
||
5 |
9 |
45 |
+1,2 |
1,44 |
12,96 |
4 |
25 |
100 |
+0,2 |
0,04 |
1,00 |
3 |
13 |
39 |
-0,8 |
0,64 |
8,32 |
2 |
3 |
6 |
-1,8 |
3,24 |
9,72 |
Итого |
50 |
190 |
— |
— |
32 |
Найти среднюю
ошибку количественного признака.
(балла)
= 0.64(балла)
(балл)
3. Распространение выборочных результатов на генеральную совокупность.
Конечной целью
выборочного наблюдения является
характеристика генеральной совокупности
на основе выборочных результатов.
Выборочные
средние и относительные величины
распространяют на генеральную совокупность
с учетом предела их возможной ошибки.
В каждой конкретной
выборке расхождение между выборочной
средней и генеральной, т. е
может
быть меньше средней ошибки,
равно ей или больше её.
Причем каждое
из этих расхождений имеет различную
вероятность ( объективную возможность
появления события). Поэтому фактические
расхождения выборочной средней и
генеральной
можно рассматривать как некую предельную
ошибку, связанную со средней ошибкой и
гарантируемую с определенной вероятностьюp.
Предельную
ошибку выборки для средней ()
при повторном отборе можно рассчитать
по формуле:
,
t— где нормированное отклонение –
«коэффициент доверия», зависящий от
вероятности, с которой гарантируется
предельная ошибка выборки;
— средняя ошибка выборки.
Аналогичным
образом может быть записана формула
предельной ошибки выборки для доли при повторном отборе
=t*.
При случайном
бесповторном отборе в формулах расчета
предельных ошибок выборки необходимо
умножить подкоренное выражение на (1-
):
Для количественного
признака
x
= t*=t*,
для доли
=t*=t*
.
Формула предельной
ошибки вытекает из основных положений
теории выборочного метода, сформулированных
в ряде теорем теории вероятностей,
отражающих закон больших чисел.
На основании
теоремы П. Л. Чебышева (с уточнением А.
М. Ляпунова) с вероятностью, сколь угодно
близкой к единице, можно утверждать,
что при достаточно большом объёме
выборки и ограниченной генеральной
дисперсии выборочные показатели
(средняя, доля) будут сколь угодно мало
отличаться от соответствующих генеральных
показателей.
Применительно
к нахождению среднего значения признака
эта теорема может быть записана так:
P
= Ф ( t
),
А для доли
признака
P =
Ф (t
),
Где генеральная
доля ( доля единиц , обладающих данным
значением признака в общем числе единиц
генеральной совокупности):
Ф ( t)
=
Таким образом,
величина предельной ошибки выборки
может быть установлена с определенной
вероятностью. З значения функции Ф (t) при различных значенияхtкак коэффициент кратности средней
ошибки выборки, специально составленных
таблиц. Приведем некоторые значения,
применяемые наиболее часто для выборок
достаточно большого объёма (n
):
T 1,000 1,960 2,000
2,580 3,000
Ф (t)
0,683 0,950 0,954 0,990 0,997
Предельная
ошибка выборки отвечает на вопрос о
точности выборки с определенной
вероятностью, значение которой
определяется вероятностью, значение
которой определяется коэффициентом t( в практических расчетах, как правило,
заданная вероятность не должна менее
0,95). Так приt= 1
предельная ошибка составит=.
Следовательно, с вероятностью 0,683 можно
утверждать, что разность между выборочными
и генеральными показателями не превысит
одной средней ошибки выборки. Другими
словами, в 68,3% случаев ошибка
репрезентативности не выйдет за пределы1. Приt= 2 с вероятностью 0,954 она не выйдет за
пределы, приt= 3 с вероятностью
0,997 – за пределыи т. д.
Выборочное
наблюдение проводиться в целях
распространения выводов, полученных
по данным выборки, на генеральную
совокупность. Одной из основных задач
является оценка по данным выборки
исследуемых характеристик (параметров)
генеральной совокупности.
Предельная
ошибка выборки позволяет определить
предельные значения характеристик
генеральной совокупности и их доверительные
интервалы:
для средней
для доли p=
Это означает,
что с заданной вероятностью можно
утверждать, что значения генеральной
средней следует ожидать в пределах от
до.
Аналогичным
образом может быть записан доверительный
интервал генеральной доли
;.
Наряду с абсолютным
значением предельной ошибки выборки
рассчитывается и предельная относительная
ошибка выборки, которая определяется
как процентное отношение предельной
ошибки выборки к соответствующей
характеристике выборочной совокупности:
для средней, %:
%=*100;
для доли, %: %=*100.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
3. Ошибки выборки
Каждая единица при выборочном наблюдении должна иметь равную с другими возможность быть отобранной – это является основой собственнослучайной выборки.
Собственнослучайная выборка – это отбор единиц из всей генеральной совокупности посредством жеребьевки или другим подобным способом.
Принципом случайности является то, что на включение или исключение объекта из выборки не может повлиять любой фактор, кроме случая.
Доля выборки – это отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:
Собственнослучайный отбор в чистом виде является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного статистического наблюдения.
Два основных вида обобщающих показателей, которые используют в выборочном методе – это средняя величина количественного признака и относительная величина альтернативного признака.
Выборочная доля (w), или частность, определяется отношением числа единиц, обладающих изучаемым признаком m, к общему числу единиц выборочной совокупности (n):
Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.
Ошибка выборки, ее еще называют ошибкой репрезентативности, представляет собой разность соответствующих выборочных и генеральных характеристик:
1) для средней количественного признака:
?х =|х – х|;
2) для доли (альтернативного признака):
?w =|х – p|.
Только выборочным наблюдениям присуща ошибка выборки
Выборочная средняя и выборочная доля – это случайные величины, принимающие различные значения в зависимости от единиц изучаемой статистической совокупности, которые попали в выборку. Соответственно ошибки выборки – тоже случайные величины и также могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок – среднюю ошибку выборки.
Средняя ошибка выборки определяется объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, все более точно характеризуем всю генеральную совокупность.
Средняя ошибка выборки зависит от степени варьирования изучаемого признака, в свою очередь степень варьирования характеризуется дисперсией ?2 или w(l – w) – для альтернативного признака. Чем меньше вариация признака и дисперсия, тем меньше средняя ошибка выборки, и наоборот.
При случайном повторном отборе средние ошибки теоретически рассчитывают по следующим формулам:
1) для средней количественного признака:
где ?2 – средняя величина дисперсии количественного признака.
2) для доли (альтернативного признака):
Так как дисперсия признака в генеральной совокупности ?2 точно неизвестна, на практике пользуются значением дисперсии S2 , рассчитанным для выборочной совокупности на основании закона больших чисел, согласно которому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.
Формулы средней ошибки выборки при случайном повторном отборе следующие. Для средней величины количественного признака: генеральная дисперсия выражается через выборную следующим соотношением:
где S2 – значение дисперсии.
Механическая выборка – это отбор единиц в выборочную совокупность из генеральной, которая разбита по нейтральному признаку на равные группы; производится так, что из каждой такой группы в выборку отбирается лишь одна единица.
При механическом отборе единицы изучаемой статистической совокупности предварительно располагают в определенном порядке, после чего отбирают заданное число единиц механически через определенный интервал. При этом размер интервала в генеральной совокупности равен обратному значению доли выборки.
При достаточно большой совокупности механический отбор по точности результатов близок к собственнослучайному Поэтому для определения средней ошибки механической выборки используют формулы собственнослучайной бесповторной выборки.
Для отбора единиц из неоднородной совокупности применяется так называемая типическая выборка, используется, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, от которых зависят изучаемые показатели.
Затем из каждой типической группы собственнослучайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.
Типическая выборка обычно применяется при изучении сложных статистических совокупностей.
Типическая выборка дает более точные результаты. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представительство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки. Поэтому при определении средней ошибки типической выборки в качестве показателя вариации выступает средняя из внутригрупповых дисперсий.
Серийная выборка предполагает случайный отбор из генеральной совокупности равновеликих групп для того, чтобы в таких группах подвергать наблюдению все без исключения единицы.
Поскольку внутри групп (серий) обследуются все без исключения единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.
Данный текст является ознакомительным фрагментом.
Читайте также
Ошибки резидента
Ошибки резидента
Относиться к ошибкам можно по-разному: можно бояться их совершить и переживать из-за каждой из них, можно радоваться своим ошибкам и кризисам, как указателям на пути к успеху и личным победам. Неизменно в ошибках только одно – за них приходится платить.
Формирование выборки
Формирование выборки
Процедура выборки является неотъемлемым этапом проекта внутреннего аудита. Она подробно описана в различных источниках, посвященных теме аудита. Однако во многом такие описания носят академичный характер. Предлагаю заострить внимание на тех
Ошибки в инвестициях – это ошибки инвесторов
Ошибки в инвестициях – это ошибки инвесторов
Сейчас я больше, чем когда бы то ни было, убежден в том, что все ошибки в инвестициях на самом деле ошибки инвесторов.Инвестиции не совершают ошибок. В отличие от инвесторов.Инвестирование – это выбор. Именно об этой
29. Определение необходимой численности выборки
29. Определение необходимой численности выборки
Одним из научных принципов в теории выбороч–ного метода является обеспечение достаточного чи–сла отобранных единиц.Уменьшение стандартной ошибки выборки всег–да связано с увеличением объема выборки. Расчет
30. Способы отбора и виды выборки. Собственно случайная выборка
30. Способы отбора и виды выборки. Собственно случайная выборка
В теории выборочного метода разработаны раз–личные способы отбора и виды выборки, обеспечи–вающие репрезентативность. Под способом отбора понимают порядок отбора единиц из генеральной со–вокупности.
31. Механическая и типическая выборки
31. Механическая и типическая выборки
При чисто механической выборке вся ге–неральная совокупность единиц должна быть прежде всего представлена в виде списка единиц отбора, со–ставленного в каком-то нейтральном по отношению к изучаемому признаку порядке. Затем список
32. Серийная и комбинированная выборки
32. Серийная и комбинированная выборки
Серийная (гнездовая) выборка – это такой вид формирования выборочной совокупности, когда в случайном порядке отбираются не единицы, подле–жащие обследованию, а группы единиц (серии, гнез–да). Внутри отобранных серий (гнезд)
33. Многоступенчатая, многофазная и взаимопроникающая выборки.
33. Многоступенчатая, многофазная и взаимопроникающая выборки.
Особенность многоступенчатой выборки со–стоит в том, что выборочная совокупность формиру–ется постепенно, по ступеням отбора. На первой ступени с помощью заранее определенного спосо–ба и вида отбора
3. Определение необходимой численности выборки
3. Определение необходимой численности выборки
Одним из научных принципов в теории выборочного метода является обеспечение достаточного числа отобранных единиц. Теоретически необходимость соблюдения этого принципа представлена в доказательствах предельных теорем
4. Способы отбора и виды выборки
4. Способы отбора и виды выборки
В теории выборочного метода разработаны различные способы отбора и виды выборки, обеспечивающие репрезентативность. Под способом отбора понимают порядок отбора единиц из генеральной совокупности. Различают два способа отбора: повторный
36. Ошибки выборки
36. Ошибки выборки
Собственнослучайная выборка – это отбор единиц из всей генеральной совокупности посредством жеребьевки или другим подобным способом. Принципом случайности является то, что на включение или исключение объекта из выборки не может повлиять любой фактор,
Лексические ошибки
Лексические ошибки
1. Неправильное использование слов и терминовОсновная масса ошибок в деловых письмах относится к лексическим. Недостаточная грамотность приводит не только к курьезной бессмыслице, но и абсурду.Отдельные термины и профессиональные жаргонные слова
5 Наши ошибки
5
Наши ошибки
Мы настаиваем: выбранный курс рыночных реформ был верным. И они вовсе не потерпели неудачу, они только еще раз споткнулись. Но ошибки и упущения были. Это и наши ошибки, и ошибки руководства страны, которые мы не сумели предотвратить. Ошибки — во многом
Важность размера выборки
Важность размера выборки
Как я уже говорил, люди склонны уделять слишком много внимания редким случаям возникновения какого-то феномена, несмотря на то что со статистической точки зрения из нескольких случаев невозможно извлечь много информации. Это – основная причина
Репрезентативные выборки
Репрезентативные выборки
Репрезентативность наших тестов для целей предсказания будущего определяется двумя факторами:– Количество рынков: тесты, проводимые на различных рынках, будут, скорее всего, включать рынки с разной степенью волатильности типов
Размер выборки
Размер выборки
Концепция размера выборки проста: для того чтобы делать статистически достоверные заключения, нужно иметь достаточно большую выборку. Чем меньше выборка, тем грубее выводы, которые можно сделать; чем выборка больше, тем выводы качественнее. Нет никакого
11.2. Оценка результатов выборочного наблюдения
11.2.1. Средняя и предельная ошибки выборки. Построение доверительных границ для средней и доли
Средняя ошибка выборки показывает, насколько отклоняется в среднем параметр выборочной совокупности от соответствующего параметра генеральной. Если рассчитать среднюю из ошибок всех возможных выборок определенного вида заданного объема (n), извлеченных из одной и той же генеральной совокупности, то получим их обобщающую характеристику — среднюю ошибку выборки ().
В теории выборочного наблюдения выведены формулы для определения , которые индивидуальны для разных способов отбора (повторного и бесповторного), типов используемых выборок и видов оцениваемых статистических показателей.
Например, если применяется повторная собственно случайная выборка, то определяется как:
— при оценивании среднего значения признака;
— если признак альтернативный, и оценивается доля.
При бесповторном собственно случайном отборе в формулы вносится поправка (1 — n/N):
— для среднего значения признака;
— для доли.
Вероятность получения именно такой величины ошибки всегда равна 0,683. На практике же предпочитают получать данные с большей вероятностью, но это приводит к возрастанию величины ошибки выборки.
Предельная ошибка выборки () равна t-кратному числу средних ошибок выборки (в теории выборки принято коэффициент t называть коэффициентом доверия):
.
Если ошибку выборки увеличить в два раза (t = 2), то получим гораздо большую вероятность того, что она не превысит определенного предела (в нашем случае — двойной средней ошибки) — 0,954. Если взять t = 3, то доверительная вероятность составит 0,997 — практически достоверность.
Уровень предельной ошибки выборки зависит от следующих факторов:
- степени вариации единиц генеральной совокупности;
- объема выборки;
- выбранных схем отбора (бесповторный отбор дает меньшую величину ошибки);
- уровня доверительной вероятности.
Если объем выборки больше 30, то значение t определяется по таблице нормального распределения, если меньше — по таблице распределения Стьюдента.
Приведем некоторые значения коэффициента доверия из таблицы нормального распределения.
Таблица
11.2.
Значение доверительной вероятности P | 0,683 | 0,954 | 0,997 |
---|---|---|---|
Значение коэффициента доверия t | 1,0 | 2,0 | 3,0 |
Доверительный интервал для среднего значения признака и для доли в генеральной совокупности устанавливается следующим образом:
Итак, определение границ генеральной средней и доли состоит из следующих этапов:
Ошибки выборки при различных видах отбора
- Собственно случайная и механическая выборка. Средняя ошибка собственно случайной и механической выборки находятся по формулам, представленным в табл. 11.3.
Таблица
11.3.
Формулы для расчета средней ошибки собственно случайной и механической выборки ()
где — дисперсия признака в выборочной совокупности. |
Пример 11.2. Для изучения уровня фондоотдачи было проведено выборочное обследование 90 предприятий из 225 методом случайной повторной выборки, в результате которого получены данные, представленные в таблице.
Таблица
11.4.
Уровень фондоотдачи, руб. | До 1,4 | 1,4-1,6 | 1,6-1,8 | 1,8-2,0 | 2,0-2,2 | 2,2 и выше | Итого |
---|---|---|---|---|---|---|---|
Количество предприятий | 13 | 15 | 17 | 15 | 16 | 14 | 90 |
В рассматриваемом примере имеем 40%-ную выборку (90 : 225 = 0,4, или 40%). Определим ее предельную ошибку и границы для среднего значения признака в генеральной совокупности по шагам алгоритма:
- По результатам выборочного обследования рассчитаем среднее значение и дисперсию в выборочной совокупности:
Таблица
11.5.
Результаты наблюдения | Расчетные значения | |||
---|---|---|---|---|
уровень фондоотдачи, руб., xi | количество предприятий, fi | середина интервала, xixb4 | xixb4fi | xixb42fi |
До 1,4 | 13 | 1,3 | 16,9 | 21,97 |
1,4-1,6 | 15 | 1,5 | 22,5 | 33,75 |
1,6-1,8 | 17 | 1,7 | 28,9 | 49,13 |
1,8-2,0 | 15 | 1,9 | 28,5 | 54,15 |
2,0-2,2 | 16 | 2,1 | 33,6 | 70,56 |
2,2 и выше | 14 | 2,3 | 32,2 | 74,06 |
Итого | 90 | — | 162,6 | 303,62 |
Выборочная средняя
Выборочная дисперсия изучаемого признака
- Определяем среднюю ошибку повторной случайной выборки
- Зададим вероятность, на уровне которой будем говорить о величине предельной ошибки выборки. Чаще всего она принимается равной 0,999; 0,997; 0,954.
Для наших данных определим предельную ошибку выборки, например, с вероятностью 0,954. По таблице значений вероятности функции нормального распределения (см. выдержку из нее, приведенную в Приложении 1) находим величину коэффициента доверия t, соответствующего вероятности 0,954. При вероятности 0,954 коэффициент t равен 2.
- Предельная ошибка выборки с вероятностью 0,954 равна
- Найдем доверительные границы для среднего значения уровня фондоотдачи в генеральной совокупности
Таким образом, в 954 случаях из 1000 среднее значение фондоотдачи будет не выше 1,88 руб. и не ниже 1,74 руб.
Выше была использована повторная схема случайного отбора. Посмотрим, изменятся ли результаты обследования, если предположить, что отбор осуществлялся по схеме бесповторного отбора. В этом случае расчет средней ошибки проводится по формуле
Тогда при вероятности равной 0,954 величина предельной ошибки выборки составит:
Доверительные границы для среднего значения признака при бесповторном случайном отборе будут иметь следующие значения:
Сравнив результаты двух схем отбора, можно сделать вывод о том, что применение бесповторной случайной выборки дает более точные результаты по сравнению с применением повторного отбора при одной и той же доверительной вероятности. При этом, чем больше объем выборки, тем существеннее сужаются границы значений средней при переходе от одной схемы отбора к другой.
По данным примера определим, в каких границах находится доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., в генеральной совокупности:
- рассчитаем выборочную долю.
Количество предприятий в выборке с уровнем фондоотдачи, не превышающим значения 2,0 руб., составляет 60 единиц. Тогда
m = 60, n = 90, w = m/n = 60 : 90 = 0,667;
- рассчитаем дисперсию доли в выборочной совокупности
;
- средняя ошибка выборки при использовании повторной схемы отбора составит
Если предположить, что была использована бесповторная схема отбора, то средняя ошибка выборки с учетом поправки на конечность совокупности составит
- зададим доверительную вероятность и определим предельную ошибку выборки.
При значении вероятности Р = 0,997 по таблице нормального распределения получаем значение для коэффициента доверия t = 3 (см. выдержку из нее, приведенную в Приложении 1):
- установим границы для генеральной доли с вероятностью 0,997:
Таким образом, с вероятностью 0,997 можно утверждать, что в генеральной совокупности доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., не меньше, чем 54,7%, и не больше 78,7%.
- Типическая выборка. При типической выборке генеральная совокупность объектов разбита на k групп, тогда
N1 + N2 + … + Ni + … + Nk = N.
Объем извлекаемых из каждой типической группы единиц зависит от принятого способа отбора; их общее количество образует необходимый объем выборки
n1 + n2 + … + ni + … + nk = n.
Существуют следующие два способа организации отбора внутри типической группы: пропорциональной объему типических групп и пропорциональной степени колеблемости значений признака у единиц наблюдения в группах. Рассмотрим первый из них, как наиболее часто используемый.
Отбор, пропорциональный объему типических групп, предполагает, что в каждой из них будет отобрано следующее число единиц совокупности:
n = ni · Ni/N
где ni — количество извлекаемых единиц для выборки из i-й типической группы;
n — общий объем выборки;
Ni — количество единиц генеральной совокупности, составивших i-ю типическую группу;
N — общее количество единиц генеральной совокупности.
Отбор единиц внутри групп происходит в виде случайной или механической выборки.
Формулы для оценивания средней ошибки выборки для среднего и доли представлены в табл. 11.6.
Таблица
11.6.
Формулы для расчета средней ошибки выборки () при использовании типического отбора, пропорционального объему типических групп
Здесь — средняя из групповых дисперсий типических групп.
Пример 11.3. В одном из московских вузов проведено выборочное обследование студентов с целью определения показателя средней посещаемости вузовской библиотеки одним студентом за семестр. Для этого была использована 5%-ная бесповторная типическая выборка, типические группы которой соответствуют номеру курса. При отборе, пропорциональном объему типических групп, получены следующие данные:
Таблица
11.7.
Номер курса | Всего студентов, чел., Ni | Обследовано в результате выборочного наблюдения, чел., ni | Среднее число посещений библиотеки одним студентом за семестр, xi | Внутригрупповая выборочная дисперсия, |
---|---|---|---|---|
1 | 650 | 33 | 11 | 6 |
2 | 610 | 31 | 8 | 15 |
3 | 580 | 29 | 5 | 18 |
4 | 360 | 18 | 6 | 24 |
5 | 350 | 17 | 10 | 12 |
Итого | 2 550 | 128 | 8 | — |
Число студентов, которое необходимо обследовать на каждом курсе, рассчитаем следующим образом:
- общий объем выборочной совокупности:
n = 2550/130*5 =128 (чел.);
- количество единиц, отобранных из каждой типической группы:
аналогично для других групп:
n2 = 31 (чел.);
n3 = 29 (чел.);
n4 = 18 (чел.);
n5 = 17 (чел.).
Проведем необходимые расчеты.
- Выборочная средняя, исходя из значений средних типических групп, составит:
- Средняя из внутригрупповых дисперсий
- Средняя ошибка выборки:
С вероятностью 0,954 находим предельную ошибку выборки:
- Доверительные границы для среднего значения признака в генеральной совокупности:
Таким образом, с вероятностью 0,954 можно утверждать, что один студент за семестр посещает вузовскую библиотеку в среднем от семи до девяти раз.
- Малая выборка. В связи с небольшим объемом выборочной совокупности те формулы для определения ошибок выборки, которые использовались нами ранее при «больших» выборках, становятся неподходящими и требуют корректировки.
Среднюю ошибку малой выборки определяют по формуле
Предельная ошибка малой выборки:
Распределение значений выборочных средних всегда имеет нормальный закон распределения (или приближается к нему) при п > 100, независимо от характера распределения генеральной совокупности. Однако в случае малых выборок действует иной закон распределения — распределение Стьюдента. В этом случае коэффициент доверия находится по таблице t-распределения Стьюдента в зависимости от величины доверительной вероятности Р и объема выборки п. В Приложении 1 приводится фрагмент таблицы t-распределения Стьюдента, представленной в виде зависимости доверительной вероятности от объема выборки и коэффициента доверия t.
Пример 11.4. Предположим, что выборочное обследование восьми студентов академии показало, что на подготовку к контрольной работе по статистике они затратили следующее количество часов: 8,5; 8,0; 7,8; 9,0; 7,2; 6,2; 8,4; 6,6.
Оценим выборочные средние затраты времени и построим доверительный интервал для среднего значения признака в генеральной совокупности, приняв доверительную вероятность равной 0,95.
- Среднее значение признака в выборке равно
- Значение среднего квадратического отклонения составляет
- Средняя ошибка выборки:
- Значение коэффициента доверия t = 2,365 для п = 8 и Р = 0,95 .
- Предельная ошибка выборки:
- Доверительный интервал для среднего значения признака в генеральной совокупности:
То есть с вероятностью 0,95 можно утверждать, что затраты времени студента на подготовку к контрольной работе находятся в пределах от 6,9 до 8,5 ч.
11.2.2. Определение численности выборочной совокупности
Перед непосредственным проведением выборочного наблюдения всегда решается вопрос, сколько единиц исследуемой совокупности необходимо отобрать для обследования. Формулы для определения численности выборки выводят из формул предельных ошибок выборки в соответствии со следующими исходными положениями (табл. 11.7):
- вид предполагаемой выборки;
- способ отбора (повторный или бесповторный);
- выбор оцениваемого параметра (среднего значения признака или доли).
Кроме того, следует заранее определиться со значением доверительной вероятности, устраивающей потребителя информации, и с размером допустимой предельной ошибки выборки.
Таблица
11.8.
Формулы для определения численности выборочной совокупности
Примечание: при использовании приведенных в таблице формул рекомендуется получаемую численность выборки округлять в большую сторону для обеспечения некоторого запаса в точности.
Пример 11.5. Рассчитаем, сколько из 507 промышленных предприятий следует проверить налоговой инспекции, чтобы с вероятностью 0,997 определить долю предприятий с нарушениями в уплате налогов. По данным прошлого аналогичного обследования величина среднего квадратического отклонения составила 0,15; размер ошибки выборки предполагается получить не выше, чем 0,05.
При использовании повторного случайного отбора следует проверить
При бесповторном случайном отборе потребуется проверить
Как видим, использование бесповторного отбора позволяет проводить обследование гораздо меньшего числа объектов.
Пример 11.6. Планируется провести обследование заработной платы на предприятиях отрасли методом случайного бесповторного отбора. Какова должна быть численность выборочной совокупности, если на момент обследования в отрасли число занятых составляло 100 000 чел.? Предельная ошибка выборки не должна превышать 100 руб. с вероятностью 0,954. По результатам предыдущих обследований заработной платы в отрасли известно, что среднее квадратическое отклонение составляет 500 руб.
Следовательно, для решения поставленной задачи необходимо включить в выборку не менее 100 человек.
Основная задача
выборочного наблюдения состоит в том,
чтобы на основе характеристик выборочной
совокупности получить достоверные
суждения. При этом следует иметь в виду,
что при любых статистических исследованиях
возникают ошибки двух видов: регистрации
и репрезентативности.
Ошибки
репрезентативности присущи только
выборочному наблюдению и возникают в
силу того, что выборочная совокупность
не полностью воспроизводит генеральную.
Они представляют собой расхождения
между значениями показателей этих же
величин, которые были получены при
проведенном с одинаковой степенью
точности сплошном наблюдении, т. е. между
величинами выборных и соотвесвующих
генеральных показателей.
Ошибки
репрезентативности могут быть
систематическими и случайными.
Систематические ошибки возникают при
нарушении установленных правил отбора.
Случайные ошибки репрезентативности
обязаны своим возникновением недостаточно
равномерным представлением в выборочной
совокупности различных категорий единиц
совокупности.
Величина случайной
ошибки репрезентативности зависит от:
степени колеблемости изучаемого
признака генеральной совокупности;
способа формирования выборочной
совокупности; объёма выборки.
Для характеристики
надежности выборочных показателей
различают среднюю и предельную ошибки
выбрки.
Средняя ошибка
выборки —
это средняя из возможных ошибок.
Расчетные формулы
средней ошибки:
1. при повторном
способе отбора
для средней
количественного признака
, где
S2— выборочная дисперсия (дисперсия
признака в выборочной совокупности);
n- объём выборки (число обследованных
единиц/
для доли
(альтернативного признака)
=,
где
— выборочная
доля ( доля единиц, обладающих данным
признаком в выборочной совокупности);
(1 — )
– доля единиц, не обладающих данным
признаком.
2. при бесповторном
способе отбора для средней количественного
признака
, где
N- объем генеральной совокупности (число
входящих в неё единиц);
— доля единиц выборочной совокупности
в генеральной совокупности.
для доли
(альтернативного признака)
.
Например, по
выборочным данным об успеваемости
студентов имеется информация
Экзаменационные |
Число |
X*f |
|||
5 |
9 |
45 |
+1,2 |
1,44 |
12,96 |
4 |
25 |
100 |
+0,2 |
0,04 |
1,00 |
3 |
13 |
39 |
-0,8 |
0,64 |
8,32 |
2 |
3 |
6 |
-1,8 |
3,24 |
9,72 |
Итого |
50 |
190 |
— |
— |
32 |
Найти среднюю
ошибку количественного признака.
(балла)
= 0.64(балла)
(балл)
3. Распространение выборочных результатов на генеральную совокупность.
Конечной целью
выборочного наблюдения является
характеристика генеральной совокупности
на основе выборочных результатов.
Выборочные
средние и относительные величины
распространяют на генеральную совокупность
с учетом предела их возможной ошибки.
В каждой конкретной
выборке расхождение между выборочной
средней и генеральной, т. е
может
быть меньше средней ошибки,
равно ей или больше её.
Причем каждое
из этих расхождений имеет различную
вероятность ( объективную возможность
появления события). Поэтому фактические
расхождения выборочной средней и
генеральной
можно рассматривать как некую предельную
ошибку, связанную со средней ошибкой и
гарантируемую с определенной вероятностьюp.
Предельную
ошибку выборки для средней ()
при повторном отборе можно рассчитать
по формуле:
,
t— где нормированное отклонение –
«коэффициент доверия», зависящий от
вероятности, с которой гарантируется
предельная ошибка выборки;
— средняя ошибка выборки.
Аналогичным
образом может быть записана формула
предельной ошибки выборки для доли при повторном отборе
=t*.
При случайном
бесповторном отборе в формулах расчета
предельных ошибок выборки необходимо
умножить подкоренное выражение на (1-
):
Для количественного
признака
x
= t*=t*,
для доли
=t*=t*
.
Формула предельной
ошибки вытекает из основных положений
теории выборочного метода, сформулированных
в ряде теорем теории вероятностей,
отражающих закон больших чисел.
На основании
теоремы П. Л. Чебышева (с уточнением А.
М. Ляпунова) с вероятностью, сколь угодно
близкой к единице, можно утверждать,
что при достаточно большом объёме
выборки и ограниченной генеральной
дисперсии выборочные показатели
(средняя, доля) будут сколь угодно мало
отличаться от соответствующих генеральных
показателей.
Применительно
к нахождению среднего значения признака
эта теорема может быть записана так:
P
= Ф ( t
),
А для доли
признака
P =
Ф (t
),
Где генеральная
доля ( доля единиц , обладающих данным
значением признака в общем числе единиц
генеральной совокупности):
Ф ( t)
=
Таким образом,
величина предельной ошибки выборки
может быть установлена с определенной
вероятностью. З значения функции Ф (t) при различных значенияхtкак коэффициент кратности средней
ошибки выборки, специально составленных
таблиц. Приведем некоторые значения,
применяемые наиболее часто для выборок
достаточно большого объёма (n
):
T 1,000 1,960 2,000
2,580 3,000
Ф (t)
0,683 0,950 0,954 0,990 0,997
Предельная
ошибка выборки отвечает на вопрос о
точности выборки с определенной
вероятностью, значение которой
определяется вероятностью, значение
которой определяется коэффициентом t( в практических расчетах, как правило,
заданная вероятность не должна менее
0,95). Так приt= 1
предельная ошибка составит=.
Следовательно, с вероятностью 0,683 можно
утверждать, что разность между выборочными
и генеральными показателями не превысит
одной средней ошибки выборки. Другими
словами, в 68,3% случаев ошибка
репрезентативности не выйдет за пределы1. Приt= 2 с вероятностью 0,954 она не выйдет за
пределы, приt= 3 с вероятностью
0,997 – за пределыи т. д.
Выборочное
наблюдение проводиться в целях
распространения выводов, полученных
по данным выборки, на генеральную
совокупность. Одной из основных задач
является оценка по данным выборки
исследуемых характеристик (параметров)
генеральной совокупности.
Предельная
ошибка выборки позволяет определить
предельные значения характеристик
генеральной совокупности и их доверительные
интервалы:
для средней
для доли p=
Это означает,
что с заданной вероятностью можно
утверждать, что значения генеральной
средней следует ожидать в пределах от
до.
Аналогичным
образом может быть записан доверительный
интервал генеральной доли
;.
Наряду с абсолютным
значением предельной ошибки выборки
рассчитывается и предельная относительная
ошибка выборки, которая определяется
как процентное отношение предельной
ошибки выборки к соответствующей
характеристике выборочной совокупности:
для средней, %:
%=*100;
для доли, %: %=*100.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
11.2. Оценка результатов выборочного наблюдения
11.2.1. Средняя и предельная ошибки выборки. Построение доверительных границ для средней и доли
Средняя ошибка выборки показывает, насколько отклоняется в среднем параметр выборочной совокупности от соответствующего параметра генеральной. Если рассчитать среднюю из ошибок всех возможных выборок определенного вида заданного объема (n), извлеченных из одной и той же генеральной совокупности, то получим их обобщающую характеристику — среднюю ошибку выборки ().
В теории выборочного наблюдения выведены формулы для определения , которые индивидуальны для разных способов отбора (повторного и бесповторного), типов используемых выборок и видов оцениваемых статистических показателей.
Например, если применяется повторная собственно случайная выборка, то определяется как:
— при оценивании среднего значения признака;
— если признак альтернативный, и оценивается доля.
При бесповторном собственно случайном отборе в формулы вносится поправка (1 — n/N):
— для среднего значения признака;
— для доли.
Вероятность получения именно такой величины ошибки всегда равна 0,683. На практике же предпочитают получать данные с большей вероятностью, но это приводит к возрастанию величины ошибки выборки.
Предельная ошибка выборки () равна t-кратному числу средних ошибок выборки (в теории выборки принято коэффициент t называть коэффициентом доверия):
.
Если ошибку выборки увеличить в два раза (t = 2), то получим гораздо большую вероятность того, что она не превысит определенного предела (в нашем случае — двойной средней ошибки) — 0,954. Если взять t = 3, то доверительная вероятность составит 0,997 — практически достоверность.
Уровень предельной ошибки выборки зависит от следующих факторов:
- степени вариации единиц генеральной совокупности;
- объема выборки;
- выбранных схем отбора (бесповторный отбор дает меньшую величину ошибки);
- уровня доверительной вероятности.
Если объем выборки больше 30, то значение t определяется по таблице нормального распределения, если меньше — по таблице распределения Стьюдента.
Приведем некоторые значения коэффициента доверия из таблицы нормального распределения.
Значение доверительной вероятности P | 0,683 | 0,954 | 0,997 |
---|---|---|---|
Значение коэффициента доверия t | 1,0 | 2,0 | 3,0 |
Доверительный интервал для среднего значения признака и для доли в генеральной совокупности устанавливается следующим образом:
Итак, определение границ генеральной средней и доли состоит из следующих этапов:
Ошибки выборки при различных видах отбора
- Собственно случайная и механическая выборка. Средняя ошибка собственно случайной и механической выборки находятся по формулам, представленным в табл. 11.3.
где — дисперсия признака в выборочной совокупности. |
Пример 11.2. Для изучения уровня фондоотдачи было проведено выборочное обследование 90 предприятий из 225 методом случайной повторной выборки, в результате которого получены данные, представленные в таблице.
Уровень фондоотдачи, руб. | До 1,4 | 1,4-1,6 | 1,6-1,8 | 1,8-2,0 | 2,0-2,2 | 2,2 и выше | Итого |
---|---|---|---|---|---|---|---|
Количество предприятий | 13 | 15 | 17 | 15 | 16 | 14 | 90 |
В рассматриваемом примере имеем 40%-ную выборку (90 : 225 = 0,4, или 40%). Определим ее предельную ошибку и границы для среднего значения признака в генеральной совокупности по шагам алгоритма:
- По результатам выборочного обследования рассчитаем среднее значение и дисперсию в выборочной совокупности:
Результаты наблюдения | Расчетные значения | |||
---|---|---|---|---|
уровень фондоотдачи, руб., xi | количество предприятий, fi | середина интервала, xixb4 | xixb4fi | xixb42fi |
До 1,4 | 13 | 1,3 | 16,9 | 21,97 |
1,4-1,6 | 15 | 1,5 | 22,5 | 33,75 |
1,6-1,8 | 17 | 1,7 | 28,9 | 49,13 |
1,8-2,0 | 15 | 1,9 | 28,5 | 54,15 |
2,0-2,2 | 16 | 2,1 | 33,6 | 70,56 |
2,2 и выше | 14 | 2,3 | 32,2 | 74,06 |
Итого | 90 | — | 162,6 | 303,62 |
Выборочная средняя
Выборочная дисперсия изучаемого признака
- Определяем среднюю ошибку повторной случайной выборки
- Зададим вероятность, на уровне которой будем говорить о величине предельной ошибки выборки. Чаще всего она принимается равной 0,999; 0,997; 0,954.
Для наших данных определим предельную ошибку выборки, например, с вероятностью 0,954. По таблице значений вероятности функции нормального распределения (см. выдержку из нее, приведенную в Приложении 1) находим величину коэффициента доверия t, соответствующего вероятности 0,954. При вероятности 0,954 коэффициент t равен 2.
- Предельная ошибка выборки с вероятностью 0,954 равна
- Найдем доверительные границы для среднего значения уровня фондоотдачи в генеральной совокупности
Таким образом, в 954 случаях из 1000 среднее значение фондоотдачи будет не выше 1,88 руб. и не ниже 1,74 руб.
Выше была использована повторная схема случайного отбора. Посмотрим, изменятся ли результаты обследования, если предположить, что отбор осуществлялся по схеме бесповторного отбора. В этом случае расчет средней ошибки проводится по формуле
Тогда при вероятности равной 0,954 величина предельной ошибки выборки составит:
Доверительные границы для среднего значения признака при бесповторном случайном отборе будут иметь следующие значения:
Сравнив результаты двух схем отбора, можно сделать вывод о том, что применение бесповторной случайной выборки дает более точные результаты по сравнению с применением повторного отбора при одной и той же доверительной вероятности. При этом, чем больше объем выборки, тем существеннее сужаются границы значений средней при переходе от одной схемы отбора к другой.
По данным примера определим, в каких границах находится доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., в генеральной совокупности:
- рассчитаем выборочную долю.
Количество предприятий в выборке с уровнем фондоотдачи, не превышающим значения 2,0 руб., составляет 60 единиц. Тогда
m = 60, n = 90, w = m/n = 60 : 90 = 0,667;
- рассчитаем дисперсию доли в выборочной совокупности
;
- средняя ошибка выборки при использовании повторной схемы отбора составит
Если предположить, что была использована бесповторная схема отбора, то средняя ошибка выборки с учетом поправки на конечность совокупности составит
- зададим доверительную вероятность и определим предельную ошибку выборки.
При значении вероятности Р = 0,997 по таблице нормального распределения получаем значение для коэффициента доверия t = 3 (см. выдержку из нее, приведенную в Приложении 1):
- установим границы для генеральной доли с вероятностью 0,997:
Таким образом, с вероятностью 0,997 можно утверждать, что в генеральной совокупности доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., не меньше, чем 54,7%, и не больше 78,7%.
- Типическая выборка. При типической выборке генеральная совокупность объектов разбита на k групп, тогда
N1 + N2 + … + Ni + … + Nk = N.
Объем извлекаемых из каждой типической группы единиц зависит от принятого способа отбора; их общее количество образует необходимый объем выборки
n1 + n2 + … + ni + … + nk = n.
Существуют следующие два способа организации отбора внутри типической группы: пропорциональной объему типических групп и пропорциональной степени колеблемости значений признака у единиц наблюдения в группах. Рассмотрим первый из них, как наиболее часто используемый.
Отбор, пропорциональный объему типических групп, предполагает, что в каждой из них будет отобрано следующее число единиц совокупности:
n = ni · Ni/N
где ni — количество извлекаемых единиц для выборки из i-й типической группы;
n — общий объем выборки;
Ni — количество единиц генеральной совокупности, составивших i-ю типическую группу;
N — общее количество единиц генеральной совокупности.
Отбор единиц внутри групп происходит в виде случайной или механической выборки.
Формулы для оценивания средней ошибки выборки для среднего и доли представлены в табл. 11.6.
Здесь — средняя из групповых дисперсий типических групп.
Пример 11.3. В одном из московских вузов проведено выборочное обследование студентов с целью определения показателя средней посещаемости вузовской библиотеки одним студентом за семестр. Для этого была использована 5%-ная бесповторная типическая выборка, типические группы которой соответствуют номеру курса. При отборе, пропорциональном объему типических групп, получены следующие данные:
Номер курса | Всего студентов, чел., Ni | Обследовано в результате выборочного наблюдения, чел., ni | Среднее число посещений библиотеки одним студентом за семестр, xi | Внутригрупповая выборочная дисперсия, |
---|---|---|---|---|
1 | 650 | 33 | 11 | 6 |
2 | 610 | 31 | 8 | 15 |
3 | 580 | 29 | 5 | 18 |
4 | 360 | 18 | 6 | 24 |
5 | 350 | 17 | 10 | 12 |
Итого | 2 550 | 128 | 8 | — |
Число студентов, которое необходимо обследовать на каждом курсе, рассчитаем следующим образом:
- общий объем выборочной совокупности:
n = 2550/130*5 =128 (чел.);
- количество единиц, отобранных из каждой типической группы:
аналогично для других групп:
n2 = 31 (чел.);
n3 = 29 (чел.);
n4 = 18 (чел.);
n5 = 17 (чел.).
Проведем необходимые расчеты.
- Выборочная средняя, исходя из значений средних типических групп, составит:
- Средняя из внутригрупповых дисперсий
- Средняя ошибка выборки:
С вероятностью 0,954 находим предельную ошибку выборки:
- Доверительные границы для среднего значения признака в генеральной совокупности:
Таким образом, с вероятностью 0,954 можно утверждать, что один студент за семестр посещает вузовскую библиотеку в среднем от семи до девяти раз.
- Малая выборка. В связи с небольшим объемом выборочной совокупности те формулы для определения ошибок выборки, которые использовались нами ранее при «больших» выборках, становятся неподходящими и требуют корректировки.
Среднюю ошибку малой выборки определяют по формуле
Предельная ошибка малой выборки:
Распределение значений выборочных средних всегда имеет нормальный закон распределения (или приближается к нему) при п > 100, независимо от характера распределения генеральной совокупности. Однако в случае малых выборок действует иной закон распределения — распределение Стьюдента. В этом случае коэффициент доверия находится по таблице t-распределения Стьюдента в зависимости от величины доверительной вероятности Р и объема выборки п. В Приложении 1 приводится фрагмент таблицы t-распределения Стьюдента, представленной в виде зависимости доверительной вероятности от объема выборки и коэффициента доверия t.
Пример 11.4. Предположим, что выборочное обследование восьми студентов академии показало, что на подготовку к контрольной работе по статистике они затратили следующее количество часов: 8,5; 8,0; 7,8; 9,0; 7,2; 6,2; 8,4; 6,6.
Оценим выборочные средние затраты времени и построим доверительный интервал для среднего значения признака в генеральной совокупности, приняв доверительную вероятность равной 0,95.
- Среднее значение признака в выборке равно
- Значение среднего квадратического отклонения составляет
- Средняя ошибка выборки:
- Значение коэффициента доверия t = 2,365 для п = 8 и Р = 0,95 .
- Предельная ошибка выборки:
- Доверительный интервал для среднего значения признака в генеральной совокупности:
То есть с вероятностью 0,95 можно утверждать, что затраты времени студента на подготовку к контрольной работе находятся в пределах от 6,9 до 8,5 ч.
11.2.2. Определение численности выборочной совокупности
Перед непосредственным проведением выборочного наблюдения всегда решается вопрос, сколько единиц исследуемой совокупности необходимо отобрать для обследования. Формулы для определения численности выборки выводят из формул предельных ошибок выборки в соответствии со следующими исходными положениями (табл. 11.7):
- вид предполагаемой выборки;
- способ отбора (повторный или бесповторный);
- выбор оцениваемого параметра (среднего значения признака или доли).
Кроме того, следует заранее определиться со значением доверительной вероятности, устраивающей потребителя информации, и с размером допустимой предельной ошибки выборки.
Примечание: при использовании приведенных в таблице формул рекомендуется получаемую численность выборки округлять в большую сторону для обеспечения некоторого запаса в точности.
Пример 11.5. Рассчитаем, сколько из 507 промышленных предприятий следует проверить налоговой инспекции, чтобы с вероятностью 0,997 определить долю предприятий с нарушениями в уплате налогов. По данным прошлого аналогичного обследования величина среднего квадратического отклонения составила 0,15; размер ошибки выборки предполагается получить не выше, чем 0,05.
При использовании повторного случайного отбора следует проверить
При бесповторном случайном отборе потребуется проверить
Как видим, использование бесповторного отбора позволяет проводить обследование гораздо меньшего числа объектов.
Пример 11.6. Планируется провести обследование заработной платы на предприятиях отрасли методом случайного бесповторного отбора. Какова должна быть численность выборочной совокупности, если на момент обследования в отрасли число занятых составляло 100 000 чел.? Предельная ошибка выборки не должна превышать 100 руб. с вероятностью 0,954. По результатам предыдущих обследований заработной платы в отрасли известно, что среднее квадратическое отклонение составляет 500 руб.
Следовательно, для решения поставленной задачи необходимо включить в выборку не менее 100 человек.