Ошибка
репрезентативности
— расхождение между выборочной
характеристикой и характеристикой
генеральной совокупности.
Ошибки
репрезентативности
-
Систематические
— возникают в результате нарушения
научных принципов отбора единиц
совокупности (преднамеренные и
непреднамеренные). -
Случайные
возникают в результате несплошного
характера наблюдения (средняя и
предельная ошибки выбора).
Случайные
ошибки могут быть доведены до незначительных
размеров, а главное, их размеры и пределы
можно определить с достаточной точностью
на основании закона больших чисел.
Средняя
ошибка выборки
— такое расхождение между средними
выборочной и генеральной совокупностями,
которое не превышает ±.
В
математической статистике доказывается,
что значения средней ошибки выборки
определяются по формулам:
Формула
для определения величины средней ошибки
выборки для количественного признака:
Формула
для определения величины средней ошибки
выборки для альтернативного признака:
Полученное
значение средней ошибки необходимо для
установления возможного значения .
Которое определяется по формуле:
Но
такое суждение можно гарантировать не
с абсолютной
достоверностью, а лишь с определенной
степенью
вероятности.
В
математической статистике доказывается,
что пределы значений характеристик
генеральной совокупности отличаются
от характеристик выборочной совокупности
лишь с вероятностью, которая определена
числом 0,683.
Это
означает, что в 683 случаях из 1000 генеральная
средняя будет находиться в установленных
пределах, т.е. отклонение ГС от ВС не
превысит однократной средней ошибки
выборки. В остальных 317 случаях они могут
выйти за эти пределы. Вероятность можно
повысить, если расширить пределы
отклонений. Так, при удвоенном значении
,
вероятность достигает 0,954 ().
Если утроить значение то вероятность
увеличится до 0,997 ().
Возможное |
Вероятность |
0,683 |
|
0,954 |
|
0,997 |
Если
обозначить значение увеличения
за
t,
то можно записать в общем виде:
Множитель
t
называется коэффициентом
доверия.
Известный русский математик А.М.Ляпунов
дал выражение конкретных значений
множителя t
для различных степеней вероятности в
виде функции:
На
практике пользуются готовыми таблицами
этой функции.
t |
0 |
0,1 |
0,5 |
1 |
1,5 |
2 |
2,5 |
2,6 |
3 |
4 |
(t) |
0,1 |
0,0797 |
0,3829 |
0,6827 |
0,8664 |
0,9545 |
0,9876 |
0,9907 |
0,9973 |
0,99994 |
Из
вышесказанного следует, что лишь с
определенной степенью вероятности
можно утверждать, что показатели
генеральной совокупности и их отклонения
не превысят величину .
Полученную величинуназываетсяпредельной
ошибкой выборки.
Предельная
ошибка выборки
—
максимально
возможное расхождение выборочной и
генеральной средних,
т.е.
максимум ошибки при заданной вероятности
ее появления.
Предельная
ошибка выборки для количественного
признака:
Предельная
ошибка выборки для альтернативного
признака:
В
связи с тем, что существуют различные
методы, виды и способы отбора единиц из
генеральной совокупности формулы для
расчета средней ошибки выборки также
будут различаться:
Способ |
Оцениваемый |
Повторный |
Бесповторный |
Собственно случайный механический |
Средняя |
||
Доля |
|
||
Типический |
Средняя |
||
Доля |
|||
Серийный |
Средняя |
||
Доля |
— средняя из групповых дисперсий;
wi
— доля
единиц совокупности, обладающих изучаемым
признаком в i-й
типической
группе;
— средняя из групповых дисперсий для
доли. В табл. 6.6 представлены формулы
для исчисления средней ошибки выборки
при типическом отборе;
S
– общее число серий;
s
– число отобранных серий;
—
межгрупповая дисперсия средних,
определяемая по формуле:
—
межгрупповая дисперсия доли, определяемая
по формуле:
— средняя
i-й
серии;
—
средняя по всей выборочной совокупности;
w
— доля признака i-й
серии;
— общая доля признака во всей выборочной
совокупности.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Ошибка
репрезентативности
— расхождение между выборочной
характеристикой и характеристикой
генеральной совокупности.
Ошибки
репрезентативности
-
Систематические
— возникают в результате нарушения
научных принципов отбора единиц
совокупности (преднамеренные и
непреднамеренные). -
Случайные
возникают в результате несплошного
характера наблюдения (средняя и
предельная ошибки выбора).
Случайные
ошибки могут быть доведены до незначительных
размеров, а главное, их размеры и пределы
можно определить с достаточной точностью
на основании закона больших чисел.
Средняя
ошибка выборки
— такое расхождение между средними
выборочной и генеральной совокупностями,
которое не превышает ±.
В
математической статистике доказывается,
что значения средней ошибки выборки
определяются по формулам:
Формула
для определения величины средней ошибки
выборки для количественного признака:
Формула
для определения величины средней ошибки
выборки для альтернативного признака:
Полученное
значение средней ошибки необходимо для
установления возможного значения .
Которое определяется по формуле:
Но
такое суждение можно гарантировать не
с абсолютной
достоверностью, а лишь с определенной
степенью
вероятности.
В
математической статистике доказывается,
что пределы значений характеристик
генеральной совокупности отличаются
от характеристик выборочной совокупности
лишь с вероятностью, которая определена
числом 0,683.
Это
означает, что в 683 случаях из 1000 генеральная
средняя будет находиться в установленных
пределах, т.е. отклонение ГС от ВС не
превысит однократной средней ошибки
выборки. В остальных 317 случаях они могут
выйти за эти пределы. Вероятность можно
повысить, если расширить пределы
отклонений. Так, при удвоенном значении
,
вероятность достигает 0,954 ().
Если утроить значение то вероятность
увеличится до 0,997 ().
Возможное |
Вероятность |
0,683 |
|
|
0,954 |
0,997 |
Если
обозначить значение увеличения
за
t,
то можно записать в общем виде:
Множитель
t
называется коэффициентом
доверия.
Известный русский математик А.М.Ляпунов
дал выражение конкретных значений
множителя t
для различных степеней вероятности в
виде функции:
На
практике пользуются готовыми таблицами
этой функции.
t |
0 |
0,1 |
0,5 |
1 |
1,5 |
2 |
2,5 |
2,6 |
3 |
4 |
(t) |
0,1 |
0,0797 |
0,3829 |
0,6827 |
0,8664 |
0,9545 |
0,9876 |
0,9907 |
0,9973 |
0,99994 |
Из
вышесказанного следует, что лишь с
определенной степенью вероятности
можно утверждать, что показатели
генеральной совокупности и их отклонения
не превысят величину .
Полученную величинуназываетсяпредельной
ошибкой выборки.
Предельная
ошибка выборки
—
максимально
возможное расхождение выборочной и
генеральной средних,
т.е.
максимум ошибки при заданной вероятности
ее появления.
Предельная
ошибка выборки для количественного
признака:
Предельная
ошибка выборки для альтернативного
признака:
В
связи с тем, что существуют различные
методы, виды и способы отбора единиц из
генеральной совокупности формулы для
расчета средней ошибки выборки также
будут различаться:
Способ |
Оцениваемый |
Повторный |
Бесповторный |
Собственно случайный механический |
Средняя |
||
Доля |
|
||
Типический |
Средняя |
||
Доля |
|||
Серийный |
Средняя |
|
|
Доля |
— средняя из групповых дисперсий;
wi
— доля
единиц совокупности, обладающих изучаемым
признаком в i-й
типической
группе;
— средняя из групповых дисперсий для
доли. В табл. 6.6 представлены формулы
для исчисления средней ошибки выборки
при типическом отборе;
S
– общее число серий;
s
– число отобранных серий;
—
межгрупповая дисперсия средних,
определяемая по формуле:
—
межгрупповая дисперсия доли, определяемая
по формуле:
— средняя
i-й
серии;
—
средняя по всей выборочной совокупности;
w
— доля признака i-й
серии;
— общая доля признака во всей выборочной
совокупности.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Понятие репрезентативности часто встречается в статистических отчетностях и при подготовке выступлений и докладов. Пожалуй, без нее трудно представить себе какой-либо из видов подачи информации на обозрение.
Репрезентативность — что это?
Репрезентативность отражает, насколько выбранные объекты или части соответствуют содержанию и смыслу совокупности данных, из которой они были выбраны.
Другие определения
Понятие репрезентативности можно раскрывать в разных контекстах. Но по своему смыслу репрезентативность – это соответствие черт и свойств выбранных единиц из общей совокупности, которые точно отражают характеристики всей генеральной базы данных в целом.
Также репрезентативность информации определяют как способность выборочных данных представить параметры и свойства совокупности, важные с точки зрения проводимого исследования.
Репрезентативная выборка
Принцип формирования выборки заключается в избрании наиболее важных и точно отображающих свойства общей совокупности данных. Для этого используются различные методы, которые позволяют получать точные результаты и общее представление о генеральной совокупности, используя только выборочные материалы, описывающие качества всех данных.
Таким образом, нет необходимости изучать весь материал, а достаточно рассмотреть выборочную репрезентативность. Что это? Это выборка отдельных данных для того, чтобы иметь понятие об общей массе информации.
Их в зависимости от способа различают как вероятностные и невероятностные. Вероятностная – это выборка, которая производится путем вычисления наиболее важных и интересных данных, являющихся в дальнейшем представителями генеральной совокупности. Это обдуманный выбор или случайная выборка, тем не менее, обоснованная своим содержанием.
Невероятностная – это одна из разновидностей случайной выборки, составляющаяся по принципу обычной лотереи. В таком случае не учитывается мнение того, кто составляет такую выборку. Используется лишь слепой жребий.
Вероятностная выборка
Вероятностные выборки также могут подразделяться на несколько видов:
- Одна из самых простых и понятных принципов – это нерепрезентативная выборка. К примеру, такой способ часто используется при проведении социальных опросов. При этом участники опроса не выбираются из толпы по каким-либо определенным признакам, и получение информации производится у первых 50 людей, принявших участие в нём.
- Преднамеренные выборки отличаются тем, что имеют ряд требований и условий при отборе, однако все же полагаются на случайное совпадение, не преследуя своей целью достижение хорошей статистики.
- Выборка на основании квот – это еще одна из вариаций невероятностной выборки, которая часто используется для исследования больших совокупностей данных. Для нее используется множество условий и норм. Подбираются объекты, которые должны им соответствовать. То есть на примере социального опроса можно предположить, что опрошены будут 100 человек, но только мнение некоторого числа людей, которые будут соответствовать установленным требованиям, будут учтены при составлении статистического отчета.
Вероятностные выборки
Для вероятностных выборок исчисляется ряд параметров, которым объекты в выборке будут соответствовать, и среди них разными способами могут избираться именно те факты и данные, которые будут представлены как репрезентативность данных выборки. Такими способами вычисления нужных данных могут быть:
- Простая случайная выборка. Заключается в том, что среди выбранного сегмента совершенно случайным методом лотереи выбирается необходимое количество данных, которые будут являться репрезентативной выборкой.
- Систематическая и случайная выборка дает возможность составить систему вычисления необходимых данных на основе случайно выбранного сегмента. Таким образом, если первое случайное число, которое указывает на порядковый номер данных, выбранных из общей совокупности, будет 5, то последующими данными, которые будут выбраны, могут стать, например, 15, 25, 35 и так далее. Этот пример наглядно объясняет, что даже случайный выбор может основываться на систематических вычислениях необходимых исходных данных.
Выборка потребителей
Осмысленная выборка – это способ, который заключается в рассмотрении каждого отдельного сегмента, и на основании его оценки составляется совокупность, отражающая характеристики и свойства общей базы данных. Таким образом набирается большее количество данных, соответствующих требованиям репрезентативной выборки. Можно легко отобрать некоторое количество вариантов, которые не войдут в общее число, не потеряв при этом качество отобранных данных, представляющих общую совокупность. Таким способом определяется репрезентативность результатов исследования.
Размер выборки
Не последний вопрос, который необходимо решить, – это размер выборки для репрезентативного представления генеральной совокупности. Размер выборки не всегда зависит от количества исходников в генеральной совокупности. Однако репрезентативность выборочной совокупности напрямую зависит от того, на сколько сегментов должен быть в итоге разделён результат. Чем больше таких сегментов, тем больше данных попадает в результативную выборку. Если результаты требуют общего обозначения и не требуют конкретики, тогда, соответственно, выборка становится меньше, поскольку, не вдаваясь в детали, информация излагается более поверхностно, а значит, ее прочтение будет общим.
Понятие ошибки репрезентативности
Ошибка репрезентативности – это конкретные расхождения между характеристиками генеральной совокупности и выборочных данных. При проведении любого выборочного исследования невозможно получить абсолютно точные данные, как при полном исследовании генеральных совокупностей и выборки, представленной лишь частью сведений и параметров, тогда как более детальное изучение возможно только при исследовании всей совокупности. Таким образом, неизбежны некоторые погрешности и ошибки.
Виды ошибок
Различают некоторые ошибки, которые возникают при составлении репрезентативной выборки:
- Систематические.
- Случайные.
- Преднамеренные.
- Непреднамеренные.
- Стандартные.
- Предельные.
Основанием для появления случайных ошибок может быть несплошной характер исследования общей совокупности. Обычно случайная ошибка репрезентативности имеет незначительный размер и характер.
Систематические ошибки между тем возникают при нарушении правил отбора данных из общей совокупности.
Средняя ошибка – это разница между усредненными значениями выборки и основной совокупностью. Она не зависит от количества единиц в выборке. Она обратно пропорциональна объему выборки. Тогда чем больше объем, тем меньше значение средней ошибки.
Предельная ошибка – это наибольшая возможная разница между усредненными значениями сделанной выборки и общей совокупностью. Такая ошибка охарактеризовывается как максимум вероятных ошибок при заданных условиях их появления.
Преднамеренные и непреднамеренные ошибки репрезентативности
Ошибки смещения данных бывают преднамеренными и непреднамеренными.
Тогда причинами появления преднамеренных ошибок является подход к подбору данных по методу определения тенденций. Непреднамеренные ошибки возникают еще на стадии подготовки выборочного наблюдения, формирования репрезентативной выборки. Для недопущения подобных ошибок необходимо создать хорошую основу для выборки, составляющей списки единиц отбора. Она должна полностью соответствовать целям проведения выборки, быть достоверной, охватывающей все аспекты исследования.
Валидность, надежность, репрезентативность. Расчет ошибок
Расчет ошибки репрезентативности (Мм) средней арифметической величины (М).
Среднее квадратическое отклонение: численность выборки (>30).
Ошибка репрезентативности (Мр) и относительная величина (Р): численность выборки (n>30).
В том случае, когда приходится изучать совокупность, где количество выборки мало и составляет меньше 30 единиц, тогда число наблюдений станет меньше на одну единицу.
Величина ошибки прямо порциональна объему выборки. Репрезентативность информации и вычисление степени возможности составления точного прогноза отражает определенная величина предельной ошибки.
Репрезентативные системы
Не только в процессе оценки подачи информации используется репрезентативная выборка, но и сам человек, получающий информацию, использует репрезентативные системы. Таким образом, мозг обрабатывает некоторое количество информации, создавая репрезентативную выборку из всего потока информации, чтобы качественно и быстро оценить подаваемые данные и понять суть вопроса. Ответить на вопрос: «Репрезентативность — что это?» — в масштабах человеческого сознания довольно просто. Для этого мозг использует все подвластные органы чувств, в зависимости от того, какую именно информацию необходимо вычленить из общего потока. Таким образом, различают:
- Визуальную репрезентативную систему, где задействуются органы зрительного восприятия глаза. Люди, часто использующие подобную систему, называются визуалами. С помощью этой системы человек обрабатывает информацию, поступающую в виде изображений.
- Аудиальная репрезентативная система. Главный орган, который используется – это слух. Информация, подаваемая в виде звуковых файлов или речи, обрабатываются именно этой системой. Люди, лучше воспринимающие информацию на слух, называются аудиалами.
- Кинестетическая репрезентативная система представляет собой обработку потока информации, путем восприятия его с помощью обонятельных и осязательных каналов.
- Дигитальная репрезентативная система используется вместе с другими как средство получения информации извне. Это субъективно-логическое восприятие и осмысление полученных данных.
Итак, репрезентативность — что это? Простая выборка из множества или неотъемлемая процедура при обработке информации? Однозначно можно сказать, что репрезентативность во многом определяет наше восприятие потоков данных, помогая вычленить из него наиболее веские и значимые.
Пример об ошибке репрезентативности
Лекция 4.1 Выборочный метод
К настоящему времени Вы заработали баллов: 0 из 0 возможных.
ГЕНЕРАЛЬНАЯ И ВЫБОРОЧНАЯ СОВОКУПНОСТЬ
Генеральная совокупность — вся подлежащая изучению совокупность объектов (наблюдений).
Генеральная совокупность носит гипотетический характер. Она представляет собой совокупность всех мыслимых наблюдений, которые могли бы быть произведены при данных условиях. Даже если бы у нас была возможность провести сплошное исследование всей совокупности признака, все равно в нее не попали бы объекты, которое по какой то причине отсутствуют на текущий момент, но должны были существовать при данных условиях.
Та часть объектов, которая отобрана для непосредственного изучения, называется выборочной совокупностьюили выборкой
Сущность выборочного метода
Сущность выборочного метода состоит в том, чтобы по некоторой части генеральной совокупности выносить суждение о её свойствах в целом
Чтобы по данным выборки иметь возможность судить о генеральной совокупности, она должна быть репрезентативной(представительной).
Репрезентативная выборка сохраняет и повторяет структуру генеральной совокупности.
Если две выборки взяты из одной генеральной совокупности, то разница в получаемых оценках (например, средних) будет носить случайный характер, как следствие ошибки репрезентативности
Ошибка репрезентативности возникает по причине того, что мы исследуем не всю совокупность, а только её части (выборки). Мы получаем случайную комбинацию элементов из генеральной совокупности.
Для того, чтобы минимизировать различия однородных (взятых из одной генеральной совокупности) выборок необходимо правильным образом их формировать.
Наилучшим способом формирования репрезентативной выборки является случайный отбор элементов из генеральной совокупности без расчленения на части или группы (случайная выборка).
Пример об ошибке репрезентативности
Рассмотрим следующий пример.
Исследователь задался вопросом: «существуют ли различия в эмпатических способностях между психологами и педагогами?». Для того чтобы это прояснить он набрал две группы испытуемых в соответствии с их профессиональной деятельностью и предложил им заполнить опросник на эмпатические способности. Далее, он рассчитал среднее значение в каждой группе.
В группе психологов среднее составило 23,4 балла, а в группе педагогов 21,1. Таким образом, разница в средних между группами составила2,3 балла (23,4 — 21,1 = 2,3).
Если бы представители этих профессий не отличались по изучаемому признаку, тогда разница в средних равнялась бы нулю.
Однако, можно ли считать эту разницу в 2,3 балла достаточной, чтобы судить о реальных различиях между группами? Может сложится так, что психологи и педагоги по эмпатии в реальности не отличаются (выборки однородны), а разница в 2,3 балла, полученная исследователем носит случайный характер, как ошибка репрезентативности.
Таким образом, мы можем сформулировать две гипотезы:
Гипотезы являются альтернативами по отношению к друг другу. Принятие одной из них как верной влечет за собой исключение «истинности» другой.
СТАТИСТИЧЕСКАЯ ГИПОТЕЗА
Статистическая гипотеза – это любое предположение о виде или параметрах неизвестного закона распределения (закона распределения генеральной совокупности)
В статистике принято формулировать пару гипотез. Первая гипотеза называется нулевой, а вторая – альтернативной.
Нулевая гипотеза Н | Альтернативная гипотеза Н1 |
1. 1. Является проверяемой 2. Обычно гипотеза об отсутствии явления (например, различий или зависимости) | Является логическим отрицанием нулевой |
Поскольку нулевая гипотеза является проверяемой, то её можно отвергать и принимать | Альтернативную гипотезу принимают как следствие отрицания нулевой гипотезы |
пример:
· Н (нулевая): Женщины не отличаются от мужчин по среднему уровню развития эмпатических способностей (средние значения равны)
· Н1 (альтернативная): Средний уровень эмпатических способностей выше у женщин по сравнению с мужчинами
пример:
· Н (нулевая): Линейная корреляция между самооценкой и тревожностью равна 0
· Н1 (альтернативная): Самооценка отрицательно связана с тревожностью (линейная корреляция меньше нуля / чем выше самооценка, тем ниже тревожность и наоборот)
Вопрос:Какая из двух формулировок соответствует нулевой гипотезе Н?
· А) между психологами и педагогами нет различий по среднему уровню выраженности эмпатии
· Б) между психологами и педагогами есть различия по среднему уровню выраженности эмпатии
Статистический критерий
Правило, по которому нулевая гипотеза отвергается или принимается, называется статистическим критерием.
Статистика – это специально составленная выборочная характеристика (распределение), у которой есть критическое значение такое, что если верна нулевая гипотеза, то вероятность (α) того, что случайная величина превысит это критическое значение, мала (Кремер Н.Ш., 2004).
Критическое значение делит распределение «нулевой гипотезы» на две области: область допустимых значений и область критических значений
Таким образом, критические значения позволяют исследователю либо принять, либо отвергнуть нулевую гипотезу.
В математической статистике можно подбирать критические значение для разных альфа-уровней (уровней значимости). Чаще всего:
1. Критическое значение, которое выделяет критическую область с вероятностью α
Источник
Ошибки статистического наблюдения и основные приёмы их устранения
Всякое статистическое наблюдение должно быть полным и достоверным. Однако по ряду причин степень точности данных может быть различной.
Все ошибки наблюдения подразделяются на два вида:
Ошибки регистрации возникают вследствие неправильного установления фактов в процессе наблюдения или неправильной их записи.
Ошибки регистрации могут возникать как при сплошном наблюдении, так и при несплошном и имеют следующие виды:
Случайные ошибки – это ошибки, которые возникают в результате небрежной описки или невнимательного отношения регистратора при заполнении формуляра (ошибки в подсчёте).
Систематические ошибки – это ошибки, которые искажают сведения по каждой отдельной единице наблюдения в одном и том же направлении.
Систематические ошибки делятся на:
Преднамеренные ошибки (сознательные, тенденциозные ошибки), возникающие в результате сознательного искажения статистической информации. К ним относятся: приписки, неправильные сведения об объёме выпущенной продукции, об остатках сырья и материалов и т. д.
Непреднамеренные ошибки – это ошибки, которые возникают в результате случайных причин, т.е. неумышленно (неисправность измерительных приборов, невнимательность регистратора и т.д.).
Ошибки репрезентативности свойственны несплошному наблюдению. Они возникают в результате выборочного наблюдения, когда отобранная часть единиц совокупности недостаточно полно отражает состав всей изучаемой совокупности.
Ошибки репрезентативности (так же, как и ошибки регистрации) могут быть случайными и систематическими.
Случайные ошибки оцениваются с помощью математических методов.
Систематические ошибки – это отклонения, которые возникают в результате случайного отбора единиц изучаемой совокупности. Их размеры не поддаются количественной оценке.
Для выявления и устранения допущенных при регистрации ошибок применяются следующие методы:
а) внешний контроль;
б) логический контроль;
в) счётный контроль.
При внешнем контроле проверяется: правильность оформления документов; наличие всех необходимых записей, которые предусмотрены инструкцией и т.д.
Логический контроль заключается в проверке ответов на вопросы программы наблюдения путём сопоставления полученных данных с другими источниками.
Сущность счётного (арифметического) контроля заключается в счётной проверке всех итоговых показателей, которые содержатся в отчётности или формуляре исследования. Задачей такого контроля является исправление итогов и отдельных числовых показателей.
В ряде случаев, при счётном контроле данных статистического наблюдения применяется метод балансовой увязки показателей (наличие на начало отчётного периода плюс поступления минус расход должно быть равно наличию на конец отчётного периода). Такой метод применяют: при проверках поголовья скота, при учёте поступления и расхода сырья и материалов и т.д.
Указанные методы проверки достоверности статистического наблюдения позволяют сократить до минимального значения допуск ошибок.
Источник
Репрезентативность — что это за процесс? Ошибка репрезентативности
Понятие репрезентативности часто встречается в статистических отчетностях и при подготовке выступлений и докладов. Пожалуй, без нее трудно представить себе какой-либо из видов подачи информации на обозрение.
Репрезентативность — что это?
Репрезентативность отражает, насколько выбранные объекты или части соответствуют содержанию и смыслу совокупности данных, из которой они были выбраны.
Другие определения
Понятие репрезентативности можно раскрывать в разных контекстах. Но по своему смыслу репрезентативность – это соответствие черт и свойств выбранных единиц из общей совокупности, которые точно отражают характеристики всей генеральной базы данных в целом.
Также репрезентативность информации определяют как способность выборочных данных представить параметры и свойства совокупности, важные с точки зрения проводимого исследования.
Репрезентативная выборка
Принцип формирования выборки заключается в избрании наиболее важных и точно отображающих свойства общей совокупности данных. Для этого используются различные методы, которые позволяют получать точные результаты и общее представление о генеральной совокупности, используя только выборочные материалы, описывающие качества всех данных.
Таким образом, нет необходимости изучать весь материал, а достаточно рассмотреть выборочную репрезентативность. Что это? Это выборка отдельных данных для того, чтобы иметь понятие об общей массе информации.
Их в зависимости от способа различают как вероятностные и невероятностные. Вероятностная – это выборка, которая производится путем вычисления наиболее важных и интересных данных, являющихся в дальнейшем представителями генеральной совокупности. Это обдуманный выбор или случайная выборка, тем не менее, обоснованная своим содержанием.
Невероятностная – это одна из разновидностей случайной выборки, составляющаяся по принципу обычной лотереи. В таком случае не учитывается мнение того, кто составляет такую выборку. Используется лишь слепой жребий.
Вероятностная выборка
Вероятностные выборки также могут подразделяться на несколько видов:
- Одна из самых простых и понятных принципов – это нерепрезентативная выборка. К примеру, такой способ часто используется при проведении социальных опросов. При этом участники опроса не выбираются из толпы по каким-либо определенным признакам, и получение информации производится у первых 50 людей, принявших участие в нём.
- Преднамеренные выборки отличаются тем, что имеют ряд требований и условий при отборе, однако все же полагаются на случайное совпадение, не преследуя своей целью достижение хорошей статистики.
- Выборка на основании квот – это еще одна из вариаций невероятностной выборки, которая часто используется для исследования больших совокупностей данных. Для нее используется множество условий и норм. Подбираются объекты, которые должны им соответствовать. То есть на примере социального опроса можно предположить, что опрошены будут 100 человек, но только мнение некоторого числа людей, которые будут соответствовать установленным требованиям, будут учтены при составлении статистического отчета.
Вероятностные выборки
Для вероятностных выборок исчисляется ряд параметров, которым объекты в выборке будут соответствовать, и среди них разными способами могут избираться именно те факты и данные, которые будут представлены как репрезентативность данных выборки. Такими способами вычисления нужных данных могут быть:
- Простая случайная выборка. Заключается в том, что среди выбранного сегмента совершенно случайным методом лотереи выбирается необходимое количество данных, которые будут являться репрезентативной выборкой.
- Систематическая и случайная выборка дает возможность составить систему вычисления необходимых данных на основе случайно выбранного сегмента. Таким образом, если первое случайное число, которое указывает на порядковый номер данных, выбранных из общей совокупности, будет 5, то последующими данными, которые будут выбраны, могут стать, например, 15, 25, 35 и так далее. Этот пример наглядно объясняет, что даже случайный выбор может основываться на систематических вычислениях необходимых исходных данных.
Выборка потребителей
Осмысленная выборка – это способ, который заключается в рассмотрении каждого отдельного сегмента, и на основании его оценки составляется совокупность, отражающая характеристики и свойства общей базы данных. Таким образом набирается большее количество данных, соответствующих требованиям репрезентативной выборки. Можно легко отобрать некоторое количество вариантов, которые не войдут в общее число, не потеряв при этом качество отобранных данных, представляющих общую совокупность. Таким способом определяется репрезентативность результатов исследования.
Размер выборки
Не последний вопрос, который необходимо решить, – это размер выборки для репрезентативного представления генеральной совокупности. Размер выборки не всегда зависит от количества исходников в генеральной совокупности. Однако репрезентативность выборочной совокупности напрямую зависит от того, на сколько сегментов должен быть в итоге разделён результат. Чем больше таких сегментов, тем больше данных попадает в результативную выборку. Если результаты требуют общего обозначения и не требуют конкретики, тогда, соответственно, выборка становится меньше, поскольку, не вдаваясь в детали, информация излагается более поверхностно, а значит, ее прочтение будет общим.
Понятие ошибки репрезентативности
Ошибка репрезентативности – это конкретные расхождения между характеристиками генеральной совокупности и выборочных данных. При проведении любого выборочного исследования невозможно получить абсолютно точные данные, как при полном исследовании генеральных совокупностей и выборки, представленной лишь частью сведений и параметров, тогда как более детальное изучение возможно только при исследовании всей совокупности. Таким образом, неизбежны некоторые погрешности и ошибки.
Виды ошибок
Различают некоторые ошибки, которые возникают при составлении репрезентативной выборки:
- Систематические.
- Случайные.
- Преднамеренные.
- Непреднамеренные.
- Стандартные.
- Предельные.
Основанием для появления случайных ошибок может быть несплошной характер исследования общей совокупности. Обычно случайная ошибка репрезентативности имеет незначительный размер и характер.
Систематические ошибки между тем возникают при нарушении правил отбора данных из общей совокупности.
Средняя ошибка – это разница между усредненными значениями выборки и основной совокупностью. Она не зависит от количества единиц в выборке. Она обратно пропорциональна объему выборки. Тогда чем больше объем, тем меньше значение средней ошибки.
Предельная ошибка – это наибольшая возможная разница между усредненными значениями сделанной выборки и общей совокупностью. Такая ошибка охарактеризовывается как максимум вероятных ошибок при заданных условиях их появления.
Преднамеренные и непреднамеренные ошибки репрезентативности
Ошибки смещения данных бывают преднамеренными и непреднамеренными.
Тогда причинами появления преднамеренных ошибок является подход к подбору данных по методу определения тенденций. Непреднамеренные ошибки возникают еще на стадии подготовки выборочного наблюдения, формирования репрезентативной выборки. Для недопущения подобных ошибок необходимо создать хорошую основу для выборки, составляющей списки единиц отбора. Она должна полностью соответствовать целям проведения выборки, быть достоверной, охватывающей все аспекты исследования.
Валидность, надежность, репрезентативность. Расчет ошибок
Расчет ошибки репрезентативности (Мм) средней арифметической величины (М).
Среднее квадратическое отклонение: численность выборки (>30).
Ошибка репрезентативности (Мр) и относительная величина (Р): численность выборки (n>30).
В том случае, когда приходится изучать совокупность, где количество выборки мало и составляет меньше 30 единиц, тогда число наблюдений станет меньше на одну единицу.
Величина ошибки прямо порциональна объему выборки. Репрезентативность информации и вычисление степени возможности составления точного прогноза отражает определенная величина предельной ошибки.
Репрезентативные системы
Не только в процессе оценки подачи информации используется репрезентативная выборка, но и сам человек, получающий информацию, использует репрезентативные системы. Таким образом, мозг обрабатывает некоторое количество информации, создавая репрезентативную выборку из всего потока информации, чтобы качественно и быстро оценить подаваемые данные и понять суть вопроса. Ответить на вопрос: «Репрезентативность — что это?» — в масштабах человеческого сознания довольно просто. Для этого мозг использует все подвластные органы чувств, в зависимости от того, какую именно информацию необходимо вычленить из общего потока. Таким образом, различают:
- Визуальную репрезентативную систему, где задействуются органы зрительного восприятия глаза. Люди, часто использующие подобную систему, называются визуалами. С помощью этой системы человек обрабатывает информацию, поступающую в виде изображений.
- Аудиальная репрезентативная система. Главный орган, который используется – это слух. Информация, подаваемая в виде звуковых файлов или речи, обрабатываются именно этой системой. Люди, лучше воспринимающие информацию на слух, называются аудиалами.
- Кинестетическая репрезентативная система представляет собой обработку потока информации, путем восприятия его с помощью обонятельных и осязательных каналов.
- Дигитальная репрезентативная система используется вместе с другими как средство получения информации извне. Это субъективно-логическое восприятие и осмысление полученных данных.
Итак, репрезентативность — что это? Простая выборка из множества или неотъемлемая процедура при обработке информации? Однозначно можно сказать, что репрезентативность во многом определяет наше восприятие потоков данных, помогая вычленить из него наиболее веские и значимые.
Источник
Репрезентативность — важнейшее свойство данных, используемых для построения аналитических моделей. Независимо от того, в какой предметной области и какими методами производятся выборочные исследования, отсутствие репрезентативности выборки приводит к некорректным результатам. В статье рассказываем подробнее об этом важном свойстве.
Репрезентативность — важнейшее свойство данных, используемых для построения аналитических моделей. Оно отражает способность данных представлять зависимости и закономерности исследуемой предметной области, которые должна обнаружить и научиться воспроизводить построенная модель. Иными словами, репрезентативность показывает, содержат ли анализируемые данные достаточно информации для построения качественной модели, а так же, может ли эта информация быть использована алгоритмом построения модели.
Репрезентативность генеральной совокупности отражает способность совокупности описывать существенные свойства, зависимости и закономерности объектов, процессов и явлений предметной области. Она достигается за счёт правильной организации сбора и консолидации первичных данных.
Репрезентативность выборки описывает способность выборочных данных отражать структурные свойства совокупности, из которой они были извлечены. Т.е. даёт ответ на вопрос: можно ли в исследовании заменить совокупность на выборку без значимого ухудшения результатов анализа. Репрезентативность выборки достигается с помощью правильного выбора метода сэмплинга.
Таким образом, репрезентативность выборки касается только воспроизведения характеристик совокупности. Если сама исходная совокупность плохо представляет предметную область, то, даже если полученная из неё выборка будет репрезентативной, построить на её основе корректную с точки зрения предметной области модель невозможно.
Например, пусть компания собирается вывести на рынок новый продукт. При этом она хочет провести маркетинговые исследования в виде опроса клиентов о желаемых характеристиках и параметрах продукта. Число клиентов компании насчитывает сотни тысяч человек (генеральная совокупность), поэтому опросить их всех не представляется возможным физически, не является целесообразным экономически.
Поэтому компания формирует выборку клиентов для проведения опроса. Если мнение клиентов из выборки отражает мнение большинства клиентов и может быть использовано для принятия решений о параметрах и характеристиках нового продукта, то такая выборка будет репрезентативной.
Независимо от того, в какой предметной области и какими методами производятся выборочные исследования, отсутствие репрезентативности выборки приводит к некорректным результатам. Поэтому в процессе анализа необходимо убедиться, что сформированная выборка репрезентативна.
Таким образом, репрезентативная выборка — это такая выборка, в которой представлены все подгруппы, важные для исследования. Помимо этого, характер распределения рассматриваемых параметров в выборке должен быть таким же, как в генеральной совокупности.
Особенно важным является обеспечение репрезентативности в машинном обучении, для построения моделей классификации и регрессии используется несколько выборок: обучающая, тестовая и валидационная, которые тем или иным способом отбираются из исходного набора данных. И все эти выборки должны быть репрезентативными.
Обеспечение репрезентативности
В основе построения репрезентативной выборки лежит правильный выбор используемого алгоритма сэмплинга. При этом размер выборки, хотя и является важным, сам по себе не гарантирует ее репрезентативности. Например, интернет-опрос может показать, что 100% людей пользуется интернетом, хотя это не соответствует действительности (т.е. репрезентативность нарушена).
Выделяют качественную (структурную) и количественную репрезентативность.
Рисунок 1. Количественная и качественная репрезентативность
Качественная репрезентативность
Качественная репрезентативность показывает, что все группы, присутствующие в совокупности, будут представлены и в выборке. Для этого каждый элемент совокупности должен иметь равную вероятность, быть выбранным, а сама выборка должна производиться из однородных групп.
Наиболее оптимальным способом формирования репрезентативной выборки является простой случайный сэмплинг, поскольку в этом случае у любого представителя генеральной совокупности будет одинаковая вероятность попасть в выборку.
Например, при формировании выборки клиентов для опроса, в нее попадут люди из различных социальных групп пропорционально их долям в генеральной совокупности. В результате, выборка будет представлять собой уменьшенную копию генеральной совокупности.
Случайность отбора респондентов в выборку может обеспечивается различными методами. Например, для опроса клиентов берутся номера клиентских карт, которые случайным образом отбираются компьютерной программой с использованием генератора случайных чисел.
Однако, на практике применить простой случайный сэмплинг не всегда представляется возможным. Это связано с тем, что генеральная совокупность может быть неоднородной и будет содержать группы объектов.
Например, если опрос будет проводиться по телефону, то большинство откликов будет получено от пенсионеров, как людей менее занятых и более склонных идти на контакт. Очевидно, что если опрос проводится о продукте, ориентированном на молодёжь, то ценность мнения пенсионеров вряд ли будет высокой.
Чтобы решить эту проблему, можно использовать случайный стратифицированный сэмплинг, когда исходная совокупность сначала разделяется на слои (страты) по некоторому признаку. Например, клиенты могут быть стратифицированы по возрасту. Тогда страты могут быть сформированы пропорционально доле объектов в группах, что позволит уменьшить или увеличить долю той или иной группы, сохранив репрезентативность.
Другой вариант — использовать кластерный (групповой) сэмплинг, когда клиенты предварительно разбиваются на качественно однородные группы — кластеры, и отбор производится из каждого кластера независимо. При этом вероятность отбора может быть одинаковой для всех кластеров, или различной. Можно некоторые кластеры вообще исключить из отбора. В нашем примере клиенты могут быть разбиты на кластеры по социальному статусу — студенты, работающие, пенсионеры, военнослужащие и т.д. Таким образом, долю, пенсионеров в выборке, можно уменьшить или совсем исключить.
Количественная репрезентативность
Количественная репрезентативность показывает, является ли достаточным число элементов выборки для представления характеристик генеральной совокупности с заданной погрешностью. Например, при неизвестной величине генеральной совокупности, когда результат отражается в виде показателя относительной доли, число элементов выборки, обеспечивающее количественную репрезентативность, может быть вычислено по формуле:
n=frac{t^{2}cdot pcdot q}{Delta ^{2}}
где t — доверительный коэффициент, показывающий, какова вероятность того, что размеры показателя не будут выходить за границы предельной ошибки, p — доля единиц наблюдения, обладающих изучаемым признаком, q=1−p — доля единиц наблюдения, не обладающих изучаемым признаков, Δ — допустимая ошибка выборки.
Например, одним из показателей качества кредитного портфеля банка является доля заёмщиков, допустивших просрочку. Предельная ошибка, которую можно допустить, чтобы разброс значений показателя не превышал разумные границы, Δ=5% . При этом показатель может принимать значения 25% ±5%, т.е. от 20% до 30%. Допуская t=2, что обеспечивает 95% вероятность, получаем
n=frac{2^{2}cdot 0,25cdot 0,75}{0,05^{2}}=300 заёмщиков.
Если же показатель — не относительная средняя величина просроченной задолженности по всем клиентам, то число наблюдений будет:
n=frac{t^{2}cdot sigma ^{2}}{Delta ^{2}}
где sigma ^{2} — среднеквадратическое отклонение значений исследуемого признака.
Если используется выборка без возврата и размер генеральной совокупности известен, то для определения необходимого размера случайной выборки при использования относительных величин (долей) применяется формула:
n=frac{t^{2}cdot pcdot qcdot N}{Delta ^{2}cdot N+t^{2}cdot pcdot q}
где N — число наблюдений генеральной совокупности. Для средних значений исследуемой величины формула примет вид:
n=frac{t^{2}cdot sigma ^{2}cdot N^{2}}{Delta ^{2}cdot N^{2}+t^{2}cdot sigma ^{2}}
Тогда, в предыдущем примере, положив число клиентов N=500, получим:
n=frac{2^{2}cdot 0,25cdot 0,75cdot 500}{0,05^{2}cdot 500+2^{2}cdot 0,25cdot 0,75}approx 188 клиентов.
Таким образом, необходимый объем выборки при безвозвратном отборе меньше, чем при возвратном (соответственнo, 188 и 300).
В целом, число наблюдений, требуемое для получения репрезентативной выборки, изменяется обратно пропорционально квадрату допустимой ошибки.
Методы оценки репрезентативности
Формально, выборку называют репрезентативной, когда результат оценки определенного параметра по данной выборке совпадает с результатом, оцененным по генеральной совокупности с учетом допустимой погрешности (ошибки репрезентативности). Если выборочная оценка отличается от оценки по генеральной совокупности более, чем на заданный уровень погрешности, то такая выборка считается нерепрезентативной.
Репрезентативность оценивается по отдельным параметрам выборки и совокупности. При этом выборка может оказаться репрезентативной по одним параметрам и нерепрезентативной по другим. Поэтому говорить о репрезентативности как о дихотомическом свойстве выборки (репрезентативна или нерепрезентативна) было бы не верно: выборка может одни параметры генеральной совокупности воспроизводить более точно, а другие — менее. Поэтому правильнее говорить о мере репрезентативности определённой выборки по конкретным параметрам.
Основным моментом в определении репрезентативности выборки является обоснование погрешности, в пределах которой выборка признается репрезентативной. Одна и та же выборка может быть достаточно репрезентативной для одной задачи и недостаточно для другой. Кроме этого, нужно проверять репрезентативность выборки по параметрам, имеющим существенное значение для предметной области исследования. Например, в маркетинговых исследованиях для анализа клиентов важны пол, возрасту, образование и пр.
Следует отметить, что далеко не все задачи бизнес-аналитики требуют строгого статистического подтверждения репрезентативности выборок. Как правило, это задачи точного прогнозирования. Что касается обычных задач, связанных, например, с определением предпочтений действующих и потенциальных клиентов, то они решаются охватом типичной клиентуры, которую можно найти непосредственно в торговых центрах.
Статистические методы
Данные, полученные в результате выборочных обследований, являются реализациями случайных величин (возраст, стаж работы, доход и т.д.). Обычно, на практике считают, что выборка является репрезентативной, если её статистические параметры (среднее значение, дисперсия, среднеквадратичное отклонение и т.д.) отличаются от параметров совокупности не более, чем на 5%.
Однако, данный подход применим только при условии, что вся генеральная совокупность известна и для неё можно вычислить статистические характеристики. Но на практике такое встречается редко, поскольку часть потенциально интересных для исследования объектов оказывается недоступной для наблюдения.
В этом случае прибегают к формированию двух независимых выборок, вычисляют и сравнивают их характеристики, и если они совпадают (не различаются значимо), то выборки считаются репрезентативными. В теоретическом плане такой подход является достаточно привлекательным, однако, на практике сложно реализуем. Во-первых, формирование нескольких выборок ведёт к дополнительным затратам, а во-вторых, если параметры выборок значимо различаются, то невозможно сказать, какая из них репрезентативна.
Для сравнения двух выборок используются два вида критериев: непараметрические и параметрические. Первые не используют в расчётах значений параметров статистических распределений, а оперируют частотами и рангами. К числу наиболее популярных непараметрических критериев можно отнести критерий Уилкоксона и U-критерий Манна-Уитни. Второй рекомендуется использовать, если число наблюдений превышает 30. К числу популярных параметрических критериев относится t-критерий Стьюдента, критерий однородности Смирнова, Q-критерий Розенбаума и др.
Нестатистические методы
Статистические методы оценки репрезентативности выборочных данных, хотя и являются строго обоснованными, но довольно сложны в использовании (особенно для пользователей, не имеющих достаточной математической подготовки). Кроме этого они могут иметь ограничения (например, независимость выборок), удовлетворить которым достаточно сложно.
Статистические подходы к оценке репрезентативности выборок имеет смысл использовать, если для анализа данных используются статистические методы. Методы машинного обучения, которые является эвристическими и в большинстве случаев не обеспечивают точного и единственного решения, вообще говоря, не нуждаются в точной оценке репрезентативности обучающих выборок. Поэтому в них используются свои техники для определения того, насколько обучающая или тестовая выборка хорошо представляют исходную совокупность.
Ещё одной особенностью выборок, используемых в машинном обучении, является то, что объём исходной совокупности, из которой формируются обучающее, тестовое, а при необходимости, и валидационное множество, известен, поскольку данные содержатся в консолидированных таблицах источника данных.
Обычно нестатистические меры репрезентативности используют расстояния между векторами наблюдений в пространстве признаков. Рассмотрим, например, такой показатель как индекс ближайшего соседа (Nearest Neighbours Index — NNI). Предположим, что выборка включает n ближайших соседей внутри некоторой области пространства признаков. Вычислим величину, представляющую собой среднее расстояние между i-м объектом и всеми остальными объектами в выборке (области соседства):
overline{D}_{sample}=frac{1}{n}sumlimits_{i=1}^{n}D_{i}
где D_i — расстояние от i-го объекта до остальных объектов выборки, n — число объектов выборки.
Затем вычислим величину:
overline{D}_{total}=sqrt{frac{D_{_{total}}}{N}}
где D_{_{total}} — общее расстояние по всей совокупности, N — число наблюдений совокупности.
Тогда индекс ближайшего соседа будет:
NNI=frac{overline{D}_{sample}}{overline{D}_{total}}
Если значение данного показателя близко к 1, то точки выборки имеют равномерное пространственное распределение. Если меньше 1, то пространственное распределение точек неоднородно. Если NNI больше 1, то имеет место значительная дисперсия значений внутри выборки.
Очевидно, что наилучшим вариантом с точки зрения репрезентативности будет первый случай, когда пространственное распределение точек данных в совокупности и выборке примерно одинаковое. Второй случай показывает, что внутри выборки могут присутствовать некоторое локальные особенности, нехарактерные для всей совокупности.
В литературе можно найти больше количество разнообразных алгоритмов и методов оценки репрезентативности выборок для машинного обучения, разработанных для различных предметных областей исследования и типов задач анализа. Большинство их них являются эвристическими и не гарантируют получения наилучшего результата. Поэтому самым надёжным критерием репрезентативности выборки, на основе которой строилась определённая обучаемая модель, является точность и обобщающая способность самой модели.
Ремонт выборки
Возникает вопрос: а что делать в ситуации, когда аналитику доступна только выборка «как есть», а её репрезентативность неудовлетворительная? При этом доступ к генеральной совокупности для формирования более репрезентативной выборки у него отсутствует (например, из-за проблем с сетью, невозможности повторных исследований из-за высоких затрат и т.д.). В этом случае улучшить ситуацию может специальная процедура, которая называется «ремонт выборки».
Все действия аналитика, связанные с репрезентативностью, можно разделить на два этапа: контроль и ремонт.
- Контроль выборки — процедура сравнения генеральной совокупности и выборки, выявление степени их расхождения, обнаружение причин отклонений и разработка возможных способов их устранения.
- Ремонт выборки — процесс устранения расхождения генеральной совокупности и выборки.
Контроль и ремонт выборки рассматриваются как обязательные этапы любого выборочного исследования. Хотя, некоторые авторы не разделяют эти два этапа, а включают ремонт в общую процедуру контроля выборки. Ряд вопросов, связанных с контролем выборки был рассмотрен выше.
Основной целью ремонта является повышение качества выборки в смысле отражения ею зависимостей и закономерностей исследуемых процессов и явлений, которые требуется обнаружить в процессе анализа. При этом не следует путать ремонт выборки с повышением качества данных вообще.
Ремонт выборки, обычно, включает следующие задачи:
- Коррекция выборки. Заключается в замене ранее выбранных объектов совокупности. Коррекция может потребоваться, например, если в выборке произошло искажение распределения объектов относительно исходной совокупности, например, получился избыток пенсионеров, мужчин, женщин или людей с определённым уровнем образования. Замена может быть произвольной (например, следующий клиент по списку) или эквивалентной (подыскивается клиент с теми же параметрами — пенсионера меняем на пенсионера и т.д.).
- Расширение основы выборки. Позволяет включить в выборку большее разнообразие наблюдений. Основа выборки — это подмножество элементов генеральной совокупности, из которого будет формироваться выборка. Использование основы выборки позволяет сделать отбор более целевым, исключив обработку данных, не относящихся к задаче анализа, лучше сфокусироваться на целевой группе. В анализе клиентской базы основой выборки могут быть только мужчины, только женщины, люди в возрасте от 30 до 60 и т.д. Если выборка получилась недостаточно репрезентативной, то решить проблему можно расширяя границы основы выборки. Например, если изначально основой выборки являлась только люди пенсионного возраста, то при необходимости она может быть расширена и на людей предпенсионного возраста.
- Взвешивание. При взвешивании объектам выборки могут присваиваться весовые коэффициенты, которые могут учитываться в алгоритме анализа. Например, повышенные весовые коэффициенты могут присваиваться клиентам, которые наиболее активно пользовались услугами компании (купили товаров и услуг на сумму выше некоторого порога). Логично предположить, что мнение таких клиентов будет более значимым.
Следует отметить, что единого, строго обоснованного подхода к ремонту выборок, вообще говоря, не существует, хотя в литературе можно встретить некоторые общие рекомендации. В большинстве практических случаев аналитику приходится самостоятельно выбирать, какие преобразования следует применить к выборке для повышения её репрезентативности.
Другие материалы по теме:
Обработка пропусков в данных
Loginom Data Quality. Очистка клиентских данных. Деморолик
ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ ГОРОДА МОСКВЫ
Государственное бюджетное профессиональное образовательное учреждение города Москвы
«ЮРИДИЧЕСКИЙ КОЛЛЕДЖ»
(ГБПОУ Юридический колледж)
ПЛАН-КОНСПЕКТ учебного занятия
по ОП.11 Статистика
учебной дисциплине/междисциплинарному курсу
для обучающихся 2 курса
специальность 40.02.01 Право и организация социального обеспечения
(набор 2016 г.)
(углубленная подготовка)
дата проведения занятия по расписанию
Тема 3.1. Выборочное наблюдение
Занятие 15. ПЗ №8 Определение ошибки репрезентативности.
Определение объема выборочной совокупности
Цель занятия: отработать практические навыки по определению доверительных пределов и исчислению ошибок выборки
Задачи занятия:
Обучающая: Обеспечить усвоение обучающимися материала о понятиях: ошибки репрезентативности, выборка, выборочная совокупность;
Воспитательная: воспитывать навыки самостоятельной работы, чувство ответственности за порученный участок работы, дисциплину умственного труда, уверенность в своих силах, стремление к достижению результата;
Развивающая: создавать условия для развития самостоятельности мышления, способности высказывания собственной точки зрения, систематизировать необходимую информацию, анализировать, сравнивать и обобщать информацию, развивать монологическую речь.
Основная литература:
Глава 11. Выборочное наблюдение. (211-220) Статистика: учебник / И.В. Гладун. – 2-е издание, стер. – М.: КНОРУС, 2014. – 232 с. – СПО
Дополнительная литература:
Савюк Л.К. Правовая статистика: Учебник. — М.: Юрист, 2016
Интернет-ресурсы:
- Информационно-издательский центр «Статистика России» http://www.statbook.ru
- Электронный фонд правовой и технической документации http://docs.cntd.ru
- Информационно правовой портал http://www.garant.ru/
Междисциплинарные связи: Право социальное обеспечение
Внутридисциплинарные связи: Тема 2.1. Сводка и группировка статистических данных
1. Актуализация знаний по ранее пройденному материалу учебного курса
(ответить на вопросы (тестовые задания) и провести самооценку усвоенного материала)
Таблица 1.
Вопрос (тестовое задание) |
Ответ |
|
|
|
|
|
|
|
|
|
2. Изучаемые вопросы занятия
1. Определение ошибки репрезентативности. |
2. Определение объема выборочной совокупности. |
Вопрос 1. Определение ошибки репрезентативности
В статистике выделяют два основных метода исследования – сплошной и выборочный. При проведении выборочного исследования обязательным является соблюдение следующих требований: репрезентативность выборочной совокупности и достаточное число единиц наблюдений. При выборе единиц наблюдения возможны Ошибки смещения, т. е. такие события, появление которых не может быть точно предсказуемым. Эти ошибки являются объективными и закономерными. При определении степени точности выборочного исследования оценивается величина ошибки, которая может произойти в процессе выборки – Случайная ошибка репрезентативности (M) – Является фактической разностью между средними или относительными величинами, полученными при проведении выборочного исследования и аналогичными величинами, которые были бы получены при проведении исследования на генеральной совокупности.
Оценка достоверности результатов исследования предусматривает определение:
1. ошибки репрезентативности
2. доверительных границ средних (или относительных) величин в генеральной совокупности
3. достоверности разности средних (или относительных) величин (по критерию t)
Расчет ошибки репрезентативности (mм) средней арифметической величины (М):
, где σ – среднее квадратическое отклонение; n – численность выборки (>30).
Расчет ошибки репрезентативности (mР) относительной величины (Р):
, где Р – соответствующая относительная величина (рассчитанная, например, в %);
Q =100 – Ρ% – величина, обратная Р; n – численность выборки (n>30)
В клинических и экспериментальных работах довольно часто приходится использовать Малую выборку, Когда число наблюдений меньше или равно 30. При малой выборке для расчета ошибок репрезентативности, как средних, так и относительных величин, Число наблюдений уменьшается на единицу, т. е.
; .
Величина ошибки репрезентативности зависит от объема выборки: чем больше число наблюдений, тем меньше ошибка. Для оценки достоверности выборочного показателя принят следующий подход: показатель (или средняя величина) должен в 3 раза превышать свою ошибку, в этом случае он считается достоверным.
Знание величины ошибки недостаточно для того, чтобы быть уверенным в результатах выборочного исследования, так как конкретная ошибка выборочного исследования может быть значительно больше (или меньше) величины средней ошибки репрезентативности. Для определения точности, с которой исследователь желает получить результат, в статистике используется такое понятие, как вероятность безошибочного прогноза, которая является характеристикой надежности результатов выборочных медико-биологических статистических исследований. Обычно, при проведении медико-биологических статистических исследований используют вероятность безошибочного прогноза 95% или 99%. В наиболее ответственных случаях, когда необходимо сделать особенно важные выводы в теоретическом или практическом отношении, используют вероятность безошибочного прогноза 99,7%
Определенной степени вероятности безошибочного прогноза соответствует определенная величина Предельной ошибки случайной выборки (Δ – дельта), которая определяется по формуле:
Δ=t * m, где t – доверительный коэффициент, который при большой выборке при вероятности безошибочного прогноза 95% равен 2,6; при вероятности безошибочного прогноза 99% – 3,0; при вероятности безошибочного прогноза 99,7% – 3,3, а при малой выборке определяется по специальной таблице значений t Стьюдента.
Используя предельную ошибку выборки (Δ), можно определить Доверительные границы, в которых с определенной вероятностью безошибочного прогноза заключено действительное значение статистической величины, Характеризующей всю генеральную совокупность (средней или относительной).
Для определения доверительных границ используются следующие формулы:
- для средних величин:
,где Мген – доверительные границы средней величины в генеральной совокупности;
Мвыб – средняя величина, Полученная при проведении исследования на выборочной совокупности; t – доверительный коэффициент, значение которого определяется степенью вероятности безошибочного прогноза, с которой исследователь желает получить результат; mM – ошибка репрезентативности средней величины.
2) для относительных величин:
, где Рген – доверительные границы относительной величины в генеральной совокупности; Рвыб – относительная величина, полученная при проведении исследования на выборочной совокупности; t – доверительный коэффициент; mP – ошибка репрезентативности относительной величины.
Доверительные границы показывают, в каких пределах может колебаться размер выборочного показателя в зависимости от причин случайного характера.
При малом числе наблюдений (n<30), для вычисления доверительных границ значение коэффициента t находят по специальной таблице Стьюдента. Значения t расположены в таблице на пересечении с избранной вероятностью безошибочного прогноза и строки, Указывающей на имеющееся число степеней свободы (n), Которое равно n-1.
на определение ошибок репрезентативности (m) и доверительных границ средней величины генеральной совокупности (Мген) при числе наблюдений больше 30
Условие задачи: при изучении комбинированного воздействия шума и низкочастотной вибрации на организм человека было установлено, что средняя частота пульса у 36 обследованных водителей сельскохозяйственных машин через 1 ч работы составила 80 ударов в 1 минуту; σ = ± 6 ударов в минуту.
Задание: определить ошибку репрезентативности (mM) и доверительные границы средней величины генеральной совокупности (Мген).
Решение.
- Вычисление средней ошибки средней арифметической (ошибки репрезентативности) (m): m = σ / √n = 6 / √36 = ±1 удар в минуту
- Вычисление доверительных границ средней величины генеральной совокупности (Мген). Для этого необходимо:
- а) задать степень вероятности безошибочного прогноза (Р = 95 %);
- б) определить величину критерия t. При заданной степени вероятности (Р=95%) и числе наблюдений меньше 30 величина критерия t, определяемого по таблице, равна 2 (t = 2). Тогда Мген = Мвыб ± tm = 80 ± 2×1 = 80 ± 2 удара в минуту.
Вывод. Установлено с вероятностью безошибочного прогноза Р = 95%, что средняя частота пульса в генеральной совокупности, т.е. у всех водителей сельскохозяйственных машин, через 1 ч работы в аналогичных условиях будет находиться в пределах от 78 до 82 ударов в минуту, т.е. средняя частота пульса менее 78 и более 82 ударов в минуту возможна не более, чем у 5% случаев генеральной совокупности.
на определение ошибок репрезентативности (m) и доверительных границ относительного показателя генеральной совокупности (Рген)
Условие задачи: при медицинском осмотре 164 детей 3 летнего возраста, проживающих в одном из районов городе Н., в 18% случаев обнаружено нарушение осанки функционального характера.
Задание: определить ошибку репрезентативности (mp) и доверительные границы относительного показателя генеральной совокупности (Рген).
Решение.
- Вычисление ошибки репрезентативности относительного показателя: m = √P x q / n = √18 x (100 — 18) / 164 = ± 3%
- Вычисление доверительных границ средней величины генеральной совокупности (Рген) производится следующим образом:
- необходимо задать степень вероятности безошибочного прогноза (Р=95%);
- при заданной степени вероятности и числе наблюдений больше 30, величина критерия t равна 2 (t = 2). Тогда Рген = Рвыб± tm = 18% ± 2 х 3 = 18% ± 6%.
Вывод. Установлено с вероятностью безошибочного прогноза Р=95%, что частота нарушения осанки функционального характера у детей 3 летнего возраста, проживающих в городе Н., будет находиться в пределах от 12 до 24% случаев.
на оценку достоверности разности средних величин
Условие задачи: при изучении комбинированного воздействия шума и низкочастотной вибрации на организм человека было установлено, что средняя частота пульса у водителей сельскохозяйственных машин через 1 ч после начала работы составила 80 ударов в минуту; m = ± 1 удар в мин. Средняя частота пульса у этой же группы водителей до начала работы равнялась 75 ударам в минуту; m = ± 1 удар в минуту.
Задание: оценить достоверность различий средних значений пульса у водителей сельскохозяйственных машин до и после 1 ч работы.
Решение.
Вывод. Значение критерия t = 3,5 соответствует вероятности безошибочного прогноза Р > 99,7%, следовательно можно утверждать, что различия в средних значениях пульса у водителей сельскохозяйственных машин до и после 1 ч работы не случайно, а достоверно, существенно, т.е. обусловлено влиянием воздействия шума и низкочастотной вибрации.
на оценку достоверности разности относительных показателей
Условие задачи: при медицинском осмотре детей 3 летнего возраста в 18% (m = ± 3%) случаях обнаружено нарушение осанки функционального характера. Частота аналогичных нарушений осанки при медосмотре детей 4-летнего возраста составила 24% (m = ± 2,64%).
Задание: оценить достоверность различий в частоте нарушения осанки у детей 2 возрастных групп.
Решение.
Вывод. Значение критерия t=1,5 соответствует вероятности безошибочного прогноза Р<95%. Следовательно, различие в частоте нарушений осанки среди детей, сравниваемых возрастных групп случайно, недостоверно, несущественно, т.е. не обусловлено влиянием возраста детей.
Источники информации по 1 вопросу |
Автор и наименование |
Страницы (форма доступа для Интернет-ресурсов) |
Основная литература |
Глава 11. Выборочное наблюдение. Статистика: учебник / И.В. Гладун. – 2-е издание, стер. – М.: КНОРУС, 2014. – 232 с. – СПО |
стр. 211-220 |
Интернет ресурсы |
|
http://www.statbook.ru |
|
http://docs.cntd.ru |
|
|
http://www.garant.ru/ |
Контрольное задание по Вопросу 1
- Записать в тетрадь конспект (1-2 стр.)
Вопрос 2. Определение объема выборочной совокупности
Социологические исследования редко бывают сплошными, как, например, перепись населения. Обычно сплошное исследование проводится при небольшой генеральной совокупности.
Чаще всего исследования носят выборочный характер, при котором наиболее важным основанием является возможность распространения полученных результатов и выводов на всю генеральную совокупность. В таком случае сплошное исследование нецелесообразно. Обеспечение этой нецелесообразности — вопрос о репрезентативности выборки, т.е. достаточной количественной и качественной представительности генеральной совокупности в выборке.
Условиями соблюдения репрезентативности выборки являются:
1) равная возможность каждого члена генеральной совокупности попасть в выборку;
2) отбор необходимо проводить независимо от изучаемого признака (иначе в выборку могут попасть, например, только спортсмены);
3) отбор по возможности должен производиться из однородных совокупностей;
4) величина выборки должна быть достаточно большой.
Далее возникает вопрос: как определить достаточный объем выборки? Для этого необходимо иметь характеристики генеральной совокупности по важнейшим (с точки зрения исследования) признакам. К ним, например, можно отнести сведения о количестве желающих заниматься физической культурой и спортом, о числе занимающихся и т.д. Но, как правило, такие характеристики (или многие из них) не известны. Пилотажные исследования как раз и направлены на их выявление.
Приведем пример определения объема выборочной совокупности. В ходе подготовки к проведению конкретно-социологического исследования на основании теоретических посылок были выделены характеристики и признаки, подлежащие изучению. Например, желание заниматься физической культурой, спортом, величина потребности, участие в видах деятельности и др.
На основании результатов изучения этих признаков в пробном исследовании (30 и более респондентов) определяется объем выборки.
Предположим, что в пробном исследовании опрошено 147 студентов 4-х курсов в четырех вузах Республики Беларусь.
Для желания заниматься физической культурой получены следующие распределения:
1.«Нет, не хочу» — 5 человек;
2.«Скорее не хочу, чем хочу» — 3 человека;
3.«Безразлично» — 11 человек;
4.«Скорее хочу, чем не хочу» — 34 человека;
5.«Да, хочу» — 72 человека.
Для расчета объема выборки используются формулы:
t — 1,96 — распределение Стьюдента для вероятности 0,95 или 95% (т.е., если требуемая вероятность соответствия характеристик выборки и характеристик генеральной совокупности 95%, всегда = 1,96. Их соответствие на 95% — общепринятое требование в социологических исследованиях.
Для нашего распределения:
При условии, что выборка в пробном исследовании представляла бы собой модель генеральной совокупности, величина выборочной совокупности для изучения желания заниматься физической культурой должна быть не меньше 147 человек. Тогда с вероятностью 95% можно утверждать, что генеральное среднее лежит в пределах 4,39+0,155.
Поскольку модель выборки в пробном исследовании во вузам не представляет собой модели генеральной совокупности (опрос был в четырех вузах из 30), то увеличиваем полученное n (30/4) в 7,5 раза. Тогда необходимый объем выборки — 1102 респондента.
Качественная представительность полученной выборки оценивается сравнением существенных характеристик (либо связанных с существенными) генеральной совокупности и выборки. Для студенчества, например, такими характеристиками являются: соотношение по полу, охват учебными занятиями по физическому воспитанию, соотношение форм занятий и др.
Когда информация о признаках элементов генеральной совокупности отсутствует, исключается возможность определения объема выборочной совокупности при помощи формул. В этом случае можно опереться на многолетний опыт социологов — практиков, свидетельствующий о том, что для пробных опросов достаточна выборка объемом 100-250 человек. При массовых опросах, если величина генеральной совокупности 5000 человек, достаточный объем выборочной совокупности — не менее 500 человек, если же величина генеральной совокупности 5000 человек и более, то — 10% ее состава (но не более 2000-2500 человек). Это характеризует достаточно достоверные результаты исследования.
ПРИМЕР 1
При проверке импортирования груза на таможне методом случайной выборки было обработано 200 изделий. В результате был установлен средний вес изделия 30г., при СКО=4г с вероятностью 0,997. Определите пределы в которых находится средний вес изделий генеральной совокупности.
Решение.
В данном примере – случайный повторный отбор.
n=200
=30г
=4г — СКО
p=0,997, тогда t=3
Формула средней ошибки для случайного повторного отбора:
=0,84 г
г
Определяем величину средней ошибки.
Ответ: пределы в которых находится средний вес изделий: г
ПРИМЕР 2
В городе проживает 250тыс. семей. Для определения среднего числа детей в семье была организована 2%-я бесповторная выборка семей. По ее результатам было получено следующее распространение семей по числу детей:
P=0,954. Найти пределы в которых будет находится среднее число детей в генеральной совокупности.
Число детей в семье, xi |
0 |
1 |
2 |
3 |
4 |
5 |
Кол-во детей в семье |
1000 |
2000 |
1200 |
400 |
200 |
200 |
Решение
2%-я выборка означает: n=250000*0,02= 5000 семей было исследовано.
Т.к. выборка бесповторная, используем следующую формулу для определения средней величины ошибки:
Найдем среднее число детей в выборочной совокупности:
ребенка
Определим дисперсию
ребенка – средняя величина ошибки
Т.к p = 0,954, то t = 2
ребенка
ребенка
Вывод: из-за слишком малой величины ошибки, среднее число детей в генеральной совокупности можно принять за 1,5 ребенка.
Источники информации по 2 вопросу |
Автор и наименование |
Страницы (форма доступа для Интернет-ресурсов) |
Основная литература |
Глава 11. Выборочное наблюдение. Статистика: учебник / И.В. Гладун. – 3-е издание, стер. – М.: КНОРУС, 2019. – 232 с. – СПО |
стр. 211-220 |
Интернет ресурсы |
|
http://www.statbook.ru |
|
http://docs.cntd.ru |
|
|
http://www.garant.ru/ |
Контрольное задание по Вопросу 2
- Записать в тетрадь конспект (1-2 стр.)
3. Подведение итогов учебного занятия
(ответить на вопросы (тестовые задания) и провести самооценку усвоенного материала)
Таблица 2.
Наименование изученного вопроса учебного занятия |
Контрольное задание по изученному вопросу |
Ответ |
Определение ошибки репрезентативности. |
ЗАДАНИЕ 1 Условие задачи: при медицинском осмотре 126 детей 6 летнего возраста, проживающих в одном из районов городе А., в 12% случаев обнаружено нарушение осанки функционального характера. Задание: определить ошибку репрезентативности (mp) и доверительные границы относительного показателя генеральной совокупности (Рген). |
|
Определение ошибки репрезентативности. |
ЗАДАНИЕ 2. Условие задачи: при медицинском осмотре детей 6 летнего возраста в 15% (m = ± 3%) случаях обнаружено нарушение осанки функционального характера. Частота аналогичных нарушений осанки при медосмотре детей 7-летнего возраста составила 24% (m = ± 2,64%). Задание: оценить достоверность различий в частоте нарушения осанки у детей 2 возрастных групп. |
|
Определение объема выборочной совокупности |
ЗАДАНИЕ 3. В городе проживает 300 тыс. семей. Для определения среднего числа детей в семье была организована 2%-я бесповторная выборка семей. По ее результатам было получено следующее распространение семей по числу детей: P=0,954. Найти пределы в которых будет находится среднее число детей в генеральной совокупности |
|
Определение объема выборочной совокупности |
Сформулируйте понятие генеральной совокупности |
|
Определение объема выборочной совокупности |
Перечислите способы отбора единиц для выборочного наблюдения |
- Домашнее задание на следующее занятие
- Выучить основные понятия. Глава 11. Выборочное наблюдение. Статистика: учебник / И.В. Гладун. – 2-е издание, стер. – М.: КНОРУС, 2014. – 232 с. – СПО (стр. 211-220)
- Выполнить задание 11.1. в тетради (стр. 224) учебник / И.В. Гладун. – 2-е издание, стер. – М.: КНОРУС, 2014. – 232 с. – СПО
Преподаватель Ю.В. Древаль
СОГЛАСОВАНО Протокол заседания ЦК дисциплин профессионального цикла специальности «Право и организация социального обеспечения» ГБПОУ Юридический колледж от ____________ 2017 г. № ___ |
Как мы уже знаем, репрезентативность — свойство выборочной совокупности представлять характеристику генеральной. Если совпадения нет, говорят об ошибке репрезентативности — мере отклонения статистической структуры выборки от структуры соответствующей генеральной совокупности. Предположим, что средний ежемесячный семейный доход пенсионеров в генеральной совокупности составляет 2 тыс. руб., а в выборочной — 6 тыс. руб. Это означает, что социолог опрашивал только зажиточную часть пенсионеров, а в его исследование вкралась ошибка репрезентативности. Иными словами, ошибкой репрезентативности называется расхождение между двумя совокупностями — генеральной, на которую направлен теоретический интерес социолога и представление о свойствах которой он хочет получить в конечном итоге, и выборочной, на которую направлен практический интерес социолога, которая выступает одновременно как объект обследования и средство получения информации о генеральной совокупности.
Наряду с термином «ошибка репрезентативности» в отечественной литературе можно встретить другой — «ошибка выборки». Иногда они употребляются как синонимы, а иногда «ошибка выборки» используется вместо «ошибки репрезентативности» как количественно более точное понятие.
Ошибка выборки — отклонение средних характеристик выборочной совокупности от средних характеристик генеральной совокупности.
На практике ошибка выборки определяется путем сравнения известных характеристик генеральной совокупности с выборочными средними. В социологии при обследованиях взрослого населения чаще всего используют данные переписей населения, текущего статистического учета, результаты предшествующих опросов. В качестве контрольных параметров обычно применяются социально-демографические признаки. Сравнение средних генеральной и выборочной совокупностей, на основе этого определение ошибки выборки и ее уменьшение называется контролированием репрезентативности. Поскольку сравнение своих и чужих данных можно сделать по завершении исследования, такой способ контроля называется апостериорным, т.е. осуществляемым после опыта.
В опросах Института Дж. Гэллапа репрезентативность контролируется по имеющимся в национальных переписях данным о распределении населения по полу, возрасту, образованию, доходу, профессии, расовой принадлежности, месту проживания, величине населенного пункта. Всероссийский центр изучения общественного мнения (ВЦИОМ) использует для подобных целей такие показатели, как пол, возраст, образование, тип поселения, семейное положение, сфера занятости, должностной статус респондента, которые заимствуются в Государственном комитете по статистике РФ. В том и другом случае генеральная совокупность известна. Ошибку выборки невозможно установить, если неизвестны значения переменной в выборочной и генеральной совокупностях.
Специалисты ВЦИОМ обеспечивают при анализе данных тщательный ремонт выборки, чтобы минимизировать отклонения, возникшие на этапе полевых работ. Особенно сильные смещения наблюдаются по параметрам пола и возраста. Объясняется это тем, что женщины и люди с высшим образованием больше времени проводят дома и легче идут на контакт с интервьюером, т.е. являются легко достижимой группой по сравнению с мужчинами и людьми «необразованными»35.
Ошибка выборки обусловливается двумя факторами: методом формирования выборки и размером выборки.
Ошибки выборки подразделяются на два типа — случайные и систематические. Случайная ошибка — это вероятность того, что выборочная средняя выйдет (или не выйдет) за пределы заданного интервала. К случайным ошибкам относят статистические погрешности, присущие самому выборочному методу. Они уменьшаются при возрастании объема выборочной совокупности.
Второй тип ошибок выборки — систематические ошибки. Если социолог решил узнать мнение всех жителей города о проводимой местными органами власти социальной политике, а опросил только тех, у кого есть телефон, то возникает предумышленное смещение выборки в пользу зажиточных слоев, т.е. систематическая ошибка.
Таким образом, систематические ошибки — результат деятельности самого исследователя. Они наиболее опасны, поскольку приводят к довольно значительным смещениям результатов исследования. Систематические ошибки считаются страшнее случайных еще и потому, что они не поддаются контролю и измерению.
Они возникают, когда, например:
- выборка не соответствует задачам исследования (социолог решил изучить только работающих пенсионеров, а опросил всех подряд);
- налицо незнание характера генеральной совокупности (социолог думал, что 70% всех пенсионеров не работает, а оказалось, что не работает только 10%);
- отбираются только «выигрышные» элементы генеральной совокупности (например, только обеспеченные пенсионеры).
Внимание! В отличие от случайных ошибок систематические ошибки при возрастании объема выборки не уменьшаются.
Обобщив все случаи, когда происходят систематические ошибки, методисты составили их реестр. Они полагают, что источником неконтролируемых перекосов в распределении выборочных наблюдений могут быть следующие факторы:
- нарушены методические и методологические правила проведения социологического исследования;
- выбраны неадекватные способы формирования выборочной совокупности, методы сбора и расчета данных;
- произошла замена требуемых единиц наблюдения другими, более доступными;
- отмечен неполный охват выборочной совокупности (недополучение анкет, неполное их заполнение, труднодоступность единиц наблюдения).
Намеренные ошибки социолог допускает редко. Чаще ошибки возникают из-за того, что социологу плохо известна структура генеральной совокупности: распределение людей по возрасту, профессии, доходам и т.д.
Систематические ошибки легче предупредить (по сравнению со случайными), но их очень трудно устранить. Предупреждать систематические ошибки, точно предвидя их источники, лучше всего заранее — в самом начале исследования.
Вот некоторые способы избежать ошибок выборки:
- каждая единица генеральной совокупности должна иметь равную вероятность попасть в выборку;
- отбор желательно производить из однородных совокупностей;
- надо знать характеристики генеральной совокупности;
- при составлении выборочной совокупности надо учитывать случайные и систематические ошибки.
Если выборочная совокупность (или просто выборка) составлена правильно, то социолог получает надежные результаты, харастеризующие всю генеральную совокупность. Если она составлена неправильно, то ошибка, возникшая на этапе составления выборки, на каждом следующем этапе проведения социологического исследования приумножается и достигает в конечном счете такой величины, которая перевешивает ценность проведенного исследования. Говорят, что от такого исследования больше вреда, нежели пользы.
Подобные ошибки могут произойти только с выборочной совокупностыо. Чтобы избежать или уменьшить вероятность ошибки, самый простой способ — увеличивать размеры выборки (в идеале до объема генеральной: когда обе совокупности совпадут, ошибка выборки вообще исчезнет). Экономически такой метод невозможен. Остается другой путь — совершенствовать математические методы составления выборки. Они то и применяются на практике. Таков первый канал проникновения в социологию математики. Второй канал — математическая обработка данных.
Особенно важной проблема ошибок становится в маркетинговых исследованиях, где используются не очень большие выборки. Обычно они составляют несколько сотен, реже — тысячу респондентов. Здесь исходным пунктом расчета выборки выступает вопрос об определении размеров выборочной совокупности. Численность выборочной совокупности зависит от двух факторов:
- стоимости сбора информации,
- стремления к определенной степени статистической достоверности результатов, которую надеется получить исследователь.
Конечно, даже не искушенные в статистике и социологии люди интуитивно понимают, что чем больше размеры выборки, т.е. чем ближе они к размерам генеральной совокупности в целом, тем более надежны и достоверны полученные данные. Однако выше мы уже говорили о практической невозможности сплошных опросов в тех случаях, когда они проводятся на объектах, численность которых превышает десятки, сотни тысяч и даже миллионы. Понятно, что стоимость сбора информации (включающая оплату тиражирования инструментария, труда анкетеров, полевых менеджеров и операторов по компьютерному вводу) зависит от той суммы, которую готов выделить заказчик, и слабо зависит от исследователей. Что же касается второго фактора, то мы остановимся на нем чуть подробнее.
Итак, чем больше величина выборки, тем меньше возможная ошибка. Хотя необходимо отметить, что при желании увеличить точность вдвое вам придется увеличить выборку не в два, а в четыре раза. Например, чтобы сделать в два раза более точной оценку данных, полученных путем опроса 400 человек, вам потребуется опросить не 800, а 1600 человек. Впрочем, вряд ли маркетинговое исследование испытывает нужду в стопроцентной точности. Если пивовару необходимо узнать, какая часть потребителей пива предпочитает именно его марку, а не сорт его конкурента, — 60% или 40%, то на его планы никак не повлияет разница между 57%, 60 или 63%.
Ошибка выборки может зависеть не только от ее величины, но и от степени различий между отдельными единицами внутри генеральной совокупности, которую мы исследуем. Например, если нам нужно узнать, какое количество пива потребляется, то мы обнаружим, что внутри нашей генеральной совокупности нормы потребления у различных людей существенно различаются (гетерогенная генеральная совокупность). В другом случае мы будем изучать потребление хлеба и установим, что у разных людей оно различается гораздо менее существенно {гомогенная генеральная совокупность). Чем больше различия (или гетерогенность) внутри генеральной совокупности, тем больше величина возможной ошибки выборки. Указанная закономерность лишь подтверждает то, что нам подсказывает простой здравый смысл. Таким образом, как справедливо утверждает В. Ядов, «численность (объем) выборки зависит от уровня однородности или разнородности изучаемых объектов. Чем более они однородны, тем меньшая численность может обеспечить статистически достоверные выводы».
Определение объема выборки зависит также от уровня доверительного интервала допустимой статистической ошибки. Здесь имеются в виду так называемые случайные ошибки, которые связаны с природой любых статистических погрешностей. В.И. Паниотто приводит следующие расчеты репрезентативной выборки с допущением 5%-ной ошибки:
Это означает,что если вы, опросив, предположим, 400 человек в районном городе, где численность взрослого платежеспособного населения составляет 100 тыс. человек, выявили, что 33% опрошенных покупателей предпочитают продукцию местного мясокомбината, то с 95%-ной вероятностью можете утверждать, что постоянными покупателями этой продукции являются 33+5% (т.е. от 28 до 38%) жителей этого города.
Можно также воспользоваться расчетами института Гэллапа для оценки соотношения размеров выборки и ошибки выборки.