Формула абсолютной ошибки среднего значения


Загрузить PDF


Загрузить PDF

Абсолютная ошибка – это разность между измеренным значением и фактическим значением.[1]
Эта ошибка характеризует точность измерений. Если вам известны фактическое и измеренное значения, можно с легкостью вычислить абсолютную ошибку. Но иногда фактическое значение не дано, поэтому в качестве абсолютной ошибки пользуются максимально возможной ошибкой.[2]
Если даны фактическое значение и относительная ошибка, можно вычислить абсолютную ошибку.

  1. Изображение с названием Calculate Absolute Error Step 1

    1

    Запишите формулу для вычисления абсолютной ошибки. Формула: Delta x=x_{{0}}-x, где Delta x – абсолютная ошибка (разность между измеренным и фактическим значениями), x_{{0}} – измеренное значение, x – фактическое значение.[3]

  2. Изображение с названием Calculate Absolute Error Step 2

    2

    Подставьте в формулу фактическое значение. Фактическое значение должно быть дано; в противном случае используйте принятое опорное значение. Фактическое значение подставьте вместо x.

    • Например, нужно измерить длину футбольного поля. Фактическая длина (принятая опорная длина) футбольного поля равна 105 м (именно такое значение рекомендуется FIFA). Таким образом, фактическое значение равно 105 м: Delta x=x_{{0}}-105.
  3. Изображение с названием Calculate Absolute Error Step 3

    3

    Подставьте в формулу измеренное значение. Оно будет дано; в противном случае измерьте величину (длину или ширину и так далее). Измеренное значение подставьте вместо x_{0}.

    • Например, вы измерили длину футбольного поля и получили значение 104 м. Таким образом, измеренное значение равно 104 м: Delta x=104-105.
  4. Изображение с названием Calculate Absolute Error Step 4

    4

    Вычтите фактическое значение из измеренного значения. Так как абсолютная ошибка всегда положительна, возьмите абсолютное значение этой разницы, то есть не учитывайте знак «минус».[4]
    Так вы вычислите абсолютную ошибку.

    • В нашем примере: Delta x=104-105=-1, то есть абсолютная ошибка измерения равна 1 м.

    Реклама

  1. Изображение с названием Calculate Absolute Error Step 5

    1

    Запишите формулу для вычисления относительной ошибки. Формула: delta x={frac  {x_{{0}}-x}{x}}, где delta x – относительная ошибка (отношение абсолютной ошибки к фактическому значению), x_{{0}} – измеренное значение, x – фактическое значение.[5]

  2. Изображение с названием Calculate Absolute Error Step 6

    2

    Подставьте в формулу относительную ошибку. Скорее всего, она будет дана в виде десятичной дроби. Относительную ошибку подставьте вместо delta x.

    • Например, если относительная ошибка равна 0,02, формула запишется так: 0,02={frac  {x_{{0}}-x}{x}}.
  3. Изображение с названием Calculate Absolute Error Step 7

    3

    Подставьте в формулу фактическое значение. Оно будет дано. Фактическое значение подставьте вместо x.

    • Например, если фактическое значение равно 105 м, формула запишется так: 0,02={frac  {x_{{0}}-105}{105}}.
  4. Изображение с названием Calculate Absolute Error Step 8

    4

    Умножьте обе стороны уравнения на фактическое значение. Так вы избавитесь от дроби.

  5. Изображение с названием Calculate Absolute Error Step 9

    5

    Прибавьте фактическое значение к каждой стороне уравнения. Так вы найдете x_{{0}}, то есть измеренное значение.

  6. Изображение с названием Calculate Absolute Error Step 10

    6

    Вычтите фактическое значение из измеренного значения. Так как абсолютная ошибка всегда положительна, возьмите абсолютное значение этой разницы, то есть не учитывайте знак «минус».[6]
    Так вы вычислите абсолютную ошибку.

    • Например, если измеренное значение равно 107,1 м, а фактическое значение равно 105 м, вычисления запишутся так: 107,1-105=2,1. Таким образом, абсолютная ошибка равна 2,1 м.

    Реклама

  1. Изображение с названием Calculate Absolute Error Step 11

    1

    Определите единицу измерения. То есть выясните, было ли значение измерено с точностью до сантиметра, метра и так далее. Возможно, эта информация будет дана (например, «длина поля измерена с точностью до метра»). Чтобы определить единицу измерения, посмотрите на то, как округлено данное значение.[7]

    • Например, если измеренная длина поля равна 106 м, значение было округлено до метров. Таким образом, единица измерения равна 1 м.
  2. Изображение с названием Calculate Absolute Error Step 12

    2

  3. Изображение с названием Calculate Absolute Error Step 13

    3

    Используйте максимально возможную ошибку в качестве абсолютной ошибки.[9]
    Так как абсолютная ошибка всегда положительна, возьмите абсолютное значение этой разницы, то есть не учитывайте знак «минус».[10]
    Так вы вычислите абсолютную ошибку.

    • Например, если измеренная длина поля равна 106pm 0,5 м, то есть абсолютная ошибка равна 0,5 м.

    Реклама

Советы

  • Если фактическое значение не указано, найдите принятое опорное или теоретическое значение.

Реклама

Об этой статье

Эту страницу просматривали 25 889 раз.

Была ли эта статья полезной?

Обработка результатов измерений в физическом практикуме Измерения и погрешности измерений

Физика — 
наука экспериментальная, это означает,
что физические законы устанавливаются
и проверяются путем накопления и
сопоставления экспериментальных данных.
Цель физического практикума заключается
в том, чтобы студенты изучили на опыте
основные физические явления, научились
правильно измерять числовые значения
физических величин и сопоставлять их
с теоретическими формулами.

Все измерения
можно разделить на два вида – прямые
и косвенные.

При прямых
измерениях значение искомой величины
непосредственно получается по показаниям
измерительного прибора. Так, например,
длина измеряется линейкой, время по
часам и т. д.

Если искомая
физическая величина не может быть
измерена непосредственно прибором, а
посредством формулы выражается через
измеряемые величины, то такие измерения
называются косвенными.

Измерение любой
величины не дает абсолютно точного
значения этой величины. Каждое измерение
всегда содержит некоторую погрешность
(ошибку). Ошибкой называют разность
между измеренным и истинным значением.

Ошибки принято
делить на систематические
и случайные.

Систематической
называют ошибку, которая остается
постоянной на протяжении всей серии
измерений. Такие погрешности обусловлены
несовершенством измерительного
инструмента (например, смещением нуля
прибора) или методом измерений и могут
быть, в принципе, исключены из конечного
результата введением соответствующей
поправки.

К систематическим
ошибкам относятся также погрешность
измерительных приборов. Точность любого
прибора ограничена и характеризуется
его классом точности, который, как
правило, обозначен на измерительной
шкале.

Случайной
называется ошибка, которая изменяется
в разных опытах и может быть и положительной
и отрицательной. Случайные ошибки
обусловлены причинами, зависящими как
от измерительного устройства, (трение,
зазоры, и т. п..), так и от внешних условий
(вибрации, колебания напряжения в сети
и т.п.).

Случайные ошибки
нельзя исключить опытным путем, но их
влияние на результат можно уменьшить
многократными измерениями.

Вычисление погрешности при прямых измерениях среднее значение и средняя абсолютная ошибка.

Предположим, что
мы проводим серию измерений величины
Х. Из-за наличия случайных ошибок,
получаем n
различных значений:

Х1, Х2,
Х3
Хn

В качестве
результата измерений обычно принимают
среднее значение


(1)

Разность между
средним значением и результатом i – го
измерения назовем абсолютной ошибкой
этого измерения

В качестве меры
ошибки среднего значения можно принять
среднее значение абсолютной ошибки
отдельного измерения


(2)

Величина

называется средней арифметической (или
средней абсолютной) ошибкой.

Тогда результат
измерений следует записать в виде


(3)

Для характеристики
точности измерений служит относительная
ошибка, которую принято выражать в
процентах


(4)

Соседние файлы в папке Методички физика

  • #

    02.04.2015275.46 Кб40оформление заготовки и отчета.ppt

  • #
  • Редакция Кодкампа

17 авг. 2022 г.
читать 1 мин


В статистике средняя абсолютная ошибка (MAE) — это способ измерения точности данной модели. Он рассчитывается как:

MAE = (1/n) * Σ|y i – x i |

куда:

  • Σ: греческий символ, означающий «сумма».
  • y i : Наблюдаемое значение для i -го наблюдения
  • x i : Прогнозируемое значение для i -го наблюдения
  • n: общее количество наблюдений

В следующем пошаговом примере показано, как рассчитать среднюю абсолютную ошибку в Excel.

Шаг 1: введите данные

Во-первых, давайте введем список наблюдаемых и прогнозируемых значений в два отдельных столбца:

Примечание. Используйте это руководство , если вам нужно научиться использовать модель регрессии для расчета прогнозируемых значений.

Шаг 2: Рассчитайте абсолютные разницы

Далее мы будем использовать следующую формулу для расчета абсолютных различий между наблюдаемыми и прогнозируемыми значениями:

Шаг 3: Рассчитайте MAE

Далее мы будем использовать следующую формулу для расчета средней абсолютной ошибки:

Средняя абсолютная ошибка в Excel

Средняя абсолютная ошибка (MAE) оказывается равной 2,5625 .

Это говорит нам о том, что средняя абсолютная разница между наблюдаемыми значениями и предсказанными значениями составляет 2,5625.

Как правило, чем ниже значение MAE, тем лучше модель соответствует набору данных. При сравнении двух разных моделей мы можем сравнить MAE каждой модели, чтобы узнать, какая из них лучше подходит для набора данных.

Бонус: не стесняйтесь использовать этот Калькулятор средней абсолютной ошибки для автоматического расчета MAE для списка наблюдаемых и прогнозируемых значений.

Дополнительные ресурсы

Как рассчитать MAPE в Excel
Как рассчитать SMAPE в Excel

Написано

Редакция Кодкампа

Замечательно! Вы успешно подписались.

Добро пожаловать обратно! Вы успешно вошли

Вы успешно подписались на кодкамп.

Срок действия вашей ссылки истек.

Ура! Проверьте свою электронную почту на наличие волшебной ссылки для входа.

Успех! Ваша платежная информация обновлена.

Ваша платежная информация не была обновлена.

Абсолютная погрешность

  1. Причины возникновения погрешности измерения
  2. Систематическая и случайная погрешности
  3. Определение абсолютной погрешности
  4. Алгоритм оценки абсолютной погрешности в серии прямых измерений
  5. Значащие цифры и правила округления результатов измерений
  6. Примеры

Причины возникновения погрешности измерения

Погрешность измерения – это отклонение измеренного значения величины от её истинного (действительного) значения.

Обычно «истинное» значение неизвестно, и можно только оценить погрешность, приняв в качестве «истинного» среднее значение, полученное в серии измерений. Таким образом, процесс оценки проводится статистическими методами.

Виды погрешности измерений

Причины

Инструментальная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Погрешность метода

Определяется несовершенством методов и допущениями в методике.

Теоретическая погрешность

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Погрешность оператора

Определяется субъективным фактором, ошибками экспериментатора.

Систематическая и случайная погрешности

Систематической погрешностью называют погрешность, которая остаётся постоянной или изменяется закономерно во времени при повторных измерениях одной и той же величины.

Систематическая погрешность всегда имеет знак «+» или «-», т.е. говорят о систематическом завышении или занижении результатов измерений.

Систематическую погрешность можно легко определить, если известно эталонное (табличное) значение измеряемой величины. Для других случаев разработаны эффективные статистические методы выявления систематических погрешностей. Причиной систематической погрешности может быть неправильная настройка приборов или неправильная оценка параметров (завышенная или заниженная) в расчётных формулах.

Случайной погрешностью называют погрешность, которая не имеет постоянного значения при повторных измерениях одной и той же величины.

Случайные погрешности неизбежны и всегда присутствуют при измерениях.

Определение абсолютной погрешности

Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины:

$$ Delta x = |x_{изм}-x_{ист} | $$

Например:

При пяти взвешиваниях гири с маркировкой 100 г были получены различные значения массы. Если принять маркировку за истинное значение, то получаем следующие значения абсолютной погрешности:

$m_i,г$

98,4

99,2

98,1

100,3

98,5

$Delta m_i, г$

1,6

0,8

1,9

0,3

1,5

Граница абсолютной погрешности – это величина h: $ |x-x_{ист}| le h $

Для оценки границы абсолютной погрешности на практике используются статистические методы.

Алгоритм оценки абсолютной погрешности в серии прямых измерений

Шаг 1. Проводим серию из N измерений, в каждом из которых получаем значение измеряемой величины $x_i, i = overline{1, N}$.

Шаг 2. Находим оценку истинного значения x как среднее арифметическое данной серии измерений:

$$ a = x_{cp} = frac{x_1+x_2+ cdots +x_N}{N} = frac{1}{N} sum_{i = 1}^N x_i $$

Шаг 3. Рассчитываем абсолютные погрешности для каждого измерения:

$$ Delta x_i = |x_i-a| $$

Шаг 4. Находим среднее арифметическое абсолютных погрешностей:

$$ Delta x_{cp} = frac{Delta x_1+ Delta x_2+ cdots + Delta x_N}{N} = frac{1}{N} sum_{i = 1}^N Delta x_i $$

Шаг 5. Определяем инструментальную погрешность при измерении как цену деления прибора (инструмента) d.

Шаг 6. Проводим оценку границы абсолютной погрешности серии измерений, выбирая большую из двух величин:

$$ h = max {d; Delta x_{cp} } $$

Шаг 7. Округляем и записываем результаты измерений в виде:

$$ a-h le x le a+h или x = a pm h $$

Значащие цифры и правила округления результатов измерений

Значащими цифрами – называют все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.

Например:

0,00501 — три значащие цифры 5,0 и 1.

5,01 — три значащие цифры.

5,0100 – пять значащих цифр; такая запись означает, что величина измерена с точностью 0,0001.

Внимание!

Правила округления.

Погрешность измерения округляют до первой значащей цифры, всегда увеличивая ее на единицу (округление по избытку, “ceiling”).

Округлять результаты измерений и вычислений нужно так, чтобы последняя значащая цифра находилась в том же десятичном разряде, что и абсолютная погрешность измеряемой величины.

Например: если при расчетах по результатам серии измерений получена оценка истинного значения a=1,725, а оценка абсолютной погрешности h = 0,11, то результат записывается так:

$$ a approx 1,7; h approx ↑0,2; 1,5 le x le 1,9 или x = 1,7 pm 0,2 $$

Примеры

Пример 1. При измерении температура воды оказалась в пределах от 11,55 ℃ до 11,63 ℃. Какова абсолютная погрешность этих измерений?

По условию $11,55 le t le 11,63$. Получаем систему уравнений:

$$ {left{ begin{array}{c} a-h = 11,55 \ a+h = 11,63 end{array} right.} Rightarrow {left{ begin{array}{c} 2a = 11,55+11,63 = 23,18 \ 2h = 11,63-11,55 = 0,08 end{array} right.} Rightarrow {left{ begin{array}{c} a = 11,59 \ h = 0,04end{array} right.} $$

$$ t = 11,59 pm 0,04 ℃ $$

Ответ: 0,04 ℃

Пример 2. По результатам измерений найдите границы измеряемой величины. Инструментальная погрешность d = 0,1.

$x_i$

15,3

16,4

15,3

15,8

15,7

16,2

15,9

Находим среднее арифметическое:

$$ a = x_{ср} = frac{15,3+16,4+ cdots +15,9}{7} = 15,8 $$

Находим абсолютные погрешности:

$$ Delta x_i = |x_i-a| $$

$ Delta x_i$

0,5

0,6

0,5

0

0,1

0,4

0,1

Находим среднее арифметическое:

$$ Delta x_{ср} = frac{0,5+0,6+ cdots + 0,1}{7} approx 0,31 gt d $$

Выбираем большую величину:

$$ h = max {d; Delta x_{ср} } = max⁡ {0,1; 0,31} = 0,31 $$

Округляем по правилам округления по избытку: $h approx ↑0,4$.

Получаем: x = 15, $8 pm 0,4$

Границы: $15,4 le x le 16,2$

Ответ: $15,4 le x le 16,2$

Пример 3*. В первой серии экспериментов было получено значение $x = a pm 0,3$. Во второй серии экспериментов было получено более точное значение $x = 5,631 pm 0,001$. Найдите оценку средней a согласно полученным значениям x.

Более точное значение определяет более узкий интервал для x. По условию:

$$ {left{ begin{array}{c} a-0,3 le x le a+0,3 \ 5,630 le x le 5,632 end{array} right.} Rightarrow a-0,3 le 5,630 le x le 5,632 le a+0,3 Rightarrow $$

$$ Rightarrow {left{ begin{array}{c} a-0,3 le 5,630 \ 5,632 le a+0,3 end{array} right.} Rightarrow {left{ begin{array}{c} a le 5,930 \ 5,332 le a end{array} right.} Rightarrow 5,332 le a le 5,930 $$

Т.к. a получено в серии экспериментов с погрешностью h=0,3, следует округлить полученные границы до десятых:

$$ 5,3 le a le 5,9 $$

Ответ: $ 5,3 le a le 5,9 $

From Wikipedia, the free encyclopedia

In statistics, mean absolute error (MAE) is a measure of errors between paired observations expressing the same phenomenon. Examples of Y versus X include comparisons of predicted versus observed, subsequent time versus initial time, and one technique of measurement versus an alternative technique of measurement. MAE is calculated as the sum of absolute errors divided by the sample size:[1]

{displaystyle mathrm {MAE} ={frac {sum _{i=1}^{n}left|y_{i}-x_{i}right|}{n}}={frac {sum _{i=1}^{n}left|e_{i}right|}{n}}.}

It is thus an arithmetic average of the absolute errors {displaystyle |e_{i}|=|y_{i}-x_{i}|}, where y_{i} is the prediction and x_{i} the true value. Alternative formulations may include relative frequencies as weight factors. The mean absolute error uses the same scale as the data being measured. This is known as a scale-dependent accuracy measure and therefore cannot be used to make comparisons between predicted values that use different scales.[2] The mean absolute error is a common measure of forecast error in time series analysis,[3] sometimes used in confusion with the more standard definition of mean absolute deviation. The same confusion exists more generally.

Quantity disagreement and allocation disagreement[edit]

2 data points for which Quantity Disagreement is 0 and Allocation Disagreement is 2 for both MAE and RMSE

It is possible to express MAE as the sum of two components: Quantity Disagreement and Allocation Disagreement. Quantity Disagreement is the absolute value of the Mean Error given by:[4]

{displaystyle mathrm {ME} ={frac {sum _{i=1}^{n}y_{i}-x_{i}}{n}}.}

Allocation Disagreement is MAE minus Quantity Disagreement.

It is also possible to identify the types of difference by looking at an (x,y) plot. Quantity difference exists when the average of the X values does not equal the average of the Y values. Allocation difference exists if and only if points reside on both sides of the identity line.[4][5]

[edit]

The mean absolute error is one of a number of ways of comparing forecasts with their eventual outcomes. Well-established alternatives are the mean absolute scaled error (MASE) and the mean squared error. These all summarize performance in ways that disregard the direction of over- or under- prediction; a measure that does place emphasis on this is the mean signed difference.

Where a prediction model is to be fitted using a selected performance measure, in the sense that the least squares approach is related to the mean squared error, the equivalent for mean absolute error is least absolute deviations.

MAE is not identical to root-mean square error (RMSE), although some researchers report and interpret it that way. MAE is conceptually simpler and also easier to interpret than RMSE: it is simply the average absolute vertical or horizontal distance between each point in a scatter plot and the Y=X line. In other words, MAE is the average absolute difference between X and Y. Furthermore, each error contributes to MAE in proportion to the absolute value of the error. This is in contrast to RMSE which involves squaring the differences, so that a few large differences will increase the RMSE to a greater degree than the MAE.[4] See the example above for an illustration of these differences.

Optimality property[edit]

The mean absolute error of a real variable c with respect to the random variable X is

{displaystyle E(left|X-cright|)}

Provided that the probability distribution of X is such that the above expectation exists, then m is a median of X if and only if m is a minimizer of the mean absolute error with respect to X.[6] In particular, m is a sample median if and only if m minimizes the arithmetic mean of the absolute deviations.[7]

More generally, a median is defined as a minimum of

{displaystyle E(|X-c|-|X|),}

as discussed at Multivariate median (and specifically at Spatial median).

This optimization-based definition of the median is useful in statistical data-analysis, for example, in k-medians clustering.

Proof of optimality[edit]

Statement: The classifier minimising {displaystyle mathbb {E} |y-{hat {y}}|} is {displaystyle {hat {f}}(x)={text{Median}}(y|X=x)} .

Proof:

The Loss functions for classification is

{displaystyle {begin{aligned}L&=mathbb {E} [|y-a||X=x]\&=int _{-infty }^{infty }|y-a|f_{Y|X}(y),dy\&=int _{-infty }^{a}(a-y)f_{Y|X}(y),dy+int _{a}^{infty }(y-a)f_{Y|X}(y),dy\end{aligned}}}

Differentiating with respect to a gives

{displaystyle {frac {partial }{partial a}}L=int _{-infty }^{a}f_{Y|X}(y),dy+int _{a}^{infty }-f_{Y|X}(y),dy=0}

This means

{displaystyle int _{-infty }^{a}f(y),dy=int _{a}^{infty }f(y),dy}

Hence

{displaystyle F_{Y|X}(a)=0.5}

See also[edit]

  • Least absolute deviations
  • Mean absolute percentage error
  • Mean percentage error
  • Symmetric mean absolute percentage error

References[edit]

  1. ^ Willmott, Cort J.; Matsuura, Kenji (December 19, 2005). «Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance». Climate Research. 30: 79–82. doi:10.3354/cr030079.
  2. ^ «2.5 Evaluating forecast accuracy | OTexts». www.otexts.org. Retrieved 2016-05-18.
  3. ^ Hyndman, R. and Koehler A. (2005). «Another look at measures of forecast accuracy» [1]
  4. ^ a b c Pontius Jr., Robert Gilmore; Thontteh, Olufunmilayo; Chen, Hao (2008). «Components of information for multiple resolution comparison between maps that share a real variable». Environmental and Ecological Statistics. 15 (2): 111–142. doi:10.1007/s10651-007-0043-y. S2CID 21427573.
  5. ^ Willmott, C. J.; Matsuura, K. (January 2006). «On the use of dimensioned measures of error to evaluate the performance of spatial interpolators». International Journal of Geographical Information Science. 20: 89–102. doi:10.1080/13658810500286976. S2CID 15407960.
  6. ^ Stroock, Daniel (2011). Probability Theory. Cambridge University Press. pp. 43. ISBN 978-0-521-13250-3.
  7. ^ DeGroot, Morris H. (1970). Optimal Statistical Decisions. McGraw-Hill Book Co., New York-London-Sydney. p. 232. MR 0356303.

  • Формирует выходной сигнал регулятора пропорциональный скорости изменения ошибки управления
  • Формула предельная ошибка выборочной доли
  • Формула для вычисления абсолютной ошибки силы тока
  • Формирование цифровой подписи bes ошибка
  • Формула ошибки средней арифметической величины