Средства обнаружения ошибок это

To clean up transmission errors introduced by Earth’s atmosphere (left), Goddard scientists applied Reed–Solomon error correction (right), which is commonly used in CDs and DVDs. Typical errors include missing pixels (white) and false signals (black). The white stripe indicates a brief period when transmission was interrupted.

In information theory and coding theory with applications in computer science and telecommunication, error detection and correction (EDAC) or error control are techniques that enable reliable delivery of digital data over unreliable communication channels. Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data in many cases.

Definitions[edit]

Error detection is the detection of errors caused by noise or other impairments during transmission from the transmitter to the receiver.

Error correction is the detection of errors and reconstruction of the original, error-free data.

History[edit]

In classical antiquity, copyists of the Hebrew Bible were paid for their work according to the number of stichs (lines of verse). As the prose books of the Bible were hardly ever written in stichs, the copyists, in order to estimate the amount of work, had to count the letters.[1] This also helped ensure accuracy in the transmission of the text with the production of subsequent copies.[2][3] Between the 7th and 10th centuries CE a group of Jewish scribes formalized and expanded this to create the Numerical Masorah to ensure accurate reproduction of the sacred text. It included counts of the number of words in a line, section, book and groups of books, noting the middle stich of a book, word use statistics, and commentary.[1] Standards became such that a deviation in even a single letter in a Torah scroll was considered unacceptable.[4] The effectiveness of their error correction method was verified by the accuracy of copying through the centuries demonstrated by discovery of the Dead Sea Scrolls in 1947–1956, dating from c.150 BCE-75 CE.[5]

The modern development of error correction codes is credited to Richard Hamming in 1947.[6] A description of Hamming’s code appeared in Claude Shannon’s A Mathematical Theory of Communication[7] and was quickly generalized by Marcel J. E. Golay.[8]

Introduction[edit]

All error-detection and correction schemes add some redundancy (i.e., some extra data) to a message, which receivers can use to check consistency of the delivered message, and to recover data that has been determined to be corrupted. Error-detection and correction schemes can be either systematic or non-systematic. In a systematic scheme, the transmitter sends the original data, and attaches a fixed number of check bits (or parity data), which are derived from the data bits by some deterministic algorithm. If only error detection is required, a receiver can simply apply the same algorithm to the received data bits and compare its output with the received check bits; if the values do not match, an error has occurred at some point during the transmission. In a system that uses a non-systematic code, the original message is transformed into an encoded message carrying the same information and that has at least as many bits as the original message.

Good error control performance requires the scheme to be selected based on the characteristics of the communication channel. Common channel models include memoryless models where errors occur randomly and with a certain probability, and dynamic models where errors occur primarily in bursts. Consequently, error-detecting and correcting codes can be generally distinguished between random-error-detecting/correcting and burst-error-detecting/correcting. Some codes can also be suitable for a mixture of random errors and burst errors.

If the channel characteristics cannot be determined, or are highly variable, an error-detection scheme may be combined with a system for retransmissions of erroneous data. This is known as automatic repeat request (ARQ), and is most notably used in the Internet. An alternate approach for error control is hybrid automatic repeat request (HARQ), which is a combination of ARQ and error-correction coding.

Types of error correction[edit]

There are three major types of error correction.[9]

Automatic repeat request[edit]

Automatic repeat request (ARQ) is an error control method for data transmission that makes use of error-detection codes, acknowledgment and/or negative acknowledgment messages, and timeouts to achieve reliable data transmission. An acknowledgment is a message sent by the receiver to indicate that it has correctly received a data frame.

Usually, when the transmitter does not receive the acknowledgment before the timeout occurs (i.e., within a reasonable amount of time after sending the data frame), it retransmits the frame until it is either correctly received or the error persists beyond a predetermined number of retransmissions.

Three types of ARQ protocols are Stop-and-wait ARQ, Go-Back-N ARQ, and Selective Repeat ARQ.

ARQ is appropriate if the communication channel has varying or unknown capacity, such as is the case on the Internet. However, ARQ requires the availability of a back channel, results in possibly increased latency due to retransmissions, and requires the maintenance of buffers and timers for retransmissions, which in the case of network congestion can put a strain on the server and overall network capacity.[10]

For example, ARQ is used on shortwave radio data links in the form of ARQ-E, or combined with multiplexing as ARQ-M.

Forward error correction[edit]

Forward error correction (FEC) is a process of adding redundant data such as an error-correcting code (ECC) to a message so that it can be recovered by a receiver even when a number of errors (up to the capability of the code being used) are introduced, either during the process of transmission or on storage. Since the receiver does not have to ask the sender for retransmission of the data, a backchannel is not required in forward error correction. Error-correcting codes are used in lower-layer communication such as cellular network, high-speed fiber-optic communication and Wi-Fi,[11][12] as well as for reliable storage in media such as flash memory, hard disk and RAM.[13]

Error-correcting codes are usually distinguished between convolutional codes and block codes:

  • Convolutional codes are processed on a bit-by-bit basis. They are particularly suitable for implementation in hardware, and the Viterbi decoder allows optimal decoding.
  • Block codes are processed on a block-by-block basis. Early examples of block codes are repetition codes, Hamming codes and multidimensional parity-check codes. They were followed by a number of efficient codes, Reed–Solomon codes being the most notable due to their current widespread use. Turbo codes and low-density parity-check codes (LDPC) are relatively new constructions that can provide almost optimal efficiency.

Shannon’s theorem is an important theorem in forward error correction, and describes the maximum information rate at which reliable communication is possible over a channel that has a certain error probability or signal-to-noise ratio (SNR). This strict upper limit is expressed in terms of the channel capacity. More specifically, the theorem says that there exist codes such that with increasing encoding length the probability of error on a discrete memoryless channel can be made arbitrarily small, provided that the code rate is smaller than the channel capacity. The code rate is defined as the fraction k/n of k source symbols and n encoded symbols.

The actual maximum code rate allowed depends on the error-correcting code used, and may be lower. This is because Shannon’s proof was only of existential nature, and did not show how to construct codes which are both optimal and have efficient encoding and decoding algorithms.

Hybrid schemes[edit]

Hybrid ARQ is a combination of ARQ and forward error correction. There are two basic approaches:[10]

  • Messages are always transmitted with FEC parity data (and error-detection redundancy). A receiver decodes a message using the parity information, and requests retransmission using ARQ only if the parity data was not sufficient for successful decoding (identified through a failed integrity check).
  • Messages are transmitted without parity data (only with error-detection information). If a receiver detects an error, it requests FEC information from the transmitter using ARQ, and uses it to reconstruct the original message.

The latter approach is particularly attractive on an erasure channel when using a rateless erasure code.

Error detection schemes[edit]

Error detection is most commonly realized using a suitable hash function (or specifically, a checksum, cyclic redundancy check or other algorithm). A hash function adds a fixed-length tag to a message, which enables receivers to verify the delivered message by recomputing the tag and comparing it with the one provided.

There exists a vast variety of different hash function designs. However, some are of particularly widespread use because of either their simplicity or their suitability for detecting certain kinds of errors (e.g., the cyclic redundancy check’s performance in detecting burst errors).

Minimum distance coding[edit]

A random-error-correcting code based on minimum distance coding can provide a strict guarantee on the number of detectable errors, but it may not protect against a preimage attack.

Repetition codes[edit]

A repetition code is a coding scheme that repeats the bits across a channel to achieve error-free communication. Given a stream of data to be transmitted, the data are divided into blocks of bits. Each block is transmitted some predetermined number of times. For example, to send the bit pattern «1011», the four-bit block can be repeated three times, thus producing «1011 1011 1011». If this twelve-bit pattern was received as «1010 1011 1011» – where the first block is unlike the other two – an error has occurred.

A repetition code is very inefficient, and can be susceptible to problems if the error occurs in exactly the same place for each group (e.g., «1010 1010 1010» in the previous example would be detected as correct). The advantage of repetition codes is that they are extremely simple, and are in fact used in some transmissions of numbers stations.[14][15]

Parity bit[edit]

A parity bit is a bit that is added to a group of source bits to ensure that the number of set bits (i.e., bits with value 1) in the outcome is even or odd. It is a very simple scheme that can be used to detect single or any other odd number (i.e., three, five, etc.) of errors in the output. An even number of flipped bits will make the parity bit appear correct even though the data is erroneous.

Parity bits added to each «word» sent are called transverse redundancy checks, while those added at the end of a stream of «words» are called longitudinal redundancy checks. For example, if each of a series of m-bit «words» has a parity bit added, showing whether there were an odd or even number of ones in that word, any word with a single error in it will be detected. It will not be known where in the word the error is, however. If, in addition, after each stream of n words a parity sum is sent, each bit of which shows whether there were an odd or even number of ones at that bit-position sent in the most recent group, the exact position of the error can be determined and the error corrected. This method is only guaranteed to be effective, however, if there are no more than 1 error in every group of n words. With more error correction bits, more errors can be detected and in some cases corrected.

There are also other bit-grouping techniques.

Checksum[edit]

A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a ones’-complement operation prior to transmission to detect unintentional all-zero messages.

Checksum schemes include parity bits, check digits, and longitudinal redundancy checks. Some checksum schemes, such as the Damm algorithm, the Luhn algorithm, and the Verhoeff algorithm, are specifically designed to detect errors commonly introduced by humans in writing down or remembering identification numbers.

Cyclic redundancy check[edit]

A cyclic redundancy check (CRC) is a non-secure hash function designed to detect accidental changes to digital data in computer networks. It is not suitable for detecting maliciously introduced errors. It is characterized by specification of a generator polynomial, which is used as the divisor in a polynomial long division over a finite field, taking the input data as the dividend. The remainder becomes the result.

A CRC has properties that make it well suited for detecting burst errors. CRCs are particularly easy to implement in hardware and are therefore commonly used in computer networks and storage devices such as hard disk drives.

The parity bit can be seen as a special-case 1-bit CRC.

Cryptographic hash function[edit]

The output of a cryptographic hash function, also known as a message digest, can provide strong assurances about data integrity, whether changes of the data are accidental (e.g., due to transmission errors) or maliciously introduced. Any modification to the data will likely be detected through a mismatching hash value. Furthermore, given some hash value, it is typically infeasible to find some input data (other than the one given) that will yield the same hash value. If an attacker can change not only the message but also the hash value, then a keyed hash or message authentication code (MAC) can be used for additional security. Without knowing the key, it is not possible for the attacker to easily or conveniently calculate the correct keyed hash value for a modified message.

Error correction code[edit]

Any error-correcting code can be used for error detection. A code with minimum Hamming distance, d, can detect up to d − 1 errors in a code word. Using minimum-distance-based error-correcting codes for error detection can be suitable if a strict limit on the minimum number of errors to be detected is desired.

Codes with minimum Hamming distance d = 2 are degenerate cases of error-correcting codes, and can be used to detect single errors. The parity bit is an example of a single-error-detecting code.

Applications[edit]

Applications that require low latency (such as telephone conversations) cannot use automatic repeat request (ARQ); they must use forward error correction (FEC). By the time an ARQ system discovers an error and re-transmits it, the re-sent data will arrive too late to be usable.

Applications where the transmitter immediately forgets the information as soon as it is sent (such as most television cameras) cannot use ARQ; they must use FEC because when an error occurs, the original data is no longer available.

Applications that use ARQ must have a return channel; applications having no return channel cannot use ARQ.

Applications that require extremely low error rates (such as digital money transfers) must use ARQ due to the possibility of uncorrectable errors with FEC.

Reliability and inspection engineering also make use of the theory of error-correcting codes.[16]

Internet[edit]

In a typical TCP/IP stack, error control is performed at multiple levels:

  • Each Ethernet frame uses CRC-32 error detection. Frames with detected errors are discarded by the receiver hardware.
  • The IPv4 header contains a checksum protecting the contents of the header. Packets with incorrect checksums are dropped within the network or at the receiver.
  • The checksum was omitted from the IPv6 header in order to minimize processing costs in network routing and because current link layer technology is assumed to provide sufficient error detection (see also RFC 3819).
  • UDP has an optional checksum covering the payload and addressing information in the UDP and IP headers. Packets with incorrect checksums are discarded by the network stack. The checksum is optional under IPv4, and required under IPv6. When omitted, it is assumed the data-link layer provides the desired level of error protection.
  • TCP provides a checksum for protecting the payload and addressing information in the TCP and IP headers. Packets with incorrect checksums are discarded by the network stack, and eventually get retransmitted using ARQ, either explicitly (such as through three-way handshake) or implicitly due to a timeout.

Deep-space telecommunications[edit]

The development of error-correction codes was tightly coupled with the history of deep-space missions due to the extreme dilution of signal power over interplanetary distances, and the limited power availability aboard space probes. Whereas early missions sent their data uncoded, starting in 1968, digital error correction was implemented in the form of (sub-optimally decoded) convolutional codes and Reed–Muller codes.[17] The Reed–Muller code was well suited to the noise the spacecraft was subject to (approximately matching a bell curve), and was implemented for the Mariner spacecraft and used on missions between 1969 and 1977.

The Voyager 1 and Voyager 2 missions, which started in 1977, were designed to deliver color imaging and scientific information from Jupiter and Saturn.[18] This resulted in increased coding requirements, and thus, the spacecraft were supported by (optimally Viterbi-decoded) convolutional codes that could be concatenated with an outer Golay (24,12,8) code. The Voyager 2 craft additionally supported an implementation of a Reed–Solomon code. The concatenated Reed–Solomon–Viterbi (RSV) code allowed for very powerful error correction, and enabled the spacecraft’s extended journey to Uranus and Neptune. After ECC system upgrades in 1989, both crafts used V2 RSV coding.

The Consultative Committee for Space Data Systems currently recommends usage of error correction codes with performance similar to the Voyager 2 RSV code as a minimum. Concatenated codes are increasingly falling out of favor with space missions, and are replaced by more powerful codes such as Turbo codes or LDPC codes.

The different kinds of deep space and orbital missions that are conducted suggest that trying to find a one-size-fits-all error correction system will be an ongoing problem. For missions close to Earth, the nature of the noise in the communication channel is different from that which a spacecraft on an interplanetary mission experiences. Additionally, as a spacecraft increases its distance from Earth, the problem of correcting for noise becomes more difficult.

Satellite broadcasting[edit]

The demand for satellite transponder bandwidth continues to grow, fueled by the desire to deliver television (including new channels and high-definition television) and IP data. Transponder availability and bandwidth constraints have limited this growth. Transponder capacity is determined by the selected modulation scheme and the proportion of capacity consumed by FEC.

Data storage[edit]

Error detection and correction codes are often used to improve the reliability of data storage media.[19] A parity track capable of detecting single-bit errors was present on the first magnetic tape data storage in 1951. The optimal rectangular code used in group coded recording tapes not only detects but also corrects single-bit errors. Some file formats, particularly archive formats, include a checksum (most often CRC32) to detect corruption and truncation and can employ redundancy or parity files to recover portions of corrupted data. Reed-Solomon codes are used in compact discs to correct errors caused by scratches.

Modern hard drives use Reed–Solomon codes to detect and correct minor errors in sector reads, and to recover corrupted data from failing sectors and store that data in the spare sectors.[20] RAID systems use a variety of error correction techniques to recover data when a hard drive completely fails. Filesystems such as ZFS or Btrfs, as well as some RAID implementations, support data scrubbing and resilvering, which allows bad blocks to be detected and (hopefully) recovered before they are used.[21] The recovered data may be re-written to exactly the same physical location, to spare blocks elsewhere on the same piece of hardware, or the data may be rewritten onto replacement hardware.

Error-correcting memory[edit]

Dynamic random-access memory (DRAM) may provide stronger protection against soft errors by relying on error-correcting codes. Such error-correcting memory, known as ECC or EDAC-protected memory, is particularly desirable for mission-critical applications, such as scientific computing, financial, medical, etc. as well as extraterrestrial applications due to the increased radiation in space.

Error-correcting memory controllers traditionally use Hamming codes, although some use triple modular redundancy. Interleaving allows distributing the effect of a single cosmic ray potentially upsetting multiple physically neighboring bits across multiple words by associating neighboring bits to different words. As long as a single-event upset (SEU) does not exceed the error threshold (e.g., a single error) in any particular word between accesses, it can be corrected (e.g., by a single-bit error-correcting code), and the illusion of an error-free memory system may be maintained.[22]

In addition to hardware providing features required for ECC memory to operate, operating systems usually contain related reporting facilities that are used to provide notifications when soft errors are transparently recovered. One example is the Linux kernel’s EDAC subsystem (previously known as Bluesmoke), which collects the data from error-checking-enabled components inside a computer system; besides collecting and reporting back the events related to ECC memory, it also supports other checksumming errors, including those detected on the PCI bus.[23][24][25] A few systems[specify] also support memory scrubbing to catch and correct errors early before they become unrecoverable.

See also[edit]

  • Berger code
  • Burst error-correcting code
  • ECC memory, a type of computer data storage
  • Link adaptation
  • List of algorithms § Error detection and correction
  • List of hash functions

References[edit]

  1. ^ a b «Masorah». Jewish Encyclopedia.
  2. ^ Pratico, Gary D.; Pelt, Miles V. Van (2009). Basics of Biblical Hebrew Grammar: Second Edition. Zondervan. ISBN 978-0-310-55882-8.
  3. ^ Mounce, William D. (2007). Greek for the Rest of Us: Using Greek Tools Without Mastering Biblical Languages. Zondervan. p. 289. ISBN 978-0-310-28289-1.
  4. ^ Mishneh Torah, Tefillin, Mezuzah, and Sefer Torah, 1:2. Example English translation: Eliyahu Touger. The Rambam’s Mishneh Torah. Moznaim Publishing Corporation.
  5. ^ Brian M. Fagan (5 December 1996). «Dead Sea Scrolls». The Oxford Companion to Archaeology. Oxford University Press. ISBN 0195076184.
  6. ^ Thompson, Thomas M. (1983), From Error-Correcting Codes through Sphere Packings to Simple Groups, The Carus Mathematical Monographs (#21), The Mathematical Association of America, p. vii, ISBN 0-88385-023-0
  7. ^ Shannon, C.E. (1948), «A Mathematical Theory of Communication», Bell System Technical Journal, 27 (3): 379–423, doi:10.1002/j.1538-7305.1948.tb01338.x, hdl:10338.dmlcz/101429, PMID 9230594
  8. ^ Golay, Marcel J. E. (1949), «Notes on Digital Coding», Proc.I.R.E. (I.E.E.E.), 37: 657
  9. ^ Gupta, Vikas; Verma, Chanderkant (November 2012). «Error Detection and Correction: An Introduction». International Journal of Advanced Research in Computer Science and Software Engineering. 2 (11). S2CID 17499858.
  10. ^ a b A. J. McAuley, Reliable Broadband Communication Using a Burst Erasure Correcting Code, ACM SIGCOMM, 1990.
  11. ^ Shah, Pradeep M.; Vyavahare, Prakash D.; Jain, Anjana (September 2015). «Modern error correcting codes for 4G and beyond: Turbo codes and LDPC codes». 2015 Radio and Antenna Days of the Indian Ocean (RADIO): 1–2. doi:10.1109/RADIO.2015.7323369. ISBN 978-9-9903-7339-4. S2CID 28885076. Retrieved 22 May 2022.
  12. ^ «IEEE SA — IEEE 802.11ac-2013». IEEE Standards Association.
  13. ^ «Transition to Advanced Format 4K Sector Hard Drives | Seagate US». Seagate.com. Retrieved 22 May 2022.
  14. ^ Frank van Gerwen. «Numbers (and other mysterious) stations». Archived from the original on 12 July 2017. Retrieved 12 March 2012.
  15. ^ Gary Cutlack (25 August 2010). «Mysterious Russian ‘Numbers Station’ Changes Broadcast After 20 Years». Gizmodo. Retrieved 12 March 2012.
  16. ^ Ben-Gal I.; Herer Y.; Raz T. (2003). «Self-correcting inspection procedure under inspection errors» (PDF). IIE Transactions. IIE Transactions on Quality and Reliability, 34(6), pp. 529-540. Archived from the original (PDF) on 2013-10-13. Retrieved 2014-01-10.
  17. ^ K. Andrews et al., The Development of Turbo and LDPC Codes for Deep-Space Applications, Proceedings of the IEEE, Vol. 95, No. 11, Nov. 2007.
  18. ^ Huffman, William Cary; Pless, Vera S. (2003). Fundamentals of Error-Correcting Codes. Cambridge University Press. ISBN 978-0-521-78280-7.
  19. ^ Kurtas, Erozan M.; Vasic, Bane (2018-10-03). Advanced Error Control Techniques for Data Storage Systems. CRC Press. ISBN 978-1-4200-3649-7.[permanent dead link]
  20. ^ Scott A. Moulton. «My Hard Drive Died». Archived from the original on 2008-02-02.
  21. ^ Qiao, Zhi; Fu, Song; Chen, Hsing-Bung; Settlemyer, Bradley (2019). «Building Reliable High-Performance Storage Systems: An Empirical and Analytical Study». 2019 IEEE International Conference on Cluster Computing (CLUSTER): 1–10. doi:10.1109/CLUSTER.2019.8891006. ISBN 978-1-7281-4734-5. S2CID 207951690.
  22. ^ «Using StrongArm SA-1110 in the On-Board Computer of Nanosatellite». Tsinghua Space Center, Tsinghua University, Beijing. Archived from the original on 2011-10-02. Retrieved 2009-02-16.
  23. ^ Jeff Layton. «Error Detection and Correction». Linux Magazine. Retrieved 2014-08-12.
  24. ^ «EDAC Project». bluesmoke.sourceforge.net. Retrieved 2014-08-12.
  25. ^ «Documentation/edac.txt». Linux kernel documentation. kernel.org. 2014-06-16. Archived from the original on 2009-09-05. Retrieved 2014-08-12.

Further reading[edit]

  • Shu Lin; Daniel J. Costello, Jr. (1983). Error Control Coding: Fundamentals and Applications. Prentice Hall. ISBN 0-13-283796-X.
  • SoftECC: A System for Software Memory Integrity Checking
  • A Tunable, Software-based DRAM Error Detection and Correction Library for HPC
  • Detection and Correction of Silent Data Corruption for Large-Scale High-Performance Computing

External links[edit]

  • The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
  • ECC Page — implementations of popular ECC encoding and decoding routines

To clean up transmission errors introduced by Earth’s atmosphere (left), Goddard scientists applied Reed–Solomon error correction (right), which is commonly used in CDs and DVDs. Typical errors include missing pixels (white) and false signals (black). The white stripe indicates a brief period when transmission was interrupted.

In information theory and coding theory with applications in computer science and telecommunication, error detection and correction (EDAC) or error control are techniques that enable reliable delivery of digital data over unreliable communication channels. Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data in many cases.

Definitions[edit]

Error detection is the detection of errors caused by noise or other impairments during transmission from the transmitter to the receiver.

Error correction is the detection of errors and reconstruction of the original, error-free data.

History[edit]

In classical antiquity, copyists of the Hebrew Bible were paid for their work according to the number of stichs (lines of verse). As the prose books of the Bible were hardly ever written in stichs, the copyists, in order to estimate the amount of work, had to count the letters.[1] This also helped ensure accuracy in the transmission of the text with the production of subsequent copies.[2][3] Between the 7th and 10th centuries CE a group of Jewish scribes formalized and expanded this to create the Numerical Masorah to ensure accurate reproduction of the sacred text. It included counts of the number of words in a line, section, book and groups of books, noting the middle stich of a book, word use statistics, and commentary.[1] Standards became such that a deviation in even a single letter in a Torah scroll was considered unacceptable.[4] The effectiveness of their error correction method was verified by the accuracy of copying through the centuries demonstrated by discovery of the Dead Sea Scrolls in 1947–1956, dating from c.150 BCE-75 CE.[5]

The modern development of error correction codes is credited to Richard Hamming in 1947.[6] A description of Hamming’s code appeared in Claude Shannon’s A Mathematical Theory of Communication[7] and was quickly generalized by Marcel J. E. Golay.[8]

Introduction[edit]

All error-detection and correction schemes add some redundancy (i.e., some extra data) to a message, which receivers can use to check consistency of the delivered message, and to recover data that has been determined to be corrupted. Error-detection and correction schemes can be either systematic or non-systematic. In a systematic scheme, the transmitter sends the original data, and attaches a fixed number of check bits (or parity data), which are derived from the data bits by some deterministic algorithm. If only error detection is required, a receiver can simply apply the same algorithm to the received data bits and compare its output with the received check bits; if the values do not match, an error has occurred at some point during the transmission. In a system that uses a non-systematic code, the original message is transformed into an encoded message carrying the same information and that has at least as many bits as the original message.

Good error control performance requires the scheme to be selected based on the characteristics of the communication channel. Common channel models include memoryless models where errors occur randomly and with a certain probability, and dynamic models where errors occur primarily in bursts. Consequently, error-detecting and correcting codes can be generally distinguished between random-error-detecting/correcting and burst-error-detecting/correcting. Some codes can also be suitable for a mixture of random errors and burst errors.

If the channel characteristics cannot be determined, or are highly variable, an error-detection scheme may be combined with a system for retransmissions of erroneous data. This is known as automatic repeat request (ARQ), and is most notably used in the Internet. An alternate approach for error control is hybrid automatic repeat request (HARQ), which is a combination of ARQ and error-correction coding.

Types of error correction[edit]

There are three major types of error correction.[9]

Automatic repeat request[edit]

Automatic repeat request (ARQ) is an error control method for data transmission that makes use of error-detection codes, acknowledgment and/or negative acknowledgment messages, and timeouts to achieve reliable data transmission. An acknowledgment is a message sent by the receiver to indicate that it has correctly received a data frame.

Usually, when the transmitter does not receive the acknowledgment before the timeout occurs (i.e., within a reasonable amount of time after sending the data frame), it retransmits the frame until it is either correctly received or the error persists beyond a predetermined number of retransmissions.

Three types of ARQ protocols are Stop-and-wait ARQ, Go-Back-N ARQ, and Selective Repeat ARQ.

ARQ is appropriate if the communication channel has varying or unknown capacity, such as is the case on the Internet. However, ARQ requires the availability of a back channel, results in possibly increased latency due to retransmissions, and requires the maintenance of buffers and timers for retransmissions, which in the case of network congestion can put a strain on the server and overall network capacity.[10]

For example, ARQ is used on shortwave radio data links in the form of ARQ-E, or combined with multiplexing as ARQ-M.

Forward error correction[edit]

Forward error correction (FEC) is a process of adding redundant data such as an error-correcting code (ECC) to a message so that it can be recovered by a receiver even when a number of errors (up to the capability of the code being used) are introduced, either during the process of transmission or on storage. Since the receiver does not have to ask the sender for retransmission of the data, a backchannel is not required in forward error correction. Error-correcting codes are used in lower-layer communication such as cellular network, high-speed fiber-optic communication and Wi-Fi,[11][12] as well as for reliable storage in media such as flash memory, hard disk and RAM.[13]

Error-correcting codes are usually distinguished between convolutional codes and block codes:

  • Convolutional codes are processed on a bit-by-bit basis. They are particularly suitable for implementation in hardware, and the Viterbi decoder allows optimal decoding.
  • Block codes are processed on a block-by-block basis. Early examples of block codes are repetition codes, Hamming codes and multidimensional parity-check codes. They were followed by a number of efficient codes, Reed–Solomon codes being the most notable due to their current widespread use. Turbo codes and low-density parity-check codes (LDPC) are relatively new constructions that can provide almost optimal efficiency.

Shannon’s theorem is an important theorem in forward error correction, and describes the maximum information rate at which reliable communication is possible over a channel that has a certain error probability or signal-to-noise ratio (SNR). This strict upper limit is expressed in terms of the channel capacity. More specifically, the theorem says that there exist codes such that with increasing encoding length the probability of error on a discrete memoryless channel can be made arbitrarily small, provided that the code rate is smaller than the channel capacity. The code rate is defined as the fraction k/n of k source symbols and n encoded symbols.

The actual maximum code rate allowed depends on the error-correcting code used, and may be lower. This is because Shannon’s proof was only of existential nature, and did not show how to construct codes which are both optimal and have efficient encoding and decoding algorithms.

Hybrid schemes[edit]

Hybrid ARQ is a combination of ARQ and forward error correction. There are two basic approaches:[10]

  • Messages are always transmitted with FEC parity data (and error-detection redundancy). A receiver decodes a message using the parity information, and requests retransmission using ARQ only if the parity data was not sufficient for successful decoding (identified through a failed integrity check).
  • Messages are transmitted without parity data (only with error-detection information). If a receiver detects an error, it requests FEC information from the transmitter using ARQ, and uses it to reconstruct the original message.

The latter approach is particularly attractive on an erasure channel when using a rateless erasure code.

Error detection schemes[edit]

Error detection is most commonly realized using a suitable hash function (or specifically, a checksum, cyclic redundancy check or other algorithm). A hash function adds a fixed-length tag to a message, which enables receivers to verify the delivered message by recomputing the tag and comparing it with the one provided.

There exists a vast variety of different hash function designs. However, some are of particularly widespread use because of either their simplicity or their suitability for detecting certain kinds of errors (e.g., the cyclic redundancy check’s performance in detecting burst errors).

Minimum distance coding[edit]

A random-error-correcting code based on minimum distance coding can provide a strict guarantee on the number of detectable errors, but it may not protect against a preimage attack.

Repetition codes[edit]

A repetition code is a coding scheme that repeats the bits across a channel to achieve error-free communication. Given a stream of data to be transmitted, the data are divided into blocks of bits. Each block is transmitted some predetermined number of times. For example, to send the bit pattern «1011», the four-bit block can be repeated three times, thus producing «1011 1011 1011». If this twelve-bit pattern was received as «1010 1011 1011» – where the first block is unlike the other two – an error has occurred.

A repetition code is very inefficient, and can be susceptible to problems if the error occurs in exactly the same place for each group (e.g., «1010 1010 1010» in the previous example would be detected as correct). The advantage of repetition codes is that they are extremely simple, and are in fact used in some transmissions of numbers stations.[14][15]

Parity bit[edit]

A parity bit is a bit that is added to a group of source bits to ensure that the number of set bits (i.e., bits with value 1) in the outcome is even or odd. It is a very simple scheme that can be used to detect single or any other odd number (i.e., three, five, etc.) of errors in the output. An even number of flipped bits will make the parity bit appear correct even though the data is erroneous.

Parity bits added to each «word» sent are called transverse redundancy checks, while those added at the end of a stream of «words» are called longitudinal redundancy checks. For example, if each of a series of m-bit «words» has a parity bit added, showing whether there were an odd or even number of ones in that word, any word with a single error in it will be detected. It will not be known where in the word the error is, however. If, in addition, after each stream of n words a parity sum is sent, each bit of which shows whether there were an odd or even number of ones at that bit-position sent in the most recent group, the exact position of the error can be determined and the error corrected. This method is only guaranteed to be effective, however, if there are no more than 1 error in every group of n words. With more error correction bits, more errors can be detected and in some cases corrected.

There are also other bit-grouping techniques.

Checksum[edit]

A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a ones’-complement operation prior to transmission to detect unintentional all-zero messages.

Checksum schemes include parity bits, check digits, and longitudinal redundancy checks. Some checksum schemes, such as the Damm algorithm, the Luhn algorithm, and the Verhoeff algorithm, are specifically designed to detect errors commonly introduced by humans in writing down or remembering identification numbers.

Cyclic redundancy check[edit]

A cyclic redundancy check (CRC) is a non-secure hash function designed to detect accidental changes to digital data in computer networks. It is not suitable for detecting maliciously introduced errors. It is characterized by specification of a generator polynomial, which is used as the divisor in a polynomial long division over a finite field, taking the input data as the dividend. The remainder becomes the result.

A CRC has properties that make it well suited for detecting burst errors. CRCs are particularly easy to implement in hardware and are therefore commonly used in computer networks and storage devices such as hard disk drives.

The parity bit can be seen as a special-case 1-bit CRC.

Cryptographic hash function[edit]

The output of a cryptographic hash function, also known as a message digest, can provide strong assurances about data integrity, whether changes of the data are accidental (e.g., due to transmission errors) or maliciously introduced. Any modification to the data will likely be detected through a mismatching hash value. Furthermore, given some hash value, it is typically infeasible to find some input data (other than the one given) that will yield the same hash value. If an attacker can change not only the message but also the hash value, then a keyed hash or message authentication code (MAC) can be used for additional security. Without knowing the key, it is not possible for the attacker to easily or conveniently calculate the correct keyed hash value for a modified message.

Error correction code[edit]

Any error-correcting code can be used for error detection. A code with minimum Hamming distance, d, can detect up to d − 1 errors in a code word. Using minimum-distance-based error-correcting codes for error detection can be suitable if a strict limit on the minimum number of errors to be detected is desired.

Codes with minimum Hamming distance d = 2 are degenerate cases of error-correcting codes, and can be used to detect single errors. The parity bit is an example of a single-error-detecting code.

Applications[edit]

Applications that require low latency (such as telephone conversations) cannot use automatic repeat request (ARQ); they must use forward error correction (FEC). By the time an ARQ system discovers an error and re-transmits it, the re-sent data will arrive too late to be usable.

Applications where the transmitter immediately forgets the information as soon as it is sent (such as most television cameras) cannot use ARQ; they must use FEC because when an error occurs, the original data is no longer available.

Applications that use ARQ must have a return channel; applications having no return channel cannot use ARQ.

Applications that require extremely low error rates (such as digital money transfers) must use ARQ due to the possibility of uncorrectable errors with FEC.

Reliability and inspection engineering also make use of the theory of error-correcting codes.[16]

Internet[edit]

In a typical TCP/IP stack, error control is performed at multiple levels:

  • Each Ethernet frame uses CRC-32 error detection. Frames with detected errors are discarded by the receiver hardware.
  • The IPv4 header contains a checksum protecting the contents of the header. Packets with incorrect checksums are dropped within the network or at the receiver.
  • The checksum was omitted from the IPv6 header in order to minimize processing costs in network routing and because current link layer technology is assumed to provide sufficient error detection (see also RFC 3819).
  • UDP has an optional checksum covering the payload and addressing information in the UDP and IP headers. Packets with incorrect checksums are discarded by the network stack. The checksum is optional under IPv4, and required under IPv6. When omitted, it is assumed the data-link layer provides the desired level of error protection.
  • TCP provides a checksum for protecting the payload and addressing information in the TCP and IP headers. Packets with incorrect checksums are discarded by the network stack, and eventually get retransmitted using ARQ, either explicitly (such as through three-way handshake) or implicitly due to a timeout.

Deep-space telecommunications[edit]

The development of error-correction codes was tightly coupled with the history of deep-space missions due to the extreme dilution of signal power over interplanetary distances, and the limited power availability aboard space probes. Whereas early missions sent their data uncoded, starting in 1968, digital error correction was implemented in the form of (sub-optimally decoded) convolutional codes and Reed–Muller codes.[17] The Reed–Muller code was well suited to the noise the spacecraft was subject to (approximately matching a bell curve), and was implemented for the Mariner spacecraft and used on missions between 1969 and 1977.

The Voyager 1 and Voyager 2 missions, which started in 1977, were designed to deliver color imaging and scientific information from Jupiter and Saturn.[18] This resulted in increased coding requirements, and thus, the spacecraft were supported by (optimally Viterbi-decoded) convolutional codes that could be concatenated with an outer Golay (24,12,8) code. The Voyager 2 craft additionally supported an implementation of a Reed–Solomon code. The concatenated Reed–Solomon–Viterbi (RSV) code allowed for very powerful error correction, and enabled the spacecraft’s extended journey to Uranus and Neptune. After ECC system upgrades in 1989, both crafts used V2 RSV coding.

The Consultative Committee for Space Data Systems currently recommends usage of error correction codes with performance similar to the Voyager 2 RSV code as a minimum. Concatenated codes are increasingly falling out of favor with space missions, and are replaced by more powerful codes such as Turbo codes or LDPC codes.

The different kinds of deep space and orbital missions that are conducted suggest that trying to find a one-size-fits-all error correction system will be an ongoing problem. For missions close to Earth, the nature of the noise in the communication channel is different from that which a spacecraft on an interplanetary mission experiences. Additionally, as a spacecraft increases its distance from Earth, the problem of correcting for noise becomes more difficult.

Satellite broadcasting[edit]

The demand for satellite transponder bandwidth continues to grow, fueled by the desire to deliver television (including new channels and high-definition television) and IP data. Transponder availability and bandwidth constraints have limited this growth. Transponder capacity is determined by the selected modulation scheme and the proportion of capacity consumed by FEC.

Data storage[edit]

Error detection and correction codes are often used to improve the reliability of data storage media.[19] A parity track capable of detecting single-bit errors was present on the first magnetic tape data storage in 1951. The optimal rectangular code used in group coded recording tapes not only detects but also corrects single-bit errors. Some file formats, particularly archive formats, include a checksum (most often CRC32) to detect corruption and truncation and can employ redundancy or parity files to recover portions of corrupted data. Reed-Solomon codes are used in compact discs to correct errors caused by scratches.

Modern hard drives use Reed–Solomon codes to detect and correct minor errors in sector reads, and to recover corrupted data from failing sectors and store that data in the spare sectors.[20] RAID systems use a variety of error correction techniques to recover data when a hard drive completely fails. Filesystems such as ZFS or Btrfs, as well as some RAID implementations, support data scrubbing and resilvering, which allows bad blocks to be detected and (hopefully) recovered before they are used.[21] The recovered data may be re-written to exactly the same physical location, to spare blocks elsewhere on the same piece of hardware, or the data may be rewritten onto replacement hardware.

Error-correcting memory[edit]

Dynamic random-access memory (DRAM) may provide stronger protection against soft errors by relying on error-correcting codes. Such error-correcting memory, known as ECC or EDAC-protected memory, is particularly desirable for mission-critical applications, such as scientific computing, financial, medical, etc. as well as extraterrestrial applications due to the increased radiation in space.

Error-correcting memory controllers traditionally use Hamming codes, although some use triple modular redundancy. Interleaving allows distributing the effect of a single cosmic ray potentially upsetting multiple physically neighboring bits across multiple words by associating neighboring bits to different words. As long as a single-event upset (SEU) does not exceed the error threshold (e.g., a single error) in any particular word between accesses, it can be corrected (e.g., by a single-bit error-correcting code), and the illusion of an error-free memory system may be maintained.[22]

In addition to hardware providing features required for ECC memory to operate, operating systems usually contain related reporting facilities that are used to provide notifications when soft errors are transparently recovered. One example is the Linux kernel’s EDAC subsystem (previously known as Bluesmoke), which collects the data from error-checking-enabled components inside a computer system; besides collecting and reporting back the events related to ECC memory, it also supports other checksumming errors, including those detected on the PCI bus.[23][24][25] A few systems[specify] also support memory scrubbing to catch and correct errors early before they become unrecoverable.

See also[edit]

  • Berger code
  • Burst error-correcting code
  • ECC memory, a type of computer data storage
  • Link adaptation
  • List of algorithms § Error detection and correction
  • List of hash functions

References[edit]

  1. ^ a b «Masorah». Jewish Encyclopedia.
  2. ^ Pratico, Gary D.; Pelt, Miles V. Van (2009). Basics of Biblical Hebrew Grammar: Second Edition. Zondervan. ISBN 978-0-310-55882-8.
  3. ^ Mounce, William D. (2007). Greek for the Rest of Us: Using Greek Tools Without Mastering Biblical Languages. Zondervan. p. 289. ISBN 978-0-310-28289-1.
  4. ^ Mishneh Torah, Tefillin, Mezuzah, and Sefer Torah, 1:2. Example English translation: Eliyahu Touger. The Rambam’s Mishneh Torah. Moznaim Publishing Corporation.
  5. ^ Brian M. Fagan (5 December 1996). «Dead Sea Scrolls». The Oxford Companion to Archaeology. Oxford University Press. ISBN 0195076184.
  6. ^ Thompson, Thomas M. (1983), From Error-Correcting Codes through Sphere Packings to Simple Groups, The Carus Mathematical Monographs (#21), The Mathematical Association of America, p. vii, ISBN 0-88385-023-0
  7. ^ Shannon, C.E. (1948), «A Mathematical Theory of Communication», Bell System Technical Journal, 27 (3): 379–423, doi:10.1002/j.1538-7305.1948.tb01338.x, hdl:10338.dmlcz/101429, PMID 9230594
  8. ^ Golay, Marcel J. E. (1949), «Notes on Digital Coding», Proc.I.R.E. (I.E.E.E.), 37: 657
  9. ^ Gupta, Vikas; Verma, Chanderkant (November 2012). «Error Detection and Correction: An Introduction». International Journal of Advanced Research in Computer Science and Software Engineering. 2 (11). S2CID 17499858.
  10. ^ a b A. J. McAuley, Reliable Broadband Communication Using a Burst Erasure Correcting Code, ACM SIGCOMM, 1990.
  11. ^ Shah, Pradeep M.; Vyavahare, Prakash D.; Jain, Anjana (September 2015). «Modern error correcting codes for 4G and beyond: Turbo codes and LDPC codes». 2015 Radio and Antenna Days of the Indian Ocean (RADIO): 1–2. doi:10.1109/RADIO.2015.7323369. ISBN 978-9-9903-7339-4. S2CID 28885076. Retrieved 22 May 2022.
  12. ^ «IEEE SA — IEEE 802.11ac-2013». IEEE Standards Association.
  13. ^ «Transition to Advanced Format 4K Sector Hard Drives | Seagate US». Seagate.com. Retrieved 22 May 2022.
  14. ^ Frank van Gerwen. «Numbers (and other mysterious) stations». Archived from the original on 12 July 2017. Retrieved 12 March 2012.
  15. ^ Gary Cutlack (25 August 2010). «Mysterious Russian ‘Numbers Station’ Changes Broadcast After 20 Years». Gizmodo. Retrieved 12 March 2012.
  16. ^ Ben-Gal I.; Herer Y.; Raz T. (2003). «Self-correcting inspection procedure under inspection errors» (PDF). IIE Transactions. IIE Transactions on Quality and Reliability, 34(6), pp. 529-540. Archived from the original (PDF) on 2013-10-13. Retrieved 2014-01-10.
  17. ^ K. Andrews et al., The Development of Turbo and LDPC Codes for Deep-Space Applications, Proceedings of the IEEE, Vol. 95, No. 11, Nov. 2007.
  18. ^ Huffman, William Cary; Pless, Vera S. (2003). Fundamentals of Error-Correcting Codes. Cambridge University Press. ISBN 978-0-521-78280-7.
  19. ^ Kurtas, Erozan M.; Vasic, Bane (2018-10-03). Advanced Error Control Techniques for Data Storage Systems. CRC Press. ISBN 978-1-4200-3649-7.[permanent dead link]
  20. ^ Scott A. Moulton. «My Hard Drive Died». Archived from the original on 2008-02-02.
  21. ^ Qiao, Zhi; Fu, Song; Chen, Hsing-Bung; Settlemyer, Bradley (2019). «Building Reliable High-Performance Storage Systems: An Empirical and Analytical Study». 2019 IEEE International Conference on Cluster Computing (CLUSTER): 1–10. doi:10.1109/CLUSTER.2019.8891006. ISBN 978-1-7281-4734-5. S2CID 207951690.
  22. ^ «Using StrongArm SA-1110 in the On-Board Computer of Nanosatellite». Tsinghua Space Center, Tsinghua University, Beijing. Archived from the original on 2011-10-02. Retrieved 2009-02-16.
  23. ^ Jeff Layton. «Error Detection and Correction». Linux Magazine. Retrieved 2014-08-12.
  24. ^ «EDAC Project». bluesmoke.sourceforge.net. Retrieved 2014-08-12.
  25. ^ «Documentation/edac.txt». Linux kernel documentation. kernel.org. 2014-06-16. Archived from the original on 2009-09-05. Retrieved 2014-08-12.

Further reading[edit]

  • Shu Lin; Daniel J. Costello, Jr. (1983). Error Control Coding: Fundamentals and Applications. Prentice Hall. ISBN 0-13-283796-X.
  • SoftECC: A System for Software Memory Integrity Checking
  • A Tunable, Software-based DRAM Error Detection and Correction Library for HPC
  • Detection and Correction of Silent Data Corruption for Large-Scale High-Performance Computing

External links[edit]

  • The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
  • ECC Page — implementations of popular ECC encoding and decoding routines

Обнаружение и коррекция ошибок

Канальный
уровень должен обнаруживать ошибки
передачи данных, связанные с искажением
бит в принятом кадре данных или с потерей
кадра, и по возможности их корректировать.

Большая
часть протоколов канального уровня
выполняет только первую задачу —
обнаружение ошибок, считая, что
корректировать ошибки, то есть повторно
передавать данные, содержавшие искаженную
информацию, должны протоколы верхних
уровней. Так работают такие популярные
протоколы локальных сетей, как Ethernet,
Token Ring, FDDI и другие. Однако существуют
протоколы канального уровня, например
LLC2 или LAP-B, которые самостоятельно решают
задачу восстановления искаженных или
потерянных кадров.

Очевидно,
что протоколы должны работать наиболее
эффективно в типичных условиях работы
сети. Поэтому для сетей, в которых
искажения и потери кадров являются
очень редкими событиями, разрабатываются
протоколы типа Ethernet, в которых не
предусматриваются процедуры устранения
ошибок. Действительно, наличие процедур
восстановления данных потребовало бы
от конечных узлов дополнительных
вычислительных затрат, которые в условиях
надежной работы сети являлись бы
избыточными.

Напротив,
если в сети искажения и потери случаются
часто, то желательно уже на канальном
уровне использовать протокол с коррекцией
ошибок, а не оставлять эту работу
протоколам верхних уровней. Протоколы
верхних уровней, например транспортного
или прикладного, работая с большими
тайм-аутами, восстановят потерянные
данные с большой задержкой. В глобальных
сетях первых поколений, например сетях
Х.25, которые работали через ненадежные
каналы связи, протоколы канального
уровня всегда выполняли процедуры
восстановления потерянных и искаженных
кадров.

Поэтому
нельзя считать, что один протокол лучше
другого потому, что он восстанавливает
ошибочные кадры, а другой протокол —
нет. Каждый протокол должен работать в
тех условиях, для которых он разработан.

Методы обнаружения ошибок

Все
методы обнаружения ошибок основаны на
передаче в составе кадра данных служебной
избыточной информации, по которой можно
судить с некоторой степенью вероятности
о достоверности принятых данных. Эту
служебную информацию принято называть
контрольной
суммой
(или последовательностью
контроля кадра — Frame Check Sequence, FCS).
Контрольная сумма вычисляется как
функция от основной информации, причем
необязательно только путем суммирования.
Принимающая сторона повторно вычисляет
контрольную сумму кадра по известному
алгоритму и в случае ее совпадения с
контрольной суммой, вычисленной
передающей стороной, делает вывод о
том, что данные были переданы через сеть
корректно. Существует несколько
распространенных алгоритмов вычисления
контрольной суммы, отличающихся
вычислительной сложностью и способностью
обнаруживать ошибки в данных.

Контроль
по паритету
представляет собой наиболее простой
метод контроля данных. В то же время это
наименее мощный алгоритм контроля, так
как с его помощью можно обнаружить
только одиночные ошибки в проверяемых
данных. Метод заключается в суммировании
по модулю 2 всех бит контролируемой
информации. Например, для данных 100101011
результатом контрольного суммирования
будет значение 1. Результат суммирования
также представляет собой один бит
данных, который пересылается вместе с
контролируемой информацией. При искажении
при пересылке любого одного бита исходных
данных (или контрольного разряда)
результат суммирования будет отличаться
от принятого контрольного разряда, что
говорит об ошибке. Однако двойная ошибка,
например 110101010, будет неверно принята
за корректные данные. Поэтому контроль
по паритету применяется к небольшим
порциям данных, как правило, к каждому
байту, что дает коэффициент избыточности
для этого метода 1/8. Метод редко применяется
в вычислительных сетях из-за его большой
избыточности и невысоких диагностических
способностей.

Вертикальный
и горизонтальный контроль по паритету
представляет собой модификацию описанного
выше метода. Его отличие состоит в том,
что исходные данные рассматриваются в
виде матрицы, строки которой составляют
байты данных. Контрольный разряд
подсчитывается отдельно для каждой
строки и для каждого столбца матрицы.
Этот метод обнаруживает большую часть
двойных ошибок, однако обладает еще
большей избыточностью. На практике
сейчас также почти не применяется.

Циклический
избыточный контроль (Cyclic Redundancy Check, CRC)
является в настоящее время наиболее
популярным методом контроля в
вычислительных сетях (и не только в
сетях, например, этот метод широко
применяется при записи данных на диски
и дискеты). Метод основан на рассмотрении
исходных данных в виде одного
многоразрядного двоичного числа.
Например, кадр стандарта Ethernet, состоящий
из 1024 байт, будет рассматриваться как
одно число, состоящее из 8192 бит. В качестве
контрольной информации рассматривается
остаток от деления этого числа на
известный делитель R. Обычно в качестве
делителя выбирается семнадцати- или
тридцати трехразрядное число, чтобы
остаток от деления имел длину 16 разрядов
(2 байт) или 32 разряда (4 байт). При получении
кадра данных снова вычисляется остаток
от деления на тот же делитель R, но при
этом к данным кадра добавляется и
содержащаяся в нем контрольная сумма.
Если остаток от деления на R равен нулю,
то делается вывод об отсутствии ошибок
в полученном кадре, в противном случае
кадр считается искаженным.

Этот
метод обладает более высокой вычислительной
сложностью, но его диагностические
возможности гораздо выше, чем у методов
контроля по паритету. Метод CRC обнаруживает
все одиночные ошибки, двойные ошибки и
ошибки в нечетном числе бит. Метод
обладает также невысокой степенью
избыточности. Например, для кадра
Ethernet размером в 1024 байт контрольная
информация длиной в 4 байт составляет
только 0,4 %.

(Существует
несколько модифицированная процедура
вычисления остатка, приводящая к
получению в случае отсутствия ошибок
известного ненулевого остатка, что
является более надежным показателем
корректности.)

Соседние файлы в папке РИС гр.446зс 2015

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Чтобы устранить ошибки передачи, вносимые атмосферой Земли (слева), ученые Годдарда применили исправление ошибок Рида – Соломона (справа), которое обычно используется на компакт-дисках и DVD. Типичные ошибки включают отсутствие пикселей (белые) и ложные сигналы (черные). Белая полоса указывает на короткий период, когда передача была приостановлена.

В теория информации и теория кодирования с приложениями в Информатика и телекоммуникации, обнаружение и исправление ошибок или же контроль ошибок методы, которые обеспечивают надежную доставку цифровые данные чрезмерно ненадежный каналы связи. Многие каналы связи подлежат канальный шум, и, таким образом, ошибки могут быть внесены во время передачи от источника к приемнику. Методы обнаружения ошибок позволяют обнаруживать такие ошибки, а исправление ошибок во многих случаях позволяет восстановить исходные данные.

Определения

Обнаружение ошибок это обнаружение ошибок, вызванных шумом или другими помехами во время передачи от передатчика к приемнику. Исправление ошибки это обнаружение ошибок и восстановление исходных безошибочных данных.

История

Современное развитие коды исправления ошибок зачисляется на Ричард Хэмминг в 1947 г.[1] Описание Код Хэмминга появился в Клод Шеннон с Математическая теория коммуникации[2] и был быстро обобщен Марсель Дж. Э. Голей.[3]

Вступление

Все схемы обнаружения и исправления ошибок добавляют избыточность (т.е. некоторые дополнительные данные) к сообщению, которые получатели могут использовать для проверки согласованности доставленного сообщения и для восстановления данных, которые были определены как поврежденные. Схемы обнаружения и исправления ошибок могут быть либо систематический или несистематический. В систематической схеме передатчик отправляет исходные данные и прикрепляет фиксированное количество проверить биты (или же данные о четности), которые получены из битов данных некоторыми детерминированный алгоритм. Если требуется только обнаружение ошибок, приемник может просто применить тот же алгоритм к полученным битам данных и сравнить свой вывод с полученными контрольными битами; если значения не совпадают, в какой-то момент во время передачи произошла ошибка. В системе, которая использует несистематический код, исходное сообщение преобразуется в закодированное сообщение, несущее ту же информацию и имеющее по крайней мере такое же количество битов, как и исходное сообщение.

Хорошая эффективность контроля ошибок требует, чтобы схема была выбрана на основе характеристик канала связи. Общий модели каналов включают без памяти модели, в которых ошибки возникают случайно и с определенной вероятностью, и динамические модели, в которых ошибки возникают в основном в всплески. Следовательно, коды обнаружения и исправления ошибок можно в целом различать между обнаружение / исправление случайных ошибок и обнаружение / исправление пакетных ошибок. Некоторые коды также могут подходить для сочетания случайных ошибок и пакетных ошибок.

Если характеристики канала не могут быть определены или сильно варьируются, схему обнаружения ошибок можно комбинировать с системой для повторных передач ошибочных данных. Это известно как автоматический повторный запрос (ARQ), и наиболее часто используется в Интернете. Альтернативный подход к контролю ошибок: гибридный автоматический запрос на повторение (HARQ), который представляет собой комбинацию ARQ и кодирования с исправлением ошибок.

Виды исправления ошибок

Есть три основных типа исправления ошибок.[4]

Автоматический повторный запрос (ARQ)

Автоматический повторный запрос (ARQ) — это метод контроля ошибок для передачи данных, который использует коды обнаружения ошибок, сообщения подтверждения и / или отрицательного подтверждения, и таймауты для достижения надежной передачи данных. An подтверждение это сообщение, отправленное получателем, чтобы указать, что он правильно получил кадр данных.

Обычно, когда передатчик не получает подтверждения до истечения тайм-аута (т. Е. В течение разумного промежутка времени после отправки кадра данных), он повторно передает кадр до тех пор, пока он не будет либо правильно принят, либо ошибка сохранится сверх заранее определенного количества повторных передач. .

Есть три типа протоколов ARQ. Остановка и ожидание ARQ, Go-Back-N ARQ, и Селективный повторный ARQ.

ARQ подходит, если канал связи имеет изменяющийся или неизвестный емкость, например, в Интернете. Однако ARQ требует наличия задний канал, приводит к возможному увеличению задержка из-за повторных передач и требует обслуживания буферов и таймеров для повторных передач, что в случае перегрузка сети может вызвать нагрузку на сервер и общую пропускную способность сети.[5]

Например, ARQ используется на коротковолновых радиоканалах в виде ARQ-E, или в сочетании с мультиплексированием как ARQ-M.

Прямое исправление ошибок

Прямое исправление ошибок (FEC) — это процесс добавления избыточный данные, такие как код исправления ошибок (ECC) в сообщение, чтобы оно могло быть восстановлено получателем, даже если было внесено несколько ошибок (в зависимости от возможностей используемого кода) либо в процессе передачи, либо при хранении. Поскольку получатель не должен запрашивать у отправителя повторную передачу данных, обратный канал не требуется при упреждающем исправлении ошибок и поэтому подходит для симплексная связь Такие как вещание. Коды с исправлением ошибок часто используются в нижний слой коммуникации, а также для надежного хранения на таких носителях, как Компакт-диски, DVD, жесткие диски, и баран.

Коды с исправлением ошибок обычно различают между сверточные коды и блочные коды:

  • Сверточные коды обрабатываются побитно. Они особенно подходят для аппаратной реализации, а Декодер Витерби позволяет оптимальное декодирование.
  • Коды блокировки обрабатываются на блок за блоком основание. Ранние примеры блочных кодов: коды повторения, Коды Хэмминга и многомерные коды проверки на четность. За ними последовал ряд эффективных кодов, Коды Рида – Соломона являются наиболее заметными из-за их широкого распространения в настоящее время. Турбо коды и коды с низкой плотностью проверки четности (LDPC) — относительно новые конструкции, которые могут обеспечить почти оптимальная эффективность.

Теорема Шеннона является важной теоремой для прямого исправления ошибок и описывает максимальную скорость передачи информации при котором возможна надежная связь по каналу с определенной вероятностью ошибки или соотношение сигнал шум (SNR). Этот строгий верхний предел выражается в терминах пропускная способность канала. В частности, теорема утверждает, что существуют такие коды, что с увеличением длины кодирования вероятность ошибки на дискретный канал без памяти можно сделать сколь угодно малым при условии, что кодовая скорость меньше пропускной способности канала. Кодовая скорость определяется как доля к / п из k исходные символы и п закодированные символы.

Фактическая максимальная допустимая кодовая скорость зависит от используемого кода исправления ошибок и может быть ниже. Это связано с тем, что доказательство Шеннона носило исключительно экзистенциальный характер и не показало, как построить коды, которые одновременно являются оптимальными и имеют эффективный алгоритмы кодирования и декодирования.

Гибридные схемы

Гибридный ARQ представляет собой комбинацию ARQ и прямого исправления ошибок. Есть два основных подхода:[5]

  • Сообщения всегда передаются с данными четности FEC (и избыточностью обнаружения ошибок). Приемник декодирует сообщение, используя информацию о четности, и запрашивает повторную передачу с использованием ARQ только в том случае, если данных четности было недостаточно для успешного декодирования (идентифицированного посредством неудачной проверки целостности).
  • Сообщения передаются без данных четности (только с информацией об обнаружении ошибок). Если приемник обнаруживает ошибку, он запрашивает информацию FEC от передатчика с помощью ARQ и использует ее для восстановления исходного сообщения.

Последний подход особенно привлекателен на канал стирания при использовании код бесскоростного стирания.

Схемы обнаружения ошибок

Обнаружение ошибок чаще всего осуществляется с помощью подходящего хеш-функция (или, в частности, контрольная сумма, циклическая проверка избыточности или другой алгоритм). Хеш-функция добавляет фиксированную длину тег в сообщение, что позволяет получателям проверять доставленное сообщение путем пересчета тега и сравнения его с предоставленным.

Существует огромное количество различных конструкций хеш-функций. Однако некоторые из них особенно широко используются из-за их простоты или их пригодности для обнаружения определенных видов ошибок (например, производительность циклического контроля избыточности при обнаружении пакетные ошибки ).

Кодирование минимального расстояния

Код с исправлением случайных ошибок, основанный на кодирование минимального расстояния может предоставить строгую гарантию количества обнаруживаемых ошибок, но не может защитить от атака на прообраз.

Коды повторения

А код повторения представляет собой схему кодирования, которая повторяет биты по каналу для достижения безошибочной связи. Учитывая поток данных, которые необходимо передать, данные разделяются на блоки битов. Каждый блок передается определенное количество раз. Например, чтобы отправить битовую комбинацию «1011», четырехбитовый блок можно повторить три раза, таким образом получая «1011 1011 1011». Если этот двенадцатибитовый шаблон был получен как «1010 1011 1011» — где первый блок не похож на два других, — произошла ошибка.

Код повторения очень неэффективен и может быть подвержен проблемам, если ошибка возникает в одном и том же месте для каждой группы (например, «1010 1010 1010» в предыдущем примере будет обнаружено как правильное). Преимущество кодов повторения состоит в том, что они чрезвычайно просты и фактически используются в некоторых передачах номера станций.[6][7]

Бит четности

А бит четности — это бит, который добавляется к группе исходных битов, чтобы гарантировать, что количество установленных битов (то есть битов со значением 1) в результате будет четным или нечетным. Это очень простая схема, которую можно использовать для обнаружения одного или любого другого нечетного числа (т. Е. Трех, пяти и т. Д.) Ошибок в выводе. Четное число перевернутых битов сделает бит четности правильным, даже если данные ошибочны.

Расширения и варианты механизма битов четности продольный контроль избыточности, поперечный контроль избыточности и аналогичные методы группировки битов.

Контрольная сумма

А контрольная сумма сообщения — это модульная арифметика сумма кодовых слов сообщения фиксированной длины слова (например, байтовых значений). Сумма может быть отменена с помощью дополнение операция перед передачей для обнаружения непреднамеренных сообщений с нулевым значением.

Схемы контрольной суммы включают биты четности, проверить цифры, и продольный контроль избыточности. Некоторые схемы контрольных сумм, такие как Алгоритм дамма, то Алгоритм Луна, а Алгоритм Верхоффа, специально разработаны для обнаружения ошибок, обычно вносимых людьми при записи или запоминании идентификационных номеров.

Циклическая проверка избыточности

А циклическая проверка избыточности (CRC) небезопасный хеш-функция предназначен для обнаружения случайных изменений цифровых данных в компьютерных сетях. Он не подходит для обнаружения злонамеренно внесенных ошибок. Характеризуется спецификацией порождающий полином, который используется как делитель в полиномиальное деление в столбик через конечное поле, принимая входные данные как дивиденд. В остаток становится результатом.

CRC имеет свойства, которые делают его хорошо подходящим для обнаружения пакетные ошибки. CRC особенно легко реализовать на оборудовании и поэтому обычно используются в компьютерная сеть и устройства хранения, такие как жесткие диски.

Бит четности можно рассматривать как 1-битную CRC особого случая.

Криптографическая хеш-функция

Выход криптографическая хеш-функция, также известный как Дайджест сообщения, может дать твердую уверенность в целостность данных независимо от того, являются ли изменения данных случайными (например, из-за ошибок передачи) или намеренно внесены. Любая модификация данных, скорее всего, будет обнаружена по несоответствию хеш-значения. Кроме того, с учетом некоторого хэш-значения, как правило, невозможно найти некоторые входные данные (кроме заданных), которые дадут такое же хеш-значение. Если злоумышленник может изменить не только сообщение, но и значение хеш-функции, то ключевой хеш или же код аутентификации сообщения (MAC) можно использовать для дополнительной безопасности. Не зная ключа, злоумышленник не может легко или удобно вычислить правильное ключевое значение хеш-функции для измененного сообщения.

Код исправления ошибок

Для обнаружения ошибок можно использовать любой код исправления ошибок. Код с минимум Расстояние Хэмминга, d, может обнаруживать до d — 1 ошибка в кодовом слове. Использование кодов с коррекцией ошибок на основе минимального расстояния для обнаружения ошибок может быть подходящим, если требуется строгое ограничение на минимальное количество обнаруживаемых ошибок.

Коды с минимальным расстоянием Хэмминга d = 2 являются вырожденными случаями кодов с исправлением ошибок и могут использоваться для обнаружения одиночных ошибок. Бит четности является примером кода обнаружения одиночной ошибки.

Приложения

Приложения, требующие малой задержки (например, телефонные разговоры), не могут использовать автоматический повторный запрос (ARQ); они должны использовать упреждающее исправление ошибок (FEC). К тому времени, когда система ARQ обнаружит ошибку и повторно передаст ее, повторно отправленные данные прибудут слишком поздно, чтобы их можно было использовать.

Приложения, в которых передатчик сразу же забывает информацию, как только она отправляется (например, большинство телекамер), не могут использовать ARQ; они должны использовать FEC, потому что при возникновении ошибки исходные данные больше не доступны.

Приложения, использующие ARQ, должны иметь обратный канал; приложения, не имеющие обратного канала, не могут использовать ARQ.

Приложения, требующие крайне низкого уровня ошибок (например, цифровые денежные переводы), должны использовать ARQ из-за возможности неисправимых ошибок с помощью FEC.

Техника обеспечения надежности и контроля также использует теорию кодов с исправлением ошибок.[8]

Интернет

В типичном TCP / IP стек, контроль ошибок выполняется на нескольких уровнях:

  • Каждый Кадр Ethernet использует CRC-32 обнаружение ошибок. Кадры с обнаруженными ошибками отбрасываются аппаратурой приемника.
  • В IPv4 заголовок содержит контрольная сумма защита содержимого заголовка. Пакеты с неверными контрольными суммами сбрасываются в сети или на приемнике.
  • Контрольная сумма не указана в IPv6 заголовок, чтобы минимизировать затраты на обработку в сетевая маршрутизация и потому что текущий уровень связи предполагается, что технология обеспечивает достаточное обнаружение ошибок (см. также RFC 3819 ).
  • UDP имеет необязательную контрольную сумму, покрывающую полезную нагрузку и адресную информацию в заголовках UDP и IP. Пакеты с неверными контрольными суммами отбрасываются Сетевой стек. Контрольная сумма не является обязательной для IPv4 и требуется для IPv6. Если этот параметр опущен, предполагается, что уровень канала передачи данных обеспечивает желаемый уровень защиты от ошибок.
  • TCP предоставляет контрольную сумму для защиты полезной нагрузки и адресной информации в заголовках TCP и IP. Пакеты с неверными контрольными суммами отбрасываются сетевым стеком и в конечном итоге повторно передаются с использованием ARQ либо явно (например, через тройной удар ) или неявно из-за тайм-аут.

Телекоммуникации в дальнем космосе

Разработка кодов исправления ошибок была тесно связана с историей полетов в дальний космос из-за чрезмерного ослабления мощности сигнала на межпланетных расстояниях и ограниченной доступной мощности на борту космических зондов. В то время как ранние миссии отправляли свои данные в незашифрованном виде, начиная с 1968 года, цифровое исправление ошибок было реализовано в форме (субоптимально декодированные) сверточные коды и Коды Рида – Маллера.[9] Код Рида-Мюллера хорошо подходил к шуму, которому подвергался космический корабль (приблизительно соответствуя кривая колокола ), и был реализован для космического корабля Mariner и использовался в миссиях с 1969 по 1977 год.

В Вояджер 1 и Вояджер 2 миссии, начатые в 1977 году, были предназначены для доставки цветных изображений и научной информации из Юпитер и Сатурн.[10] Это привело к повышенным требованиям к кодированию, и, таким образом, космический аппарат поддерживался (оптимально Витерби-декодированный ) сверточные коды, которые могут быть соединенный с внешним Код Голая (24,12,8). Корабль «Вояджер-2» дополнительно поддерживал реализацию Код Рида – Соломона. Конкатенированный код Рида – Соломона – Витерби (RSV) позволил произвести очень мощную коррекцию ошибок и позволил космическому аппарату совершить длительный путь к Уран и Нептун. После модернизации системы ECC в 1989 году оба корабля использовали кодирование V2 RSV.

В Консультативный комитет по системам космических данных в настоящее время рекомендует использовать коды исправления ошибок с производительностью, как минимум, аналогичной коду Voyager 2 RSV. Составные коды все больше теряют популярность в космических миссиях и заменяются более мощными кодами, такими как Турбо коды или же Коды LDPC.

Различные виды дальних космических и орбитальных миссий предполагают, что попытка найти универсальную систему исправления ошибок будет постоянной проблемой. Для миссий, близких к Земле, характер шум в канал связи отличается от того, что испытывает космический корабль в межпланетной миссии. Кроме того, по мере того как космический корабль удаляется от Земли, проблема коррекции шума становится все более сложной.

Спутниковое вещание

Спрос на спутник транспондер пропускная способность продолжает расти, чему способствует желание предоставлять телевидение (включая новые каналы и телевидение высокой четкости ) и данные IP. Доступность транспондеров и ограничения полосы пропускания ограничили этот рост. Емкость транспондера определяется выбранным модуляция схема и доля мощности, потребляемой ТЭК.

Хранилище данных

Коды обнаружения и исправления ошибок часто используются для повышения надежности носителей данных.[11] «Трек паритета» присутствовал на первом хранение данных на магнитной ленте в 1951 г. «Оптимальный прямоугольный код», использованный в групповая кодированная запись ленты не только обнаруживают, но и исправляют однобитовые ошибки. Немного форматы файлов, особенно форматы архивов, включить контрольную сумму (чаще всего CRC32 ) для обнаружения повреждения и усечения и может использовать избыточность и / или файлы четности для восстановления частей поврежденных данных. Коды Рида-Соломона используются в компакт-диски для исправления ошибок, вызванных царапинами.

Современные жесткие диски используют коды CRC для обнаружения и коды Рида – Соломона для исправления незначительных ошибок при чтении секторов, а также для восстановления данных из «испорченных» секторов и сохранения этих данных в резервных секторах.[12] RAID системы используют различные методы исправления ошибок для исправления ошибок, когда жесткий диск полностью выходит из строя. Файловые системы, такие как ZFS или же Btrfs, а также некоторые RAID внедрения, поддержка очистка данных и повторное обновление, которое позволяет обнаруживать и (надеюсь) восстанавливать плохие блоки перед их использованием.[13] Восстановленные данные могут быть перезаписаны точно в том же физическом месте, чтобы освободить блоки в другом месте на том же оборудовании, или данные могут быть перезаписаны на заменяющее оборудование.

Память с исправлением ошибок

DRAM память может обеспечить более надежную защиту от мягкие ошибки полагаясь на коды исправления ошибок.[14] Такой исправляющая память, известный как ECC или же EDAC-защищенный память, особенно желательна для критически важных приложений, таких как научные вычисления, финансы, медицина и т. д., а также для приложений дальнего космоса из-за увеличения радиация в космосе.

Контроллеры памяти с исправлением ошибок традиционно используют Коды Хэмминга, хотя некоторые используют тройное модульное резервирование.

Чередование позволяет распределить эффект одного космического луча, потенциально нарушающего несколько физически соседних битов по множеству слов, путем связывания соседних битов с разными словами. Пока одно событие расстроено (SEU) не превышает порог ошибки (например, одиночная ошибка) в любом конкретном слове между обращениями, это может быть исправлено (например, с помощью однобитового кода исправления ошибок), и иллюзия безошибочной системы памяти может быть сохранен.[15]

Помимо оборудования, обеспечивающего функции, необходимые для работы памяти ECC, операционные системы обычно содержат соответствующие средства отчетности, которые используются для предоставления уведомлений о прозрачном восстановлении мягких ошибок. Увеличение количества мягких ошибок может указывать на то, что DIMM модуль нуждается в замене, и такая обратная связь не была бы легко доступна без соответствующих возможностей отчетности. Одним из примеров является Ядро Linux с EDAC подсистема (ранее известная как Bluesmoke), который собирает данные от компонентов компьютерной системы с включенной функцией проверки ошибок; Помимо сбора и отправки отчетов о событиях, связанных с памятью ECC, он также поддерживает другие ошибки контрольной суммы, в том числе обнаруженные на Шина PCI.[16][17][18]

Некоторые системы также поддерживают очистка памяти.

Смотрите также

  • Код Бергера
  • Пакетный код исправления ошибок
  • Плевать будильник
  • Память ECC, тип компьютерного хранилища данных
  • Запрещенный ввод
  • Адаптация ссылки
  • Список алгоритмов обнаружения и исправления ошибок
  • Список кодов исправления ошибок
  • Список хеш-функций
  • Надежность (компьютерные сети)

Рекомендации

  1. ^ Томпсон, Томас М. (1983), От кодов с исправлением ошибок до сферических упаковок и простых групп, Математические монографии Каруса (№ 21), Математическая ассоциация Америки, стр. vii, ISBN  0-88385-023-0
  2. ^ Шеннон, C.E. (1948), «Математическая теория коммуникации», Технический журнал Bell System, п. 418, г. 27 (3): 379–423, Дои:10.1002 / j.1538-7305.1948.tb01338.x, HDL:10338.dmlcz / 101429, PMID  9230594CS1 maint: location (связь)
  3. ^ Голей, Марсель Дж. Э. (1949), «Заметки о цифровом кодировании», Proc.I.R.E. (I.E.E.E.), п. 657, г. 37CS1 maint: location (связь)
  4. ^ Гупта, Викас; Верма, Чандеркант (ноябрь 2012 г.). «Обнаружение и исправление ошибок: Введение». Международный журнал перспективных исследований в области компьютерных наук и программной инженерии. 2 (11). S2CID  17499858.
  5. ^ а б А. Дж. Маколи, Надежная широкополосная связь с использованием кода коррекции стирания пакетов, ACM SIGCOMM, 1990.
  6. ^ Франк ван Гервен. «Номера (и другие загадочные) станции». Получено 12 марта 2012.
  7. ^ Гэри Катлак (25 августа 2010 г.). «Таинственная русская» цифровая станция «изменила вещание через 20 лет». Gizmodo. Получено 12 марта 2012.
  8. ^ Бен-Гал I .; Herer Y .; Раз Т. (2003). «Самокорректирующаяся процедура проверки при ошибках проверки» (PDF). IIE Сделки по качеству и надежности, 34 (6), стр. 529-540. Архивировано из оригинал (PDF) на 2013-10-13. Получено 2014-01-10.
  9. ^ К. Эндрюс и др., Разработка кодов Turbo и LDPC для приложений дальнего космоса, Труды IEEE, Vol. 95, № 11, ноябрь 2007 г.
  10. ^ Хаффман, Уильям Кэри; Плесс, Вера С. (2003). Основы кодов с исправлением ошибок. Издательство Кембриджского университета. ISBN  978-0-521-78280-7.
  11. ^ Куртас, Эрозан М .; Васич, Бэйн (2018-10-03). Расширенные методы контроля ошибок для систем хранения данных. CRC Press. ISBN  978-1-4200-3649-7.[постоянная мертвая ссылка ]
  12. ^ Мой жесткий диск умер. Скотт А. Моултон
  13. ^ Цяо, Чжи; Фу, песня; Чен, Синь-Бунг; Сеттлмайер, Брэдли (2019). «Создание надежных высокопроизводительных систем хранения: эмпирическое и аналитическое исследование». Международная конференция IEEE 2019 по кластерным вычислениям (CLUSTER): 1–10. Дои:10.1109 / CLUSTER.2019.8891006. ISBN  978-1-7281-4734-5. S2CID  207951690.
  14. ^ «Обзор методов повышения устойчивости DRAM к ошибкам «, Журнал системной архитектуры, 2018
  15. ^ «Использование StrongArm SA-1110 в бортовом компьютере наноспутника». Космический центр Цинхуа, Университет Цинхуа, Пекин. Архивировано из оригинал на 2011-10-02. Получено 2009-02-16.
  16. ^ Джефф Лейтон. «Обнаружение и исправление ошибок». Журнал Linux. Получено 2014-08-12.
  17. ^ «Проект EDAC». bluesmoke.sourceforge.net. Получено 2014-08-12.
  18. ^ «Документация / edac.txt». Документация ядра Linux. kernel.org. 2014-06-16. Архивировано из оригинал на 2009-09-05. Получено 2014-08-12.

дальнейшее чтение

  • Шу Линь; Дэниел Дж. Костелло-младший (1983). Кодирование с контролем ошибок: основы и приложения. Prentice Hall. ISBN  0-13-283796-X.

внешняя ссылка

  • Он-лайн учебник: теория информации, выводы и алгоритмы обучения, к Дэвид Дж. К. Маккей, содержит главы, посвященные элементарным кодам, исправляющим ошибки; о теоретических пределах исправления ошибок; и на последних современных кодах исправления ошибок, в том числе коды с низкой плотностью проверки четности, турбокоды, и коды фонтанов.
  • Вычислить параметры линейных кодов — интерактивный интерфейс для генерации и вычисления параметров (например, минимальное расстояние, радиус покрытия ) из линейные коды исправления ошибок.
  • Страница ECC
  • SoftECC: система проверки целостности программной памяти
  • Настраиваемая программная библиотека обнаружения и исправления ошибок DRAM для HPC
  • Обнаружение и исправление скрытых искажений данных для крупномасштабных высокопроизводительных вычислений

Обнаружение ошибок в технике связи — действие, направленное на контроль целостности данных при записи/воспроизведении информации или при её передаче по линиям связи. Исправление ошибок (коррекция ошибок) — процедура восстановления информации после чтения её из устройства хранения или канала связи.

Для обнаружения ошибок используют коды обнаружения ошибок, для исправления — корректирующие коды (коды, исправляющие ошибки, коды с коррекцией ошибок, помехоустойчивые коды).

Содержание

  • 1 Способы борьбы с ошибками
  • 2 Коды обнаружения и исправления ошибок
    • 2.1 Блоковые коды
      • 2.1.1 Линейные коды общего вида
        • 2.1.1.1 Минимальное расстояние и корректирующая способность
        • 2.1.1.2 Коды Хемминга
        • 2.1.1.3 Общий метод декодирования линейных кодов
      • 2.1.2 Линейные циклические коды
        • 2.1.2.1 Порождающий (генераторный) полином
        • 2.1.2.2 Коды CRC
        • 2.1.2.3 Коды БЧХ
        • 2.1.2.4 Коды коррекции ошибок Рида — Соломона
      • 2.1.3 Преимущества и недостатки блоковых кодов
    • 2.2 Свёрточные коды
      • 2.2.1 Преимущества и недостатки свёрточных кодов
    • 2.3 Каскадное кодирование. Итеративное декодирование
    • 2.4 Сетевое кодирование
    • 2.5 Оценка эффективности кодов
      • 2.5.1 Граница Хемминга и совершенные коды
      • 2.5.2 Энергетический выигрыш
    • 2.6 Применение кодов, исправляющих ошибки
  • 3 Автоматический запрос повторной передачи
    • 3.1 Запрос ARQ с остановками (stop-and-wait ARQ)
    • 3.2 Непрерывный запрос ARQ с возвратом (continuous ARQ with pullback)
    • 3.3 Непрерывный запрос ARQ с выборочным повторением (continuous ARQ with selective repeat)
  • 4 См. также
  • 5 Литература
  • 6 Ссылки

Способы борьбы с ошибками

В процессе хранения данных и передачи информации по сетям связи неизбежно возникают ошибки. Контроль целостности данных и исправление ошибок — важные задачи на многих уровнях работы с информацией (в частности, физическом, канальном, транспортном уровнях сетевой модели OSI).

В системах связи возможны несколько стратегий борьбы с ошибками:

  • обнаружение ошибок в блоках данных и автоматический запрос повторной передачи повреждённых блоков — этот подход применяется, в основном, на канальном и транспортном уровнях;
  • обнаружение ошибок в блоках данных и отбрасывание повреждённых блоков — такой подход иногда применяется в системах потокового мультимедиа, где важна задержка передачи и нет времени на повторную передачу;
  • исправление ошибок (англ. forward error correction) применяется на физическом уровне.

Коды обнаружения и исправления ошибок

Корректирующие коды — коды, служащие для обнаружения или исправления ошибок, возникающих при передаче информации под влиянием помех, а также при её хранении.

Для этого при записи (передаче) в полезные данные добавляют специальным образом структурированную избыточную информацию (контрольное число), а при чтении (приёме) её используют для того, чтобы обнаружить или исправить ошибки. Естественно, что число ошибок, которое можно исправить, ограничено и зависит от конкретного применяемого кода.

С кодами, исправляющими ошибки, тесно связаны коды обнаружения ошибок. В отличие от первых, последние могут только установить факт наличия ошибки в переданных данных, но не исправить её.

В действительности, используемые коды обнаружения ошибок принадлежат к тем же классам кодов, что и коды, исправляющие ошибки. Фактически любой код, исправляющий ошибки, может быть также использован для обнаружения ошибок (при этом он будет способен обнаружить большее число ошибок, чем был способен исправить).

По способу работы с данными коды, исправляющие ошибки, делятся на блоковые, делящие информацию на фрагменты постоянной длины и обрабатывающие каждый из них в отдельности, и свёрточные, работающие с данными как с непрерывным потоком.

Блоковые коды

Пусть кодируемая информация делится на фрагменты длиной k бит, которые преобразуются в кодовые слова длиной n бит. Тогда соответствующий блоковый код обычно обозначают (n,;k). При этом число R=frac{k}{n} называется скоростью кода.

Если исходные k бит код оставляет неизменными, и добавляет n-k проверочных, такой код называется систематическим, иначе несистематическим.

Задать блоковый код можно по-разному, в том числе таблицей, где каждой совокупности из k информационных бит сопоставляется n бит кодового слова. Однако хороший код должен удовлетворять как минимум следующим критериям:

  • способность исправлять как можно большее число ошибок,
  • как можно меньшая избыточность,
  • простота кодирования и декодирования.

Нетрудно видеть, что приведённые требования противоречат друг другу. Именно поэтому существует большое количество кодов, каждый из которых пригоден для своего круга задач.

Практически все используемые коды являются линейными. Это связано с тем, что нелинейные коды значительно сложнее исследовать, и для них трудно обеспечить приемлемую лёгкость кодирования и декодирования.

Линейные коды общего вида

Линейный блоковый код — такой код, что множество его кодовых слов образует k-мерное линейное подпространство (назовём его C) в n-мерном линейном пространстве, изоморфное пространству k-битных векторов.

Это значит, что операция кодирования соответствует умножению исходного k-битного вектора на невырожденную матрицу G, называемую порождающей матрицей.

Пусть C^{perp} — ортогональное подпространство по отношению к C, а H — матрица, задающая базис этого подпространства. Тогда для любого вектора overrightarrow{v}in C справедливо:

overrightarrow{v}H^T=overrightarrow{0}.
Минимальное расстояние и корректирующая способность

Расстоянием Хемминга (метрикой Хемминга) между двумя кодовыми словами overrightarrow{u} и overrightarrow{v} называется количество отличных бит на соответствующих позициях:

d_H(overrightarrow{u},;overrightarrow{v})=sum_s{|u^{(s)}-v^{(s)}|}.

Минимальное расстояние Хемминга d_min=min_{une v}d_H(overrightarrow{u},;overrightarrow{v}) является важной характеристикой линейного блокового кода. Она показывает, насколько «далеко» расположены коды друг от друга. Она определяет другую, не менее важную характеристику — корректирующую способность:

t=leftlfloorfrac{d_min-1}{2}rightrfloor.

Корректирующая способность определяет, сколько ошибок передачи кода (типа 1leftrightarrow 0) можно гарантированно исправить. То есть вокруг каждого кодового слова A имеем t-окрестность A_t, которая состоит из всех возможных вариантов передачи кодового слова A с числом ошибок (1leftrightarrow 0) не более t. Никакие две окрестности двух любых кодовых слов не пересекаются друг с другом, так как расстояние между кодовыми словами (то есть центрами этих окрестностей) всегда больше двух их радиусов d_H(A,;B)geqslant d_min>2t.

Таким образом, получив искажённую кодовую комбинацию из A_t, декодер принимает решение, что исходной была кодовая комбинация A, исправляя тем самым не более t ошибок.

Поясним на примере. Предположим, что есть два кодовых слова A и B, расстояние Хемминга между ними равно 3. Если было передано слово A, и канал внёс ошибку в одном бите, она может быть исправлена, так как даже в этом случае принятое слово ближе к кодовому слову A, чем к любому другому, и, в частности, к B. Но если каналом были внесены ошибки в двух битах (в которых A отличалось от B), то результат ошибочной передачи A окажется ближе к B, чем A, и декодер примет решение, что передавалось слово B.

Коды Хемминга

Коды Хемминга — простейшие линейные коды с минимальным расстоянием 3, то есть способные исправить одну ошибку. Код Хемминга может быть представлен в таком виде, что синдром

overrightarrow{s}=overrightarrow{r}H^T, где overrightarrow{r} — принятый вектор, будет равен номеру позиции, в которой произошла ошибка. Это свойство позволяет сделать декодирование очень простым.
Общий метод декодирования линейных кодов

Любой код (в том числе нелинейный) можно декодировать с помощью обычной таблицы, где каждому значению принятого слова overrightarrow{r}_i соответствует наиболее вероятное переданное слово overrightarrow{u}_i. Однако данный метод требует применения огромных таблиц уже для кодовых слов сравнительно небольшой длины.

Для линейных кодов этот метод можно существенно упростить. При этом для каждого принятого вектора overrightarrow{r}_i вычисляется синдром overrightarrow{s}_i=overrightarrow{r}_i H^T. Поскольку overrightarrow{r}_i=overrightarrow{v}_i+overrightarrow{e}_i, где overrightarrow{v}_i — кодовое слово, а overrightarrow{e}_i — вектор ошибки, то overrightarrow{s}_i=overrightarrow{e}_i H^T. Затем с помощью таблицы по синдрому определяется вектор ошибки, с помощью которого определяется переданное кодовое слово. При этом таблица получается гораздо меньше, чем при использовании предыдущего метода.

Линейные циклические коды

Несмотря на то, что декодирование линейных кодов значительно проще декодирования большинства нелинейных, для большинства кодов этот процесс всё ещё достаточно сложен. Циклические коды, кроме более простого декодирования, обладают и другими важными свойствами.

Циклическим кодом является линейный код, обладающий следующим свойством: если overrightarrow{v} является кодовым словом, то его циклическая перестановка также является кодовым словом.

Слова циклического кода удобно представлять в виде многочленов. Например, кодовое слово overrightarrow{v}=(v_0,;v_1,;ldots,;v_{n-1}) представляется в виде полинома v(x)=v_0+v_1 x+ldots+v_{n-1}x^{n-1}. При этом циклический сдвиг кодового слова эквивалентен умножению многочлена на x по модулю x^n-1.

В дальнейшем, если не указано иное, мы будем считать, что циклический код является двоичным, то есть v_0,;v_1,;ldots могут принимать значения 0 или 1.

Порождающий (генераторный) полином

Можно показать, что все кодовые слова конкретного циклического кода кратны определённому порождающему полиному g(x). Порождающий полином является делителем x^n-1.

С помощью порождающего полинома осуществляется кодирование циклическим кодом. В частности:

Коды CRC

Коды CRC (англ. cyclic redundancy check — циклическая избыточная проверка) являются систематическими кодами, предназначенными не для исправления ошибок, а для их обнаружения. Они используют способ систематического кодирования, изложенный выше: «контрольная сумма» вычисляется путем деления x^{n-k}u(x) на g(x). Ввиду того, что исправление ошибок не требуется, проверка правильности передачи может производиться точно так же.

Таким образом, вид полинома g(x) задаёт конкретный код CRC. Примеры наиболее популярных полиномов:

название кода степень полином
CRC-12 12 x^{12}+x^{11}+x^{3}+x^{2}+x+1
CRC-16 16 x^{16}+x^{15}+x^{2}+1
CRC-CCITT 16 x^{16}+x^{12}+x^{5}+1
CRC-32 32 x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1
Коды БЧХ

Коды Боуза — Чоудхури — Хоквингема (БЧХ) являются подклассом циклических кодов. Их отличительное свойство — возможность построения кода БЧХ с минимальным расстоянием не меньше заданного. Это важно, потому что, вообще говоря, определение минимального расстояния кода есть очень сложная задача.

Математически полинома g(x) на множители в поле Галуа.

Коды коррекции ошибок Рида — Соломона

Коды Рида — Соломона — недвоичные циклические коды, позволяющие исправлять ошибки в блоках данных. Элементами кодового вектора являются не биты, а группы битов (блоки). Очень распространены коды Рида-Соломона, работающие с байтами (октетами).

Математически коды Рида — Соломона являются кодами БЧХ.

Преимущества и недостатки блоковых кодов

Хотя блоковые коды, как правило, хорошо справляются с редкими, но большими пачками ошибок, их эффективность при частых, но небольших ошибках (например, в канале с АБГШ), менее высока.

Свёрточные коды

Свёрточные коды, в отличие от блоковых, не делят информацию на фрагменты и работают с ней как со сплошным потоком данных.

Свёрточные коды, как правило, порождаются дискретной линейной инвариантной во времени системой. Поэтому, в отличие от большинства блоковых кодов, свёрточное кодирование — очень простая операция, чего нельзя сказать о декодировании.

Кодирование свёрточным кодом производится с помощью регистра сдвига, отводы от которого суммируются по модулю два. Таких сумм может быть две (чаще всего) или больше.

Декодирование свёрточных кодов, как правило, производится по алгоритму Витерби, который пытается восстановить переданную последовательность согласно критерию максимального правдоподобия.

Преимущества и недостатки свёрточных кодов

Свёрточные коды эффективно работают в канале с белым шумом, но плохо справляются с пакетами ошибок. Более того, если декодер ошибается, на его выходе всегда возникает пакет ошибок.

Каскадное кодирование. Итеративное декодирование

Преимущества разных способов кодирования можно объединить, применив каскадное кодирование. При этом информация сначала кодируется одним кодом, а затем другим, в результате получается код-произведение.

Например, популярной является следующая конструкция: данные кодируются кодом Рида-Соломона, затем перемежаются (при этом символы, расположенные близко, помещаются далеко друг от друга) и кодируются свёрточным кодом. На приёмнике сначала декодируется свёрточный код, затем осуществляется обратное перемежение (при этом пачки ошибок на выходе свёрточного декодера попадают в разные кодовые слова кода Рида — Соломона), и затем осуществляется декодирование кода Рида — Соломона.

Некоторые коды-произведения специально сконструированы для итеративного декодирования, при котором декодирование осуществляется в несколько проходов, каждый из которых использует информацию от предыдущего. Это позволяет добиться большой эффективности, однако декодирование требует больших ресурсов. К таким кодам относят турбо-коды и LDPC-коды (коды Галлагера).

Сетевое кодирование

Оценка эффективности кодов

Эффективность кодов определяется количеством ошибок, которые тот может исправить, количеством избыточной информации, добавление которой требуется, а также сложностью реализации кодирования и декодирования (как аппаратной, так и в виде программы для ЭВМ).

Граница Хемминга и совершенные коды

Пусть имеется двоичный блоковый (n,k) код с корректирующей способностью t. Тогда справедливо неравенство (называемое границей Хемминга):

sum_{i=0}^t {nchoose i}leqslant 2^{n-k}.

Коды, удовлетворяющие этой границе с равенством, называются совершенными. К совершенным кодам относятся, например, коды Хемминга. Часто применяемые на практике коды с большой корректирующей способностью (такие, как коды Рида — Соломона) не являются совершенными.

Энергетический выигрыш

При передаче информации по каналу связи вероятность ошибки зависит от отношения сигнал/шум на входе демодулятора, таким образом, при постоянном уровне шума решающее значение имеет мощность передатчика. В системах спутниковой и мобильной, а также других типов связи остро стоит вопрос экономии энергии. Кроме того, в определённых системах связи (например, телефонной) неограниченно повышать мощность сигнала не дают технические ограничения.

Поскольку помехоустойчивое кодирование позволяет исправлять ошибки, при его применении мощность передатчика можно снизить, оставляя скорость передачи информации неизменной. Энергетический выигрыш определяется как разница отношений с/ш при наличии и отсутствии кодирования.

Применение кодов, исправляющих ошибки

Коды, исправляющие ошибки, применяются:

  • в системах цифровой связи, в том числе: спутниковой, радиорелейной, сотовой, передаче данных по телефонным каналам.
  • в системах хранения информации, в том числе магнитных и оптических.

Коды, обнаруживающие ошибки, применяются в сетевых протоколах различных уровней.

Автоматический запрос повторной передачи

Системы с автоматическим запросом повторной передачи (ARQ — Automatic Repeat reQuest) основаны на технологии обнаружения ошибок. Распространены следующие методы автоматического запроса:

Запрос ARQ с остановками (stop-and-wait ARQ)

Идея этого метода заключается в том, что передатчик ожидает от приемника подтверждения успешного приема предыдущего блока данных перед тем, как начать передачу следующего. В случае, если блок данных был принят с ошибкой, приемник передает отрицательное подтверждение (negative acknowledgement, NAK), и передатчик повторяет передачу блока. Данный метод подходит для полудуплексного канала связи. Его недостатком является низкая скорость из-за высоких накладных расходов на ожидание.

Непрерывный запрос ARQ с возвратом (continuous ARQ with pullback)

Для этого метода необходим полнодуплексный канал. Передача данных от передатчика к приемнику производится одновременно. В случае ошибки передача возобновляется, начиная с ошибочного блока (то есть передается ошибочный блок и все последующие).

Непрерывный запрос ARQ с выборочным повторением (continuous ARQ with selective repeat)

При этом подходе осуществляется передача только ошибочно принятых блоков данных.

См. также

  • Цифровая связь
  • Код ответа (Код причины завершения)
  • Линейный код
  • Циклический код
  • Код Боуза — Чоудхури — Хоквингема
  • Код Рида — Соломона
  • LDPC
  • Свёрточный код
  • Турбо-код

Литература

  • Блейхут Р. Теория и практика кодов, контролирующих ошибки = Theory and Practice of Error Control Codes. — М.: Мир, 1986. — 576 с.
  • Мак-Вильямс Ф. Дж., Слоэн Н. Дж. А. Теория кодов, исправляющих ошибки. М.: Радио и связь, 1979.
  • Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение / пер. с англ. В. Б. Афанасьева. — М.: Техносфера, 2006. — 320 с. — (Мир связи). — 2000 экз. — ISBN 5-94836-035-0

Ссылки

  • Помехоустойчивое кодирование (11 ноября 2001). — реферат по проблеме кодирования сообщений с исправлением ошибок. Архивировано из первоисточника 25 августа 2011. Проверено 25 декабря 2006.

Методы, обеспечивающие надежную доставку цифровых данных по ненадежным каналам связи Устранение ошибок передачи, вызванных атмосферой Земли ( слева), ученые Годдарда применили исправление ошибок Рида – Соломона (справа), которое обычно используется в компакт-дисках и DVD. Типичные ошибки включают отсутствие пикселей (белые) и ложные сигналы (черные). Белая полоса указывает на короткий период, когда передача была приостановлена.

В теории информации и теории кодирования с приложениями в информатике и телекоммуникациях, обнаружение и исправление ошибок или контроль ошибок — это методы, которые обеспечивают надежную доставку цифровых данных по ненадежным каналам связи. Многие каналы связи подвержены канальному шуму, и поэтому во время передачи от источника к приемнику могут возникать ошибки. Методы обнаружения ошибок позволяют обнаруживать такие ошибки, а исправление ошибок во многих случаях позволяет восстановить исходные данные.

Содержание

  • 1 Определения
  • 2 История
  • 3 Введение
  • 4 Типы исправления ошибок
    • 4.1 Автоматический повторный запрос (ARQ)
    • 4.2 Прямое исправление ошибок
    • 4.3 Гибридные схемы
  • 5 Схемы обнаружения ошибок
    • 5.1 Кодирование на минимальном расстоянии
    • 5.2 Коды повторения
    • 5.3 Бит четности
    • 5.4 Контрольная сумма
    • 5.5 Циклическая проверка избыточности
    • 5.6 Криптографическая хеш-функция
    • 5.7 Ошибка код исправления
  • 6 Приложения
    • 6.1 Интернет
    • 6.2 Связь в дальнем космосе
    • 6.3 Спутниковое вещание
    • 6.4 Хранение данных
    • 6.5 Память с исправлением ошибок
  • 7 См. также
  • 8 Ссылки
  • 9 Дополнительная литература
  • 10 Внешние ссылки

Определения

Обнаружение ошибок — это обнаружение ошибок, вызванных шумом или другими помехами во время передачи от передатчика к приемнику. Исправление ошибок — это обнаружение ошибок и восстановление исходных безошибочных данных.

История

Современная разработка кодов исправления ошибок приписывается Ричарду Хэммингу в 1947 году. Описание кода Хэмминга появилось в Математической теории коммуникации Клода Шеннона и было быстро обобщено Марселем Дж. Э. Голэем.

Введение

Все схемы обнаружения и исправления ошибок добавляют некоторые избыточность (т. е. некоторые дополнительные данные) сообщения, которые получатели могут использовать для проверки согласованности доставленного сообщения и для восстановления данных, которые были определены как поврежденные. Схемы обнаружения и исправления ошибок могут быть систематическими или несистематическими. В систематической схеме передатчик отправляет исходные данные и присоединяет фиксированное количество контрольных битов (или данных четности), которые выводятся из битов данных некоторым детерминированным алгоритмом. Если требуется только обнаружение ошибок, приемник может просто применить тот же алгоритм к полученным битам данных и сравнить свой вывод с полученными контрольными битами; если значения не совпадают, в какой-то момент во время передачи произошла ошибка. В системе, которая использует несистематический код, исходное сообщение преобразуется в закодированное сообщение, несущее ту же информацию и имеющее по крайней мере такое же количество битов, как и исходное сообщение.

Хорошие характеристики контроля ошибок требуют, чтобы схема была выбрана на основе характеристик канала связи. Распространенные модели каналов включают в себя модели без памяти, в которых ошибки возникают случайно и с определенной вероятностью, и динамические модели, в которых ошибки возникают в основном в пакетах . Следовательно, коды обнаружения и исправления ошибок можно в целом различать между обнаружением / исправлением случайных ошибок и обнаружением / исправлением пакетов ошибок. Некоторые коды также могут подходить для сочетания случайных ошибок и пакетных ошибок.

Если характеристики канала не могут быть определены или сильно изменяются, схема обнаружения ошибок может быть объединена с системой для повторных передач ошибочных данных. Это известно как автоматический запрос на повторение (ARQ) и наиболее широко используется в Интернете. Альтернативный подход для контроля ошибок — это гибридный автоматический запрос на повторение (HARQ), который представляет собой комбинацию ARQ и кодирования с исправлением ошибок.

Типы исправления ошибок

Существует три основных типа исправления ошибок.

Автоматический повторный запрос (ARQ)

Автоматический повторный запрос (ARQ) — это метод контроля ошибок для передачи данных, который использует коды обнаружения ошибок, сообщения подтверждения и / или отрицательного подтверждения и тайм-ауты для обеспечения надежной передачи данных. Подтверждение — это сообщение, отправленное получателем, чтобы указать, что он правильно получил кадр данных.

Обычно, когда передатчик не получает подтверждения до истечения тайм-аута (т. Е. В течение разумного периода времени после отправки фрейм данных), он повторно передает фрейм до тех пор, пока он либо не будет правильно принят, либо пока ошибка не останется сверх заранее определенного количества повторных передач.

Три типа протоколов ARQ: Stop-and-wait ARQ, Go-Back-N ARQ и Selective Repeat ARQ.

ARQ is подходит, если канал связи имеет переменную или неизвестную пропускную способность, например, в случае с Интернетом. Однако ARQ требует наличия обратного канала, что приводит к возможному увеличению задержки из-за повторных передач и требует обслуживания буферов и таймеров для повторных передач, что в случае перегрузка сети может вызвать нагрузку на сервер и общую пропускную способность сети.

Например, ARQ используется на коротковолновых радиоканалах в форме ARQ-E, или в сочетании с мультиплексированием как ARQ-M.

Прямое исправление ошибок

Прямое исправление ошибок (FEC) — это процесс добавления избыточных данных, таких как исправление ошибок code (ECC) в сообщение, чтобы оно могло быть восстановлено получателем, даже если в процессе передачи или при хранении был внесен ряд ошибок (в зависимости от возможностей используемого кода). Так как получатель не должен запрашивать у отправителя повторную передачу данных, обратный канал не требуется при прямом исправлении ошибок, и поэтому он подходит для симплексной связи, например вещание. Коды с исправлением ошибок часто используются в нижнем уровне связи, а также для надежного хранения на таких носителях, как CD, DVD, жесткие диски и RAM.

Коды с исправлением ошибок обычно различают между сверточными кодами и блочными кодами. :

  • Сверточные коды обрабатываются побитно. Они особенно подходят для аппаратной реализации, а декодер Витерби обеспечивает оптимальное декодирование.
  • Блочные коды обрабатываются на поблочной основе. Ранними примерами блочных кодов являются коды повторения, коды Хэмминга и многомерные коды контроля четности. За ними последовал ряд эффективных кодов, из которых коды Рида – Соломона являются наиболее известными из-за их широкого распространения в настоящее время. Турбокоды и коды с низкой плотностью проверки четности (LDPC) — это относительно новые конструкции, которые могут обеспечить почти оптимальную эффективность.

Теорема Шеннона — важная теорема при прямом исправлении ошибок и описывает максимальную информационную скорость, на которой возможна надежная связь по каналу, имеющему определенную вероятность ошибки или отношение сигнал / шум (SNR). Этот строгий верхний предел выражается в единицах пропускной способности канала . Более конкретно, в теореме говорится, что существуют такие коды, что с увеличением длины кодирования вероятность ошибки на дискретном канале без памяти может быть сделана сколь угодно малой при условии, что кодовая скорость меньше чем емкость канала. Кодовая скорость определяется как доля k / n из k исходных символов и n кодированных символов.

Фактическая максимальная разрешенная кодовая скорость зависит от используемого кода исправления ошибок и может быть ниже. Это связано с тем, что доказательство Шеннона носило только экзистенциальный характер и не показало, как создавать коды, которые одновременно являются оптимальными и имеют эффективные алгоритмы кодирования и декодирования.

Гибридные схемы

Гибридный ARQ — это комбинация ARQ и прямого исправления ошибок. Существует два основных подхода:

  • Сообщения всегда передаются с данными четности FEC (и избыточностью для обнаружения ошибок). Получатель декодирует сообщение, используя информацию о четности, и запрашивает повторную передачу с использованием ARQ только в том случае, если данных четности было недостаточно для успешного декодирования (идентифицировано посредством неудачной проверки целостности).
  • Сообщения передаются без данных четности (только с информация об обнаружении ошибок). Если приемник обнаруживает ошибку, он запрашивает информацию FEC от передатчика с помощью ARQ и использует ее для восстановления исходного сообщения.

Последний подход особенно привлекателен для канала стирания при использовании код бесскоростного стирания.

.

Схемы обнаружения ошибок

Обнаружение ошибок чаще всего реализуется с использованием подходящей хэш-функции (или, в частности, контрольной суммы, циклической проверка избыточности или другой алгоритм). Хеш-функция добавляет к сообщению тег фиксированной длины, который позволяет получателям проверять доставленное сообщение, повторно вычисляя тег и сравнивая его с предоставленным.

Существует огромное количество различных конструкций хеш-функций. Однако некоторые из них имеют особенно широкое распространение из-за их простоты или их пригодности для обнаружения определенных видов ошибок (например, производительности циклического контроля избыточности при обнаружении пакетных ошибок ).

Кодирование с минимальным расстоянием

Код с исправлением случайных ошибок на основе кодирования с минимальным расстоянием может обеспечить строгую гарантию количества обнаруживаемых ошибок, но может не защитить против атаки прообразом.

Коды повторения

A код повторения — это схема кодирования, которая повторяет биты по каналу для достижения безошибочной связи. Учитывая поток данных, которые необходимо передать, данные делятся на блоки битов. Каждый блок передается определенное количество раз. Например, чтобы отправить битовую комбинацию «1011», четырехбитовый блок можно повторить три раза, таким образом получая «1011 1011 1011». Если этот двенадцатибитовый шаблон был получен как «1010 1011 1011» — где первый блок не похож на два других, — произошла ошибка.

Код повторения очень неэффективен и может быть подвержен проблемам, если ошибка возникает в одном и том же месте для каждой группы (например, «1010 1010 1010» в предыдущем примере будет определено как правильное). Преимущество кодов повторения состоит в том, что они чрезвычайно просты и фактически используются в некоторых передачах номеров станций.

Бит четности

Бит четности — это бит, который добавляется к группе исходные биты, чтобы гарантировать, что количество установленных битов (т. е. битов со значением 1) в результате будет четным или нечетным. Это очень простая схема, которую можно использовать для обнаружения одного или любого другого нечетного числа (т. Е. Трех, пяти и т. Д.) Ошибок в выводе. Четное количество перевернутых битов сделает бит четности правильным, даже если данные ошибочны.

Расширениями и вариантами механизма битов четности являются проверки с продольным избыточным кодом, проверки с поперечным избыточным кодом и аналогичные методы группирования битов.

Контрольная сумма

Контрольная сумма сообщения — это модульная арифметическая сумма кодовых слов сообщения фиксированной длины слова (например, байтовых значений). Сумма может быть инвертирована посредством операции дополнения до единиц перед передачей для обнаружения непреднамеренных сообщений с нулевым значением.

Схемы контрольных сумм включают биты четности, контрольные цифры и проверки продольным избыточным кодом. Некоторые схемы контрольных сумм, такие как алгоритм Дамма, алгоритм Луна и алгоритм Верхоффа, специально разработаны для обнаружения ошибок, обычно вносимых людьми при записи или запоминание идентификационных номеров.

Проверка циклическим избыточным кодом

Проверка циклическим избыточным кодом (CRC) — это незащищенная хэш-функция, предназначенная для обнаружения случайных изменений цифровых данных в компьютерных сетях. Он не подходит для обнаружения злонамеренно внесенных ошибок. Он характеризуется указанием порождающего полинома, который используется в качестве делителя в полиномиальном делении над конечным полем, принимая входные данные в качестве дивиденд. остаток становится результатом.

CRC имеет свойства, которые делают его хорошо подходящим для обнаружения пакетных ошибок. CRC особенно легко реализовать на оборудовании и поэтому обычно используются в компьютерных сетях и устройствах хранения, таких как жесткие диски.

. Бит четности может рассматриваться как 1-битный частный случай. CRC.

Криптографическая хеш-функция

Выходные данные криптографической хеш-функции, также известные как дайджест сообщения, могут обеспечить надежную гарантию целостности данных, независимо от того, происходят ли изменения данных случайно (например, из-за ошибок передачи) или злонамеренно. Любая модификация данных, скорее всего, будет обнаружена по несоответствию хеш-значения. Кроме того, с учетом некоторого хэш-значения, как правило, невозможно найти некоторые входные данные (кроме заданных), которые дадут такое же хеш-значение. Если злоумышленник может изменить не только сообщение, но и значение хеш-функции, то для дополнительной безопасности можно использовать хэш-код с ключом или код аутентификации сообщения (MAC). Не зная ключа, злоумышленник не может легко или удобно вычислить правильное ключевое значение хеш-функции для измененного сообщения.

Код исправления ошибок

Для обнаружения ошибок можно использовать любой код исправления ошибок. Код с минимальным расстоянием Хэмминга, d, может обнаруживать до d — 1 ошибок в кодовом слове. Использование кодов с коррекцией ошибок на основе минимального расстояния для обнаружения ошибок может быть подходящим, если требуется строгое ограничение на минимальное количество обнаруживаемых ошибок.

Коды с минимальным расстоянием Хэмминга d = 2 являются вырожденными случаями кодов с исправлением ошибок и могут использоваться для обнаружения одиночных ошибок. Бит четности является примером кода обнаружения одиночной ошибки.

Приложения

Приложения, которым требуется низкая задержка (например, телефонные разговоры), не могут использовать автоматический запрос на повторение (ARQ); они должны использовать прямое исправление ошибок (FEC). К тому времени, когда система ARQ обнаружит ошибку и повторно передаст ее, повторно отправленные данные прибудут слишком поздно, чтобы их можно было использовать.

Приложения, в которых передатчик сразу же забывает информацию, как только она отправляется (например, большинство телекамер), не могут использовать ARQ; они должны использовать FEC, потому что при возникновении ошибки исходные данные больше не доступны.

Приложения, использующие ARQ, должны иметь канал возврата ; приложения, не имеющие обратного канала, не могут использовать ARQ.

Приложения, требующие чрезвычайно низкого уровня ошибок (например, цифровые денежные переводы), должны использовать ARQ из-за возможности неисправимых ошибок с помощью FEC.

Надежность и инженерная проверка также используют теорию кодов исправления ошибок.

Интернет

В типичном стеке TCP / IP ошибка управление осуществляется на нескольких уровнях:

  • Каждый кадр Ethernet использует CRC-32 обнаружение ошибок. Фреймы с обнаруженными ошибками отбрасываются оборудованием приемника.
  • Заголовок IPv4 содержит контрольную сумму , защищающую содержимое заголовка. Пакеты с неверными контрольными суммами отбрасываются в сети или на приемнике.
  • Контрольная сумма не указана в заголовке IPv6, чтобы минимизировать затраты на обработку в сетевой маршрутизации и поскольку предполагается, что текущая технология канального уровня обеспечивает достаточное обнаружение ошибок (см. также RFC 3819 ).
  • UDP, имеет дополнительную контрольную сумму, покрывающую полезную нагрузку и информацию об адресации в заголовки UDP и IP. Пакеты с неверными контрольными суммами отбрасываются сетевым стеком . Контрольная сумма не является обязательной для IPv4 и требуется для IPv6. Если не указано, предполагается, что уровень канала передачи данных обеспечивает желаемый уровень защиты от ошибок.
  • TCP обеспечивает контрольную сумму для защиты полезной нагрузки и адресной информации в заголовках TCP и IP. Пакеты с неверными контрольными суммами отбрасываются сетевым стеком и в конечном итоге повторно передаются с использованием ARQ либо явно (например, как через тройное подтверждение ) или неявно из-за тайм-аута .

Телекоммуникации в дальнем космосе

Разработка кодов исправления ошибок была тесно связана с историей полетов в дальний космос из-за сильного ослабления мощности сигнала на межпланетных расстояниях и ограниченной мощности на борту космических зондов. В то время как ранние миссии отправляли свои данные в незашифрованном виде, начиная с 1968 года, цифровая коррекция ошибок была реализована в форме (субоптимально декодированных) сверточных кодов и кодов Рида – Маллера. Код Рида-Мюллера хорошо подходил к шуму, которому подвергался космический корабль (примерно соответствуя кривой ), и был реализован для космического корабля Mariner и использовался в миссиях между 1969 и 1977 годами.

Миссии «Вояджер-1 » и «Вояджер-2 «, начатые в 1977 году, были разработаны для доставки цветных изображений и научной информации с Юпитера и Сатурна. Это привело к повышенным требованиям к кодированию, и, таким образом, космический аппарат поддерживался (оптимально Витерби-декодированный ) сверточными кодами, которые могли быть сцеплены с внешним Голеем (24,12, 8) код. Корабль «Вояджер-2» дополнительно поддерживал реализацию кода Рида-Соломона. Конкатенированный код Рида – Соломона – Витерби (RSV) позволил произвести очень мощную коррекцию ошибок и позволил космическому кораблю совершить длительное путешествие к Урану и Нептуну. После модернизации системы ECC в 1989 году оба корабля использовали кодирование V2 RSV.

Консультативный комитет по космическим информационным системам в настоящее время рекомендует использовать коды исправления ошибок, как минимум, аналогичные RSV-коду Voyager 2. Составные коды все больше теряют популярность в космических миссиях и заменяются более мощными кодами, такими как Турбо-коды или LDPC-коды.

Различные виды выполняемых космических и орбитальных миссий. предполагают, что попытки найти универсальную систему исправления ошибок будут постоянной проблемой. Для полетов вблизи Земли характер шума в канале связи отличается от того, который испытывает космический корабль в межпланетной миссии. Кроме того, по мере того как космический корабль удаляется от Земли, проблема коррекции шума становится все более сложной.

Спутниковое вещание

Спрос на пропускную способность спутникового транспондера продолжает расти, чему способствует желание предоставлять телевидение (включая новые каналы и телевидение высокой четкости ) и данные IP. Доступность транспондеров и ограничения полосы пропускания ограничили этот рост. Емкость транспондера определяется выбранной схемой модуляции и долей мощности, потребляемой FEC.

Хранение данных

Коды обнаружения и исправления ошибок часто используются для повышения надежности носителей данных. «Дорожка четности» присутствовала на первом устройстве хранения данных на магнитной ленте в 1951 году. «Оптимальный прямоугольный код», используемый в записи с групповым кодированием, не только обнаруживает, но и корректирует однобитовые записи. ошибки. Некоторые форматы файлов, особенно архивные форматы, включают контрольную сумму (чаще всего CRC32 ) для обнаружения повреждений и усечения и могут использовать избыточность и / или четность files для восстановления поврежденных данных. Коды Рида-Соломона используются в компакт-дисках для исправления ошибок, вызванных царапинами.

Современные жесткие диски используют коды CRC для обнаружения и коды Рида – Соломона для исправления незначительных ошибок при чтении секторов, а также для восстановления данных из секторов, которые «испортились», и сохранения этих данных в резервных секторах. Системы RAID используют различные методы исправления ошибок для исправления ошибок, когда жесткий диск полностью выходит из строя. Файловые системы, такие как ZFS или Btrfs, а также некоторые реализации RAID, поддерживают очистку данных и восстановление обновлений, что позволяет удалять поврежденные блоки. обнаружены и (надеюсь) восстановлены, прежде чем они будут использованы. Восстановленные данные могут быть перезаписаны точно в том же физическом месте, чтобы освободить блоки в другом месте на том же оборудовании, или данные могут быть перезаписаны на заменяющее оборудование.

Память с исправлением ошибок

Память DRAM может обеспечить более надежную защиту от программных ошибок, полагаясь на коды исправления ошибок. Такая память с исправлением ошибок, известная как память с защитой ECC или EDAC, особенно желательна для критически важных приложений, таких как научные вычисления, финансы, медицина и т. Д., А также для приложений дальнего космоса из-за повышенное излучение в космосе.

Контроллеры памяти с исправлением ошибок традиционно используют коды Хэмминга, хотя некоторые используют тройную модульную избыточность.

Чередование позволяет распределить эффект одного космического луча, потенциально нарушающего множество физически соседние биты в нескольких словах путем связывания соседних битов с разными словами. До тех пор, пока нарушение единичного события (SEU) не превышает пороговое значение ошибки (например, одиночная ошибка) в любом конкретном слове между доступами, оно может быть исправлено (например, путем исправления однобитовой ошибки code), и может сохраняться иллюзия безошибочной системы памяти.

Помимо оборудования, обеспечивающего функции, необходимые для работы памяти ECC, операционные системы обычно содержат соответствующие средства отчетности, которые используются для предоставления уведомлений при прозрачном восстановлении программных ошибок. Увеличение количества программных ошибок может указывать на то, что модуль DIMM нуждается в замене, и такая обратная связь не была бы легко доступна без соответствующих возможностей отчетности. Одним из примеров является подсистема EDAC ядра Linux (ранее известная как Bluesmoke), которая собирает данные из компонентов компьютерной системы, поддерживающих проверку ошибок; Помимо сбора и отправки отчетов о событиях, связанных с памятью ECC, он также поддерживает другие ошибки контрольного суммирования, в том числе обнаруженные на шине PCI.

Некоторые системы также поддерживают очистку памяти.

См. также

  • Код Бергера
  • Пакетный код коррекции ошибок
  • Неважный сигнал тревоги
  • ECC-память, тип хранения компьютерных данных
  • Запрещенный ввод
  • Адаптация связи
  • Список алгоритмов для обнаружение и исправление ошибок
  • Список кодов исправления ошибок
  • Список хэш-функций
  • Надежность (компьютерные сети)

Ссылки

Дополнительная литература

  • Шу Линь; Дэниел Дж. Костелло младший (1983). Кодирование с контролем ошибок: основы и приложения. Прентис Холл. ISBN 0-13-283796-X.

Внешние ссылки

  • Он-лайн учебник: Теория информации, выводы и алгоритмы обучения, Дэвид Дж. К. Маккей, содержит главы по элементарным кодам исправления ошибок; о теоретических пределах исправления ошибок; и на последних современных кодах исправления ошибок, включая коды проверки четности с низкой плотностью, турбокоды и фонтанные коды.
  • Compute параметры линейных кодов — оперативный интерфейс для генерации и вычисления параметров (например, минимальное расстояние, радиус покрытия ) линейных кодов с исправлением ошибок.
  • Страница ECC
  • SoftECC: Система для проверки целостности памяти программного обеспечения
  • Настраиваемая программная библиотека обнаружения и исправления ошибок DRAM для HPC
  • Обнаружение и исправление скрытого искажения данных для крупномасштабных высокопроизводительных вычислений

To clean up transmission errors introduced by Earth’s atmosphere (left), Goddard scientists applied Reed–Solomon error correction (right), which is commonly used in CDs and DVDs. Typical errors include missing pixels (white) and false signals (black). The white stripe indicates a brief period when transmission was interrupted.

In information theory and coding theory with applications in computer science and telecommunication, error detection and correction (EDAC) or error control are techniques that enable reliable delivery of digital data over unreliable communication channels. Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data in many cases.

Definitions[edit]

Error detection is the detection of errors caused by noise or other impairments during transmission from the transmitter to the receiver.

Error correction is the detection of errors and reconstruction of the original, error-free data.

History[edit]

In classical antiquity, copyists of the Hebrew Bible were paid for their work according to the number of stichs (lines of verse). As the prose books of the Bible were hardly ever written in stichs, the copyists, in order to estimate the amount of work, had to count the letters.[1] This also helped ensure accuracy in the transmission of the text with the production of subsequent copies.[2][3] Between the 7th and 10th centuries CE a group of Jewish scribes formalized and expanded this to create the Numerical Masorah to ensure accurate reproduction of the sacred text. It included counts of the number of words in a line, section, book and groups of books, noting the middle stich of a book, word use statistics, and commentary.[1] Standards became such that a deviation in even a single letter in a Torah scroll was considered unacceptable.[4] The effectiveness of their error correction method was verified by the accuracy of copying through the centuries demonstrated by discovery of the Dead Sea Scrolls in 1947–1956, dating from c. 150 BCE-75 CE.[5]

The modern development of error correction codes is credited to Richard Hamming in 1947.[6] A description of Hamming’s code appeared in Claude Shannon’s A Mathematical Theory of Communication[7] and was quickly generalized by Marcel J. E. Golay.[8]

Principles[edit]

All error-detection and correction schemes add some redundancy (i.e., some extra data) to a message, which receivers can use to check consistency of the delivered message and to recover data that has been determined to be corrupted. Error detection and correction schemes can be either systematic or non-systematic. In a systematic scheme, the transmitter sends the original (error-free) data and attaches a fixed number of check bits (or parity data), which are derived from the data bits by some encoding algorithm. If error detection is required, a receiver can simply apply the same algorithm to the received data bits and compare its output with the received check bits; if the values do not match, an error has occurred at some point during the transmission. If error correction is required, a receiver can apply the decoding algorithm to the received data bits and the received check bits to recover the original error-free data. In a system that uses a non-systematic code, the original message is transformed into an encoded message carrying the same information and that has at least as many bits as the original message.

Good error control performance requires the scheme to be selected based on the characteristics of the communication channel. Common channel models include memoryless models where errors occur randomly and with a certain probability, and dynamic models where errors occur primarily in bursts. Consequently, error-detecting and correcting codes can be generally distinguished between random-error-detecting/correcting and burst-error-detecting/correcting. Some codes can also be suitable for a mixture of random errors and burst errors.

If the channel characteristics cannot be determined, or are highly variable, an error-detection scheme may be combined with a system for retransmissions of erroneous data. This is known as automatic repeat request (ARQ), and is most notably used in the Internet. An alternate approach for error control is hybrid automatic repeat request (HARQ), which is a combination of ARQ and error-correction coding.

Types of error correction[edit]

There are three major types of error correction:[9]

Automatic repeat request[edit]

Automatic repeat request (ARQ) is an error control method for data transmission that makes use of error-detection codes, acknowledgment and/or negative acknowledgment messages, and timeouts to achieve reliable data transmission. An acknowledgment is a message sent by the receiver to indicate that it has correctly received a data frame.

Usually, when the transmitter does not receive the acknowledgment before the timeout occurs (i.e., within a reasonable amount of time after sending the data frame), it retransmits the frame until it is either correctly received or the error persists beyond a predetermined number of retransmissions.

Three types of ARQ protocols are Stop-and-wait ARQ, Go-Back-N ARQ, and Selective Repeat ARQ.

ARQ is appropriate if the communication channel has varying or unknown capacity, such as is the case on the Internet. However, ARQ requires the availability of a back channel, results in possibly increased latency due to retransmissions, and requires the maintenance of buffers and timers for retransmissions, which in the case of network congestion can put a strain on the server and overall network capacity.[10]

For example, ARQ is used on shortwave radio data links in the form of ARQ-E, or combined with multiplexing as ARQ-M.

Forward error correction[edit]

Forward error correction (FEC) is a process of adding redundant data such as an error-correcting code (ECC) to a message so that it can be recovered by a receiver even when a number of errors (up to the capability of the code being used) are introduced, either during the process of transmission or on storage. Since the receiver does not have to ask the sender for retransmission of the data, a backchannel is not required in forward error correction. Error-correcting codes are used in lower-layer communication such as cellular network, high-speed fiber-optic communication and Wi-Fi,[11][12] as well as for reliable storage in media such as flash memory, hard disk and RAM.[13]

Error-correcting codes are usually distinguished between convolutional codes and block codes:

  • Convolutional codes are processed on a bit-by-bit basis. They are particularly suitable for implementation in hardware, and the Viterbi decoder allows optimal decoding.
  • Block codes are processed on a block-by-block basis. Early examples of block codes are repetition codes, Hamming codes and multidimensional parity-check codes. They were followed by a number of efficient codes, Reed–Solomon codes being the most notable due to their current widespread use. Turbo codes and low-density parity-check codes (LDPC) are relatively new constructions that can provide almost optimal efficiency.

Shannon’s theorem is an important theorem in forward error correction, and describes the maximum information rate at which reliable communication is possible over a channel that has a certain error probability or signal-to-noise ratio (SNR). This strict upper limit is expressed in terms of the channel capacity. More specifically, the theorem says that there exist codes such that with increasing encoding length the probability of error on a discrete memoryless channel can be made arbitrarily small, provided that the code rate is smaller than the channel capacity. The code rate is defined as the fraction k/n of k source symbols and n encoded symbols.

The actual maximum code rate allowed depends on the error-correcting code used, and may be lower. This is because Shannon’s proof was only of existential nature, and did not show how to construct codes that are both optimal and have efficient encoding and decoding algorithms.

Hybrid schemes[edit]

Hybrid ARQ is a combination of ARQ and forward error correction. There are two basic approaches:[10]

  • Messages are always transmitted with FEC parity data (and error-detection redundancy). A receiver decodes a message using the parity information and requests retransmission using ARQ only if the parity data was not sufficient for successful decoding (identified through a failed integrity check).
  • Messages are transmitted without parity data (only with error-detection information). If a receiver detects an error, it requests FEC information from the transmitter using ARQ and uses it to reconstruct the original message.

The latter approach is particularly attractive on an erasure channel when using a rateless erasure code.

Types of error detection[edit]

Error detection is most commonly realized using a suitable hash function (or specifically, a checksum, cyclic redundancy check or other algorithm). A hash function adds a fixed-length tag to a message, which enables receivers to verify the delivered message by recomputing the tag and comparing it with the one provided.

There exists a vast variety of different hash function designs. However, some are of particularly widespread use because of either their simplicity or their suitability for detecting certain kinds of errors (e.g., the cyclic redundancy check’s performance in detecting burst errors).

Minimum distance coding[edit]

A random-error-correcting code based on minimum distance coding can provide a strict guarantee on the number of detectable errors, but it may not protect against a preimage attack.

Repetition codes[edit]

A repetition code is a coding scheme that repeats the bits across a channel to achieve error-free communication. Given a stream of data to be transmitted, the data are divided into blocks of bits. Each block is transmitted some predetermined number of times. For example, to send the bit pattern 1011, the four-bit block can be repeated three times, thus producing 1011 1011 1011. If this twelve-bit pattern was received as 1010 1011 1011 – where the first block is unlike the other two – an error has occurred.

A repetition code is very inefficient and can be susceptible to problems if the error occurs in exactly the same place for each group (e.g., 1010 1010 1010 in the previous example would be detected as correct). The advantage of repetition codes is that they are extremely simple, and are in fact used in some transmissions of numbers stations.[14][15]

Parity bit[edit]

A parity bit is a bit that is added to a group of source bits to ensure that the number of set bits (i.e., bits with value 1) in the outcome is even or odd. It is a very simple scheme that can be used to detect single or any other odd number (i.e., three, five, etc.) of errors in the output. An even number of flipped bits will make the parity bit appear correct even though the data is erroneous.

Parity bits added to each word sent are called transverse redundancy checks, while those added at the end of a stream of words are called longitudinal redundancy checks. For example, if each of a series of m-bit words has a parity bit added, showing whether there were an odd or even number of ones in that word, any word with a single error in it will be detected. It will not be known where in the word the error is, however. If, in addition, after each stream of n words a parity sum is sent, each bit of which shows whether there were an odd or even number of ones at that bit-position sent in the most recent group, the exact position of the error can be determined and the error corrected. This method is only guaranteed to be effective, however, if there are no more than 1 error in every group of n words. With more error correction bits, more errors can be detected and in some cases corrected.

There are also other bit-grouping techniques.

Checksum[edit]

A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a ones’-complement operation prior to transmission to detect unintentional all-zero messages.

Checksum schemes include parity bits, check digits, and longitudinal redundancy checks. Some checksum schemes, such as the Damm algorithm, the Luhn algorithm, and the Verhoeff algorithm, are specifically designed to detect errors commonly introduced by humans in writing down or remembering identification numbers.

Cyclic redundancy check[edit]

A cyclic redundancy check (CRC) is a non-secure hash function designed to detect accidental changes to digital data in computer networks. It is not suitable for detecting maliciously introduced errors. It is characterized by specification of a generator polynomial, which is used as the divisor in a polynomial long division over a finite field, taking the input data as the dividend. The remainder becomes the result.

A CRC has properties that make it well suited for detecting burst errors. CRCs are particularly easy to implement in hardware and are therefore commonly used in computer networks and storage devices such as hard disk drives.

The parity bit can be seen as a special-case 1-bit CRC.

Cryptographic hash function[edit]

The output of a cryptographic hash function, also known as a message digest, can provide strong assurances about data integrity, whether changes of the data are accidental (e.g., due to transmission errors) or maliciously introduced. Any modification to the data will likely be detected through a mismatching hash value. Furthermore, given some hash value, it is typically infeasible to find some input data (other than the one given) that will yield the same hash value. If an attacker can change not only the message but also the hash value, then a keyed hash or message authentication code (MAC) can be used for additional security. Without knowing the key, it is not possible for the attacker to easily or conveniently calculate the correct keyed hash value for a modified message.

Error correction code[edit]

Any error-correcting code can be used for error detection. A code with minimum Hamming distance, d, can detect up to d − 1 errors in a code word. Using minimum-distance-based error-correcting codes for error detection can be suitable if a strict limit on the minimum number of errors to be detected is desired.

Codes with minimum Hamming distance d = 2 are degenerate cases of error-correcting codes and can be used to detect single errors. The parity bit is an example of a single-error-detecting code.

Applications[edit]

Applications that require low latency (such as telephone conversations) cannot use automatic repeat request (ARQ); they must use forward error correction (FEC). By the time an ARQ system discovers an error and re-transmits it, the re-sent data will arrive too late to be usable.

Applications where the transmitter immediately forgets the information as soon as it is sent (such as most television cameras) cannot use ARQ; they must use FEC because when an error occurs, the original data is no longer available.

Applications that use ARQ must have a return channel; applications having no return channel cannot use ARQ.

Applications that require extremely low error rates (such as digital money transfers) must use ARQ due to the possibility of uncorrectable errors with FEC.

Reliability and inspection engineering also make use of the theory of error-correcting codes.[16]

Internet[edit]

In a typical TCP/IP stack, error control is performed at multiple levels:

  • Each Ethernet frame uses CRC-32 error detection. Frames with detected errors are discarded by the receiver hardware.
  • The IPv4 header contains a checksum protecting the contents of the header. Packets with incorrect checksums are dropped within the network or at the receiver.
  • The checksum was omitted from the IPv6 header in order to minimize processing costs in network routing and because current link layer technology is assumed to provide sufficient error detection (see also RFC 3819).
  • UDP has an optional checksum covering the payload and addressing information in the UDP and IP headers. Packets with incorrect checksums are discarded by the network stack. The checksum is optional under IPv4, and required under IPv6. When omitted, it is assumed the data-link layer provides the desired level of error protection.
  • TCP provides a checksum for protecting the payload and addressing information in the TCP and IP headers. Packets with incorrect checksums are discarded by the network stack and eventually get retransmitted using ARQ, either explicitly (such as through three-way handshake) or implicitly due to a timeout.

Deep-space telecommunications[edit]

The development of error-correction codes was tightly coupled with the history of deep-space missions due to the extreme dilution of signal power over interplanetary distances, and the limited power availability aboard space probes. Whereas early missions sent their data uncoded, starting in 1968, digital error correction was implemented in the form of (sub-optimally decoded) convolutional codes and Reed–Muller codes.[17] The Reed–Muller code was well suited to the noise the spacecraft was subject to (approximately matching a bell curve), and was implemented for the Mariner spacecraft and used on missions between 1969 and 1977.

The Voyager 1 and Voyager 2 missions, which started in 1977, were designed to deliver color imaging and scientific information from Jupiter and Saturn.[18] This resulted in increased coding requirements, and thus, the spacecraft were supported by (optimally Viterbi-decoded) convolutional codes that could be concatenated with an outer Golay (24,12,8) code. The Voyager 2 craft additionally supported an implementation of a Reed–Solomon code. The concatenated Reed–Solomon–Viterbi (RSV) code allowed for very powerful error correction, and enabled the spacecraft’s extended journey to Uranus and Neptune. After ECC system upgrades in 1989, both crafts used V2 RSV coding.

The Consultative Committee for Space Data Systems currently recommends usage of error correction codes with performance similar to the Voyager 2 RSV code as a minimum. Concatenated codes are increasingly falling out of favor with space missions, and are replaced by more powerful codes such as Turbo codes or LDPC codes.

The different kinds of deep space and orbital missions that are conducted suggest that trying to find a one-size-fits-all error correction system will be an ongoing problem. For missions close to Earth, the nature of the noise in the communication channel is different from that which a spacecraft on an interplanetary mission experiences. Additionally, as a spacecraft increases its distance from Earth, the problem of correcting for noise becomes more difficult.

Satellite broadcasting[edit]

The demand for satellite transponder bandwidth continues to grow, fueled by the desire to deliver television (including new channels and high-definition television) and IP data. Transponder availability and bandwidth constraints have limited this growth. Transponder capacity is determined by the selected modulation scheme and the proportion of capacity consumed by FEC.

Data storage[edit]

Error detection and correction codes are often used to improve the reliability of data storage media.[19] A parity track capable of detecting single-bit errors was present on the first magnetic tape data storage in 1951. The optimal rectangular code used in group coded recording tapes not only detects but also corrects single-bit errors. Some file formats, particularly archive formats, include a checksum (most often CRC32) to detect corruption and truncation and can employ redundancy or parity files to recover portions of corrupted data. Reed-Solomon codes are used in compact discs to correct errors caused by scratches.

Modern hard drives use Reed–Solomon codes to detect and correct minor errors in sector reads, and to recover corrupted data from failing sectors and store that data in the spare sectors.[20] RAID systems use a variety of error correction techniques to recover data when a hard drive completely fails. Filesystems such as ZFS or Btrfs, as well as some RAID implementations, support data scrubbing and resilvering, which allows bad blocks to be detected and (hopefully) recovered before they are used.[21] The recovered data may be re-written to exactly the same physical location, to spare blocks elsewhere on the same piece of hardware, or the data may be rewritten onto replacement hardware.

Error-correcting memory[edit]

Dynamic random-access memory (DRAM) may provide stronger protection against soft errors by relying on error-correcting codes. Such error-correcting memory, known as ECC or EDAC-protected memory, is particularly desirable for mission-critical applications, such as scientific computing, financial, medical, etc. as well as extraterrestrial applications due to the increased radiation in space.

Error-correcting memory controllers traditionally use Hamming codes, although some use triple modular redundancy. Interleaving allows distributing the effect of a single cosmic ray potentially upsetting multiple physically neighboring bits across multiple words by associating neighboring bits to different words. As long as a single-event upset (SEU) does not exceed the error threshold (e.g., a single error) in any particular word between accesses, it can be corrected (e.g., by a single-bit error-correcting code), and the illusion of an error-free memory system may be maintained.[22]

In addition to hardware providing features required for ECC memory to operate, operating systems usually contain related reporting facilities that are used to provide notifications when soft errors are transparently recovered. One example is the Linux kernel’s EDAC subsystem (previously known as Bluesmoke), which collects the data from error-checking-enabled components inside a computer system; besides collecting and reporting back the events related to ECC memory, it also supports other checksumming errors, including those detected on the PCI bus.[23][24][25] A few systems[specify] also support memory scrubbing to catch and correct errors early before they become unrecoverable.

See also[edit]

  • Berger code
  • Burst error-correcting code
  • ECC memory, a type of computer data storage
  • Link adaptation
  • List of algorithms § Error detection and correction
  • List of hash functions

References[edit]

  1. ^ a b «Masorah». Jewish Encyclopedia.
  2. ^ Pratico, Gary D.; Pelt, Miles V. Van (2009). Basics of Biblical Hebrew Grammar: Second Edition. Zondervan. ISBN 978-0-310-55882-8.
  3. ^ Mounce, William D. (2007). Greek for the Rest of Us: Using Greek Tools Without Mastering Biblical Languages. Zondervan. p. 289. ISBN 978-0-310-28289-1.
  4. ^ Mishneh Torah, Tefillin, Mezuzah, and Sefer Torah, 1:2. Example English translation: Eliyahu Touger. The Rambam’s Mishneh Torah. Moznaim Publishing Corporation.
  5. ^ Brian M. Fagan (5 December 1996). «Dead Sea Scrolls». The Oxford Companion to Archaeology. Oxford University Press. ISBN 0195076184.
  6. ^ Thompson, Thomas M. (1983), From Error-Correcting Codes through Sphere Packings to Simple Groups, The Carus Mathematical Monographs (#21), The Mathematical Association of America, p. vii, ISBN 0-88385-023-0
  7. ^ Shannon, C.E. (1948), «A Mathematical Theory of Communication», Bell System Technical Journal, 27 (3): 379–423, doi:10.1002/j.1538-7305.1948.tb01338.x, hdl:10338.dmlcz/101429, PMID 9230594
  8. ^ Golay, Marcel J. E. (1949), «Notes on Digital Coding», Proc.I.R.E. (I.E.E.E.), 37: 657
  9. ^ Gupta, Vikas; Verma, Chanderkant (November 2012). «Error Detection and Correction: An Introduction». International Journal of Advanced Research in Computer Science and Software Engineering. 2 (11). S2CID 17499858.
  10. ^ a b A. J. McAuley, Reliable Broadband Communication Using a Burst Erasure Correcting Code, ACM SIGCOMM, 1990.
  11. ^ Shah, Pradeep M.; Vyavahare, Prakash D.; Jain, Anjana (September 2015). «Modern error correcting codes for 4G and beyond: Turbo codes and LDPC codes». 2015 Radio and Antenna Days of the Indian Ocean (RADIO): 1–2. doi:10.1109/RADIO.2015.7323369. ISBN 978-9-9903-7339-4. S2CID 28885076. Retrieved 22 May 2022.
  12. ^ «IEEE SA — IEEE 802.11ac-2013». IEEE Standards Association.
  13. ^ «Transition to Advanced Format 4K Sector Hard Drives | Seagate US». Seagate.com. Retrieved 22 May 2022.
  14. ^ Frank van Gerwen. «Numbers (and other mysterious) stations». Archived from the original on 12 July 2017. Retrieved 12 March 2012.
  15. ^ Gary Cutlack (25 August 2010). «Mysterious Russian ‘Numbers Station’ Changes Broadcast After 20 Years». Gizmodo. Retrieved 12 March 2012.
  16. ^ Ben-Gal I.; Herer Y.; Raz T. (2003). «Self-correcting inspection procedure under inspection errors» (PDF). IIE Transactions. IIE Transactions on Quality and Reliability, 34(6), pp. 529-540. Archived from the original (PDF) on 2013-10-13. Retrieved 2014-01-10.
  17. ^ K. Andrews et al., The Development of Turbo and LDPC Codes for Deep-Space Applications, Proceedings of the IEEE, Vol. 95, No. 11, Nov. 2007.
  18. ^ Huffman, William Cary; Pless, Vera S. (2003). Fundamentals of Error-Correcting Codes. Cambridge University Press. ISBN 978-0-521-78280-7.
  19. ^ Kurtas, Erozan M.; Vasic, Bane (2018-10-03). Advanced Error Control Techniques for Data Storage Systems. CRC Press. ISBN 978-1-4200-3649-7.[permanent dead link]
  20. ^ Scott A. Moulton. «My Hard Drive Died». Archived from the original on 2008-02-02.
  21. ^ Qiao, Zhi; Fu, Song; Chen, Hsing-Bung; Settlemyer, Bradley (2019). «Building Reliable High-Performance Storage Systems: An Empirical and Analytical Study». 2019 IEEE International Conference on Cluster Computing (CLUSTER): 1–10. doi:10.1109/CLUSTER.2019.8891006. ISBN 978-1-7281-4734-5. S2CID 207951690.
  22. ^ «Using StrongArm SA-1110 in the On-Board Computer of Nanosatellite». Tsinghua Space Center, Tsinghua University, Beijing. Archived from the original on 2011-10-02. Retrieved 2009-02-16.
  23. ^ Jeff Layton. «Error Detection and Correction». Linux Magazine. Retrieved 2014-08-12.
  24. ^ «EDAC Project». bluesmoke.sourceforge.net. Retrieved 2014-08-12.
  25. ^ «Documentation/edac.txt». Linux kernel documentation. kernel.org. 2014-06-16. Archived from the original on 2009-09-05. Retrieved 2014-08-12.

Further reading[edit]

  • Shu Lin; Daniel J. Costello, Jr. (1983). Error Control Coding: Fundamentals and Applications. Prentice Hall. ISBN 0-13-283796-X.
  • SoftECC: A System for Software Memory Integrity Checking
  • A Tunable, Software-based DRAM Error Detection and Correction Library for HPC
  • Detection and Correction of Silent Data Corruption for Large-Scale High-Performance Computing

External links[edit]

  • The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.
  • ECC Page — implementations of popular ECC encoding and decoding routines

Активное обнаружение ошибок

Не
все ошибки можно выявить пассивными
методами, поскольку эти методы обнаруживают
ошибку лишь тогда, когда на входах
появляются со­ответствующие данные.
Можно делать и дополни­тельные
проверки, если спроектировать специальные
программные средства
для активного поиска признаков ошибок
в системе. Такие средства называютсясредствами ак­тивного обнаружения
ошибок
(или системами встроенного
контроля) и будут более подробно
рассмотрены в подразд. 4.3.

Активные средства
обнаружения ошибок обычно объединяются
в диагностический
монитор:
параллельный
процесс, который перио­дически
анализирует состояние системы с целью
обнаружить ошиб­ку.
Большие про­граммные системы,
управляющие ресурсами, часто содержат
ошибки, при­водящие к потере ресурсов
на длительное время. Например, управление
памятью операционной системы сда­ет
блоки памяти «в аренду» програм­мам
пользователей и другимчастям
операционной системы. Ошибка в этих
самых «других час­тях»
системы может иногда вести к неправильной
работе блока управления памятью,
занимающегося возвратом сданной ранее
в аренду памяти, что вызывает медленное
вырождение системы.

Диагностический
монитор можно реализовать как периодичес­ки
вы­полняемую задачу (например, она
планируется на каждый час) либо как
задачу с низким приоритетом, которая
планируется для
выполнения в то время, когда система
переходит в состояние ожидания. Как и
прежде, вы­полняемые монитором
конкретные про­верки
зависят от специфики системы, но некоторые
идеи будут по­нятны
из примеров. Монитор может обследовать
основную память, чтобы
обнаружить блоки памяти, не выделенные
ни одной из вы­полняемых
задач и не включенные в системный список
свободной па­мяти.
Он может проверять также необычные
ситуации: например, процесс
не планировался для выполнения в течение
некоторого ра­зумного
интер­вала времени. Монитор может
осуществлять поиск «затерявшихся»
внутри системы сообщений или операций
ввода-вывода,
которые необычно долгое время остаются
незавершенными, участков памяти на
диске, которые не по­мечены как
выделенные и не включены в список
свободной памяти, а также различного
рода странностей в файлах данных.

Иногда
желательно, чтобы в чрезвычайных
обстоятельствах мо­нитор
выполнял диагностические тесты системы.
Он может вызывать определенные
системные функции, сравнивая их результат
с зара­нее определенным и проверяя,
насколько разумно время выпол­нения.
Монитор может также пе­риодически
предъявлять системе «пустые»
или «легкие» задания, чтобы убе­диться,
что система функ­ционирует хотя
бы самым примитивным образом.

Исправление ошибок и устойчивость к ошибкам

Имея средства
обнаружения ошибок в программном
обеспечении, естественно предпринять
следующий шаг, попробовать создать
сред­ства, нацеленные на исправление
обнаруженных ошибок. По су­ществу,
термин «исправление ошибок» в применении
к программно­му обеспечению озна­чает
ликвидацию ущерба, нанесенного ошиб­кой,
а не исправление самой ошибки. Исправление
ошибки в аппаратуре (например,
автоматическим пере­ключением на
запасное устройство) – вполне
жизнеспособный при­ем, но пытаться
исправить настоящую ошибку в программном
обес­печении без участия человека
бесполезно. Самое большее, что можно
сделать по части устойчиво­сти к
ошибкам, – либо сделать нанесенный
ущерб неза­метным, либо изолировать
его лишь в рамках части системы.

Хотя методы
исправления/устойчивости и имели
ограниченный ус­пех в нескольких
системах, в большинстве случаев их лучше
из­бегать. Число возможных ошибок в
большой системе так велико, что может
счи­таться практически бесконечным.
Разрабатывая ме­тоды исправле­ния/устойчивости,
мы вынуждены пытаться предуга­дать
лишь несколько типов ошибок, чтобы
реализовать средства, предназначенные
для борьбы с ущербом от этих ошибок. В
лучшем случае наша система будет
исправлять ничтожный процент своих
потенциальных ошибок. К тому же эти
средства сами довольно сложны, так что
благодаря им исходное количество ошибок
в системе только возрастет. Более того,
они сами будут, несомненно, со­держать
ошибки. Наконец, если некоторые средства
исправления/устой­чи­вости все-таки
заработают, они тем самым станут
маскировать ошибки (делая их менее
заметными), и последние, возможно, никогда
не будут устранены обслуживающим
персоналом, а это – явно нежелательное
след­ствие.

Однако самым
сильным доводом против исправления
ошибок и обеспечения устойчивости
остается следующий аргумент. Поскольку
все равно необходимо заранее предвидеть
несколько возможных ошибок, обычно
лучше при проектировании и тестировании
на­правлять все усилия на их устранение.

Соседние файлы в папке Надежность

  • #
  • #
  • #
  • #
  • #
  • #

Методы, обеспечивающие надежную доставку цифровых данных по ненадежным каналам связи Устранение ошибок передачи, вызванных атмосферой Земли ( слева), ученые Годдарда применили исправление ошибок Рида – Соломона (справа), которое обычно используется в компакт-дисках и DVD. Типичные ошибки включают отсутствие пикселей (белые) и ложные сигналы (черные). Белая полоса указывает на короткий период, когда передача была приостановлена.

В теории информации и теории кодирования с приложениями в информатике и телекоммуникациях, обнаружение и исправление ошибок или контроль ошибок — это методы, которые обеспечивают надежную доставку цифровых данных по ненадежным каналам связи. Многие каналы связи подвержены канальному шуму, и поэтому во время передачи от источника к приемнику могут возникать ошибки. Методы обнаружения ошибок позволяют обнаруживать такие ошибки, а исправление ошибок во многих случаях позволяет восстановить исходные данные.

Содержание

  • 1 Определения
  • 2 История
  • 3 Введение
  • 4 Типы исправления ошибок
    • 4.1 Автоматический повторный запрос (ARQ)
    • 4.2 Прямое исправление ошибок
    • 4.3 Гибридные схемы
  • 5 Схемы обнаружения ошибок
    • 5.1 Кодирование на минимальном расстоянии
    • 5.2 Коды повторения
    • 5.3 Бит четности
    • 5.4 Контрольная сумма
    • 5.5 Циклическая проверка избыточности
    • 5.6 Криптографическая хеш-функция
    • 5.7 Ошибка код исправления
  • 6 Приложения
    • 6.1 Интернет
    • 6.2 Связь в дальнем космосе
    • 6.3 Спутниковое вещание
    • 6.4 Хранение данных
    • 6.5 Память с исправлением ошибок
  • 7 См. также
  • 8 Ссылки
  • 9 Дополнительная литература
  • 10 Внешние ссылки

Определения

Обнаружение ошибок — это обнаружение ошибок, вызванных шумом или другими помехами во время передачи от передатчика к приемнику. Исправление ошибок — это обнаружение ошибок и восстановление исходных безошибочных данных.

История

Современная разработка кодов исправления ошибок приписывается Ричарду Хэммингу в 1947 году. Описание кода Хэмминга появилось в Математической теории коммуникации Клода Шеннона и было быстро обобщено Марселем Дж. Э. Голэем.

Введение

Все схемы обнаружения и исправления ошибок добавляют некоторые избыточность (т. е. некоторые дополнительные данные) сообщения, которые получатели могут использовать для проверки согласованности доставленного сообщения и для восстановления данных, которые были определены как поврежденные. Схемы обнаружения и исправления ошибок могут быть систематическими или несистематическими. В систематической схеме передатчик отправляет исходные данные и присоединяет фиксированное количество контрольных битов (или данных четности), которые выводятся из битов данных некоторым детерминированным алгоритмом. Если требуется только обнаружение ошибок, приемник может просто применить тот же алгоритм к полученным битам данных и сравнить свой вывод с полученными контрольными битами; если значения не совпадают, в какой-то момент во время передачи произошла ошибка. В системе, которая использует несистематический код, исходное сообщение преобразуется в закодированное сообщение, несущее ту же информацию и имеющее по крайней мере такое же количество битов, как и исходное сообщение.

Хорошие характеристики контроля ошибок требуют, чтобы схема была выбрана на основе характеристик канала связи. Распространенные модели каналов включают в себя модели без памяти, в которых ошибки возникают случайно и с определенной вероятностью, и динамические модели, в которых ошибки возникают в основном в пакетах . Следовательно, коды обнаружения и исправления ошибок можно в целом различать между обнаружением / исправлением случайных ошибок и обнаружением / исправлением пакетов ошибок. Некоторые коды также могут подходить для сочетания случайных ошибок и пакетных ошибок.

Если характеристики канала не могут быть определены или сильно изменяются, схема обнаружения ошибок может быть объединена с системой для повторных передач ошибочных данных. Это известно как автоматический запрос на повторение (ARQ) и наиболее широко используется в Интернете. Альтернативный подход для контроля ошибок — это гибридный автоматический запрос на повторение (HARQ), который представляет собой комбинацию ARQ и кодирования с исправлением ошибок.

Типы исправления ошибок

Существует три основных типа исправления ошибок.

Автоматический повторный запрос (ARQ)

Автоматический повторный запрос (ARQ) — это метод контроля ошибок для передачи данных, который использует коды обнаружения ошибок, сообщения подтверждения и / или отрицательного подтверждения и тайм-ауты для обеспечения надежной передачи данных. Подтверждение — это сообщение, отправленное получателем, чтобы указать, что он правильно получил кадр данных.

Обычно, когда передатчик не получает подтверждения до истечения тайм-аута (т. Е. В течение разумного периода времени после отправки фрейм данных), он повторно передает фрейм до тех пор, пока он либо не будет правильно принят, либо пока ошибка не останется сверх заранее определенного количества повторных передач.

Три типа протоколов ARQ: Stop-and-wait ARQ, Go-Back-N ARQ и Selective Repeat ARQ.

ARQ is подходит, если канал связи имеет переменную или неизвестную пропускную способность, например, в случае с Интернетом. Однако ARQ требует наличия обратного канала, что приводит к возможному увеличению задержки из-за повторных передач и требует обслуживания буферов и таймеров для повторных передач, что в случае перегрузка сети может вызвать нагрузку на сервер и общую пропускную способность сети.

Например, ARQ используется на коротковолновых радиоканалах в форме ARQ-E, или в сочетании с мультиплексированием как ARQ-M.

Прямое исправление ошибок

Прямое исправление ошибок (FEC) — это процесс добавления избыточных данных, таких как исправление ошибок code (ECC) в сообщение, чтобы оно могло быть восстановлено получателем, даже если в процессе передачи или при хранении был внесен ряд ошибок (в зависимости от возможностей используемого кода). Так как получатель не должен запрашивать у отправителя повторную передачу данных, обратный канал не требуется при прямом исправлении ошибок, и поэтому он подходит для симплексной связи, например вещание. Коды с исправлением ошибок часто используются в нижнем уровне связи, а также для надежного хранения на таких носителях, как CD, DVD, жесткие диски и RAM.

Коды с исправлением ошибок обычно различают между сверточными кодами и блочными кодами. :

  • Сверточные коды обрабатываются побитно. Они особенно подходят для аппаратной реализации, а декодер Витерби обеспечивает оптимальное декодирование.
  • Блочные коды обрабатываются на поблочной основе. Ранними примерами блочных кодов являются коды повторения, коды Хэмминга и многомерные коды контроля четности. За ними последовал ряд эффективных кодов, из которых коды Рида – Соломона являются наиболее известными из-за их широкого распространения в настоящее время. Турбокоды и коды с низкой плотностью проверки четности (LDPC) — это относительно новые конструкции, которые могут обеспечить почти оптимальную эффективность.

Теорема Шеннона — важная теорема при прямом исправлении ошибок и описывает максимальную информационную скорость, на которой возможна надежная связь по каналу, имеющему определенную вероятность ошибки или отношение сигнал / шум (SNR). Этот строгий верхний предел выражается в единицах пропускной способности канала . Более конкретно, в теореме говорится, что существуют такие коды, что с увеличением длины кодирования вероятность ошибки на дискретном канале без памяти может быть сделана сколь угодно малой при условии, что кодовая скорость меньше чем емкость канала. Кодовая скорость определяется как доля k / n из k исходных символов и n кодированных символов.

Фактическая максимальная разрешенная кодовая скорость зависит от используемого кода исправления ошибок и может быть ниже. Это связано с тем, что доказательство Шеннона носило только экзистенциальный характер и не показало, как создавать коды, которые одновременно являются оптимальными и имеют эффективные алгоритмы кодирования и декодирования.

Гибридные схемы

Гибридный ARQ — это комбинация ARQ и прямого исправления ошибок. Существует два основных подхода:

  • Сообщения всегда передаются с данными четности FEC (и избыточностью для обнаружения ошибок). Получатель декодирует сообщение, используя информацию о четности, и запрашивает повторную передачу с использованием ARQ только в том случае, если данных четности было недостаточно для успешного декодирования (идентифицировано посредством неудачной проверки целостности).
  • Сообщения передаются без данных четности (только с информация об обнаружении ошибок). Если приемник обнаруживает ошибку, он запрашивает информацию FEC от передатчика с помощью ARQ и использует ее для восстановления исходного сообщения.

Последний подход особенно привлекателен для канала стирания при использовании код бесскоростного стирания.

.

Схемы обнаружения ошибок

Обнаружение ошибок чаще всего реализуется с использованием подходящей хэш-функции (или, в частности, контрольной суммы, циклической проверка избыточности или другой алгоритм). Хеш-функция добавляет к сообщению тег фиксированной длины, который позволяет получателям проверять доставленное сообщение, повторно вычисляя тег и сравнивая его с предоставленным.

Существует огромное количество различных конструкций хеш-функций. Однако некоторые из них имеют особенно широкое распространение из-за их простоты или их пригодности для обнаружения определенных видов ошибок (например, производительности циклического контроля избыточности при обнаружении пакетных ошибок ).

Кодирование с минимальным расстоянием

Код с исправлением случайных ошибок на основе кодирования с минимальным расстоянием может обеспечить строгую гарантию количества обнаруживаемых ошибок, но может не защитить против атаки прообразом.

Коды повторения

A код повторения — это схема кодирования, которая повторяет биты по каналу для достижения безошибочной связи. Учитывая поток данных, которые необходимо передать, данные делятся на блоки битов. Каждый блок передается определенное количество раз. Например, чтобы отправить битовую комбинацию «1011», четырехбитовый блок можно повторить три раза, таким образом получая «1011 1011 1011». Если этот двенадцатибитовый шаблон был получен как «1010 1011 1011» — где первый блок не похож на два других, — произошла ошибка.

Код повторения очень неэффективен и может быть подвержен проблемам, если ошибка возникает в одном и том же месте для каждой группы (например, «1010 1010 1010» в предыдущем примере будет определено как правильное). Преимущество кодов повторения состоит в том, что они чрезвычайно просты и фактически используются в некоторых передачах номеров станций.

Бит четности

Бит четности — это бит, который добавляется к группе исходные биты, чтобы гарантировать, что количество установленных битов (т. е. битов со значением 1) в результате будет четным или нечетным. Это очень простая схема, которую можно использовать для обнаружения одного или любого другого нечетного числа (т. Е. Трех, пяти и т. Д.) Ошибок в выводе. Четное количество перевернутых битов сделает бит четности правильным, даже если данные ошибочны.

Расширениями и вариантами механизма битов четности являются проверки с продольным избыточным кодом, проверки с поперечным избыточным кодом и аналогичные методы группирования битов.

Контрольная сумма

Контрольная сумма сообщения — это модульная арифметическая сумма кодовых слов сообщения фиксированной длины слова (например, байтовых значений). Сумма может быть инвертирована посредством операции дополнения до единиц перед передачей для обнаружения непреднамеренных сообщений с нулевым значением.

Схемы контрольных сумм включают биты четности, контрольные цифры и проверки продольным избыточным кодом. Некоторые схемы контрольных сумм, такие как алгоритм Дамма, алгоритм Луна и алгоритм Верхоффа, специально разработаны для обнаружения ошибок, обычно вносимых людьми при записи или запоминание идентификационных номеров.

Проверка циклическим избыточным кодом

Проверка циклическим избыточным кодом (CRC) — это незащищенная хэш-функция, предназначенная для обнаружения случайных изменений цифровых данных в компьютерных сетях. Он не подходит для обнаружения злонамеренно внесенных ошибок. Он характеризуется указанием порождающего полинома, который используется в качестве делителя в полиномиальном делении над конечным полем, принимая входные данные в качестве дивиденд. остаток становится результатом.

CRC имеет свойства, которые делают его хорошо подходящим для обнаружения пакетных ошибок. CRC особенно легко реализовать на оборудовании и поэтому обычно используются в компьютерных сетях и устройствах хранения, таких как жесткие диски.

. Бит четности может рассматриваться как 1-битный частный случай. CRC.

Криптографическая хеш-функция

Выходные данные криптографической хеш-функции, также известные как дайджест сообщения, могут обеспечить надежную гарантию целостности данных, независимо от того, происходят ли изменения данных случайно (например, из-за ошибок передачи) или злонамеренно. Любая модификация данных, скорее всего, будет обнаружена по несоответствию хеш-значения. Кроме того, с учетом некоторого хэш-значения, как правило, невозможно найти некоторые входные данные (кроме заданных), которые дадут такое же хеш-значение. Если злоумышленник может изменить не только сообщение, но и значение хеш-функции, то для дополнительной безопасности можно использовать хэш-код с ключом или код аутентификации сообщения (MAC). Не зная ключа, злоумышленник не может легко или удобно вычислить правильное ключевое значение хеш-функции для измененного сообщения.

Код исправления ошибок

Для обнаружения ошибок можно использовать любой код исправления ошибок. Код с минимальным расстоянием Хэмминга, d, может обнаруживать до d — 1 ошибок в кодовом слове. Использование кодов с коррекцией ошибок на основе минимального расстояния для обнаружения ошибок может быть подходящим, если требуется строгое ограничение на минимальное количество обнаруживаемых ошибок.

Коды с минимальным расстоянием Хэмминга d = 2 являются вырожденными случаями кодов с исправлением ошибок и могут использоваться для обнаружения одиночных ошибок. Бит четности является примером кода обнаружения одиночной ошибки.

Приложения

Приложения, которым требуется низкая задержка (например, телефонные разговоры), не могут использовать автоматический запрос на повторение (ARQ); они должны использовать прямое исправление ошибок (FEC). К тому времени, когда система ARQ обнаружит ошибку и повторно передаст ее, повторно отправленные данные прибудут слишком поздно, чтобы их можно было использовать.

Приложения, в которых передатчик сразу же забывает информацию, как только она отправляется (например, большинство телекамер), не могут использовать ARQ; они должны использовать FEC, потому что при возникновении ошибки исходные данные больше не доступны.

Приложения, использующие ARQ, должны иметь канал возврата ; приложения, не имеющие обратного канала, не могут использовать ARQ.

Приложения, требующие чрезвычайно низкого уровня ошибок (например, цифровые денежные переводы), должны использовать ARQ из-за возможности неисправимых ошибок с помощью FEC.

Надежность и инженерная проверка также используют теорию кодов исправления ошибок.

Интернет

В типичном стеке TCP / IP ошибка управление осуществляется на нескольких уровнях:

  • Каждый кадр Ethernet использует CRC-32 обнаружение ошибок. Фреймы с обнаруженными ошибками отбрасываются оборудованием приемника.
  • Заголовок IPv4 содержит контрольную сумму , защищающую содержимое заголовка. Пакеты с неверными контрольными суммами отбрасываются в сети или на приемнике.
  • Контрольная сумма не указана в заголовке IPv6, чтобы минимизировать затраты на обработку в сетевой маршрутизации и поскольку предполагается, что текущая технология канального уровня обеспечивает достаточное обнаружение ошибок (см. также RFC 3819 ).
  • UDP, имеет дополнительную контрольную сумму, покрывающую полезную нагрузку и информацию об адресации в заголовки UDP и IP. Пакеты с неверными контрольными суммами отбрасываются сетевым стеком . Контрольная сумма не является обязательной для IPv4 и требуется для IPv6. Если не указано, предполагается, что уровень канала передачи данных обеспечивает желаемый уровень защиты от ошибок.
  • TCP обеспечивает контрольную сумму для защиты полезной нагрузки и адресной информации в заголовках TCP и IP. Пакеты с неверными контрольными суммами отбрасываются сетевым стеком и в конечном итоге повторно передаются с использованием ARQ либо явно (например, как через тройное подтверждение ) или неявно из-за тайм-аута .

Телекоммуникации в дальнем космосе

Разработка кодов исправления ошибок была тесно связана с историей полетов в дальний космос из-за сильного ослабления мощности сигнала на межпланетных расстояниях и ограниченной мощности на борту космических зондов. В то время как ранние миссии отправляли свои данные в незашифрованном виде, начиная с 1968 года, цифровая коррекция ошибок была реализована в форме (субоптимально декодированных) сверточных кодов и кодов Рида – Маллера. Код Рида-Мюллера хорошо подходил к шуму, которому подвергался космический корабль (примерно соответствуя кривой ), и был реализован для космического корабля Mariner и использовался в миссиях между 1969 и 1977 годами.

Миссии «Вояджер-1 » и «Вояджер-2 «, начатые в 1977 году, были разработаны для доставки цветных изображений и научной информации с Юпитера и Сатурна. Это привело к повышенным требованиям к кодированию, и, таким образом, космический аппарат поддерживался (оптимально Витерби-декодированный ) сверточными кодами, которые могли быть сцеплены с внешним Голеем (24,12, 8) код. Корабль «Вояджер-2» дополнительно поддерживал реализацию кода Рида-Соломона. Конкатенированный код Рида – Соломона – Витерби (RSV) позволил произвести очень мощную коррекцию ошибок и позволил космическому кораблю совершить длительное путешествие к Урану и Нептуну. После модернизации системы ECC в 1989 году оба корабля использовали кодирование V2 RSV.

Консультативный комитет по космическим информационным системам в настоящее время рекомендует использовать коды исправления ошибок, как минимум, аналогичные RSV-коду Voyager 2. Составные коды все больше теряют популярность в космических миссиях и заменяются более мощными кодами, такими как Турбо-коды или LDPC-коды.

Различные виды выполняемых космических и орбитальных миссий. предполагают, что попытки найти универсальную систему исправления ошибок будут постоянной проблемой. Для полетов вблизи Земли характер шума в канале связи отличается от того, который испытывает космический корабль в межпланетной миссии. Кроме того, по мере того как космический корабль удаляется от Земли, проблема коррекции шума становится все более сложной.

Спутниковое вещание

Спрос на пропускную способность спутникового транспондера продолжает расти, чему способствует желание предоставлять телевидение (включая новые каналы и телевидение высокой четкости ) и данные IP. Доступность транспондеров и ограничения полосы пропускания ограничили этот рост. Емкость транспондера определяется выбранной схемой модуляции и долей мощности, потребляемой FEC.

Хранение данных

Коды обнаружения и исправления ошибок часто используются для повышения надежности носителей данных. «Дорожка четности» присутствовала на первом устройстве хранения данных на магнитной ленте в 1951 году. «Оптимальный прямоугольный код», используемый в записи с групповым кодированием, не только обнаруживает, но и корректирует однобитовые записи. ошибки. Некоторые форматы файлов, особенно архивные форматы, включают контрольную сумму (чаще всего CRC32 ) для обнаружения повреждений и усечения и могут использовать избыточность и / или четность files для восстановления поврежденных данных. Коды Рида-Соломона используются в компакт-дисках для исправления ошибок, вызванных царапинами.

Современные жесткие диски используют коды CRC для обнаружения и коды Рида – Соломона для исправления незначительных ошибок при чтении секторов, а также для восстановления данных из секторов, которые «испортились», и сохранения этих данных в резервных секторах. Системы RAID используют различные методы исправления ошибок для исправления ошибок, когда жесткий диск полностью выходит из строя. Файловые системы, такие как ZFS или Btrfs, а также некоторые реализации RAID, поддерживают очистку данных и восстановление обновлений, что позволяет удалять поврежденные блоки. обнаружены и (надеюсь) восстановлены, прежде чем они будут использованы. Восстановленные данные могут быть перезаписаны точно в том же физическом месте, чтобы освободить блоки в другом месте на том же оборудовании, или данные могут быть перезаписаны на заменяющее оборудование.

Память с исправлением ошибок

Память DRAM может обеспечить более надежную защиту от программных ошибок, полагаясь на коды исправления ошибок. Такая память с исправлением ошибок, известная как память с защитой ECC или EDAC, особенно желательна для критически важных приложений, таких как научные вычисления, финансы, медицина и т. Д., А также для приложений дальнего космоса из-за повышенное излучение в космосе.

Контроллеры памяти с исправлением ошибок традиционно используют коды Хэмминга, хотя некоторые используют тройную модульную избыточность.

Чередование позволяет распределить эффект одного космического луча, потенциально нарушающего множество физически соседние биты в нескольких словах путем связывания соседних битов с разными словами. До тех пор, пока нарушение единичного события (SEU) не превышает пороговое значение ошибки (например, одиночная ошибка) в любом конкретном слове между доступами, оно может быть исправлено (например, путем исправления однобитовой ошибки code), и может сохраняться иллюзия безошибочной системы памяти.

Помимо оборудования, обеспечивающего функции, необходимые для работы памяти ECC, операционные системы обычно содержат соответствующие средства отчетности, которые используются для предоставления уведомлений при прозрачном восстановлении программных ошибок. Увеличение количества программных ошибок может указывать на то, что модуль DIMM нуждается в замене, и такая обратная связь не была бы легко доступна без соответствующих возможностей отчетности. Одним из примеров является подсистема EDAC ядра Linux (ранее известная как Bluesmoke), которая собирает данные из компонентов компьютерной системы, поддерживающих проверку ошибок; Помимо сбора и отправки отчетов о событиях, связанных с памятью ECC, он также поддерживает другие ошибки контрольного суммирования, в том числе обнаруженные на шине PCI.

Некоторые системы также поддерживают очистку памяти.

См. также

Ссылки

Дополнительная литература

  • Шу Линь; Дэниел Дж. Костелло младший (1983). Кодирование с контролем ошибок: основы и приложения. Прентис Холл. ISBN 0-13-283796-X.

Внешние ссылки

7.2.3. Функциональное тестирование

Цель функционального тестирования — обнаружение несоответствий между реальным поведением реализованных функций и ожидаемым поведением в соответствии со спецификацией и исходными требованиями. Функциональные тесты должны охватывать все реализованные функции с учетом наиболее вероятных типов ошибок. Тестовые сценарии, объединяющие отдельные тесты, ориентированы на проверку качества решения функциональных задач.

Функциональные тесты создаются по внешним спецификациям функций, проектной информации и по тексту на ЯП, относятся к функциональным его характеристикам и применяются на этапе комплексного тестирования и испытаний для определения полноты реализации функциональных задач и их соответствия исходным требованиям.

В задачи функционального тестирования входят:

  • идентификация множества функциональных требований;
  • идентификация внешних функций и построение последовательностей функций в соответствии с их использованием в ПС;- идентификация множества входных данных каждой функции и определение областей их изменения;
  • построение тестовых наборов и сценариев тестирования функций;
  • выявление и представление всех функциональных требований с помощью тестовых наборов и проведение тестирования ошибок в программе и при взаимодействии со средой.

Тесты, создаваемые по проектной информации, связаны со структурами данных, алгоритмами, интерфейсами между отдельными компонентами и применяются для тестирования компонентов и их интерфейсов. Основная цель — обеспечение полноты и согласованности реализованных функций и интерфейсов между ними.

Комбинированный метод «черного ящика» и «прозрачного ящика» основан на разбиении входной области функции на подобласти обнаружения ошибок. Подобласть содержит однородные элементы, которые все обрабатываются корректно либо некорректно. Для тестирования подобласти производится выполнение программы на одном из элементов этой области.

Предпосылки функционального тестирования:

  • корректное оформление требований и ограничений к качеству ПО;
  • корректное описание модели функционирования ПО в среде эксплуатации у заказчика;
  • адекватность модели ПО заданному классу.

7.3. Инфраструктура процесса тестирования ПС

Под инфраструктурой процесса тестирования понимается:

  • выделение объектов тестирования;
  • проведение классификации ошибок для рассматриваемого класса тестируемых программ;
  • подготовка тестов, их выполнение и поиск разного рода ошибок и отказов в компонентах и в системе в целом;
  • служба проведения и управление процессом тестирования;
  • анализ результатов тестирования.

Объекты тестирования — компоненты, группы компонентов, подсистемы и система. Для каждого из них формируется стратегия проведения тестирования. Если объект тестирования относится к «белому ящику» или «черному ящику», состав компонентов которого неизвестный, то тестирование проводится посредством ввода внего входных тестовых данных для получения выходных данных. Стратегическая цель тестирования состоит в том, чтобы убедиться, что каждый рассматриваемый входной набор данных соответствует ожидаемым выходным выходных данным. При таком подходе к тестированию не требуется знания внутренней структуры и логики объекта тестирования.

Проектировщик тестов должен заглянуть внутрь «черного ящика» и исследовать детали процессов обработки данных, вопросы обеспечения защиты и восстановления данных, а также интерфейсы с другими программами и системами. Это способствует подготовке тестовых данных для проведения тестирования.

Для некоторых типов объектов группа тестирования не может сгенерировать представительное множество тестовых наборов, которые демонстрировали бы функциональную правильность работы компоненты при всех возможных наборах тестов.

Поэтому предпочтительным является метод «белого ящика», при котором можно использовать структуру объекта для организации тестирования по различным ветвям. Например, можно выполнить тестовые наборы, которые проходят через все операторы или все контрольные точки компонента для того, чтобы убедиться в правильности их работы.

7.3.1. Методы поиска ошибок в программах

Международный стандарт ANSI/IEEE-729-83 разделяет все ошибки в разработке программ на следующие типы.

Ошибка (error) — состояние программы, при котором выдаются неправильные результаты, причиной которых являются изъяны (flaw) в операторах программы или в технологическом процессе ее разработки, что приводит к неправильной интерпретации исходной информации, следовательно, и к неверному решению.

Дефект (fault) в программе — следствие ошибок разработчика на любом из этапов разработки, которая может содержаться в исходных или проектных спецификациях, текстах кодов программ, эксплуатационной документация и т.п. В процессе выполнения программы может быть обнаружен дефект или сбой.

Отказ (failure) — это отклонение программы от функционирования или невозможность программы выполнять функции, определенные требованиями и ограничениями, что рассматривается как событие, способствующее переходу программы в неработоспособное состояние из-за ошибок, скрытых в ней дефектов или сбоев в среде функционирования [7.6, 7.11]. Отказ может быть результатом следующих причин:

  • ошибочная спецификация или пропущенное требование, означающее, что спецификация точно не отражает того, что предполагал пользователь;
  • спецификация может содержать требование, которое невозможно выполнить на данной аппаратуре и программном обеспечении;
  • проект программы может содержать ошибки (например, база данных спроектирована без средств защиты от несанкционированного доступа пользователя, а требуется защита);
  • программа может быть неправильной, т.е. она выполняет несвойственный алгоритм или он реализован не полностью.

Таким образом, отказы, как правило, являются результатами одной или более ошибок в программе, а также наличия разного рода дефектов.

Ошибки на этапах процесса тестирования.Приведенные типы ошибок распределяются по этапам ЖЦ и им соответствуют такие источники их возникновения [7.12]:

  • непреднамеренное отклонение разработчиков от рабочих стандартов или планов реализации;
  • спецификации функциональных и интерфейсных требований выполнены без соблюдения стандартов разработки, что приводит к нарушению функционирования программ;
  • организации процесса разработки — несовершенная или недостаточное управление руководителем проекта ресурсами (человеческими, техническими, программными и т.д.) и вопросами тестирования и интеграции элементов проекта.

Рассмотрим процесс тестирования, исходя из рекомендаций стандарта ISO/IEC 12207, и приведем типы ошибок, которые обнаруживаются на каждом процессе ЖЦ.

Процесс разработки требований. При определении исходной концепции системы и исходных требований к системе возникают ошибки аналитиков при спецификации верхнего уровня системы и построении концептуальной модели предметной области.

Характерными ошибками этого процесса являются:

  • неадекватность спецификации требований конечным пользователям;- некорректность спецификации взаимодействия ПО со средой функционирования или с пользователями;
  • несоответствие требований заказчика к отдельным и общим свойствам ПО;
  • некорректность описания функциональных характеристик;
  • необеспеченность инструментальными средствами всех аспектов реализации требований заказчика и др.

Процесс проектирования.Ошибки при проектировании компонентов могут возникать при описании алгоритмов, логики управления, структур данных, интерфейсов, логики моделирования потоков данных, форматов ввода-вывода и др. В основе этих ошибок лежат дефекты спецификаций аналитиков и недоработки проектировщиков. К ним относятся ошибки, связанные:

  • с определением интерфейса пользователя со средой;
  • с описанием функций (неадекватность целей и задач компонентов, которые обнаруживаются при проверке комплекса компонентов);
  • с определением процесса обработки информации и взаимодействия между процессами (результат некорректного определения взаимосвязей компонентов и процессов);
  • с некорректным заданием данных и их структур при описании отдельных компонентов и ПС в целом;
  • с некорректным описанием алгоритмов модулей;
  • с определением условий возникновения возможных ошибок в программе;
  • с нарушением принятых для проекта стандартов и технологий.

Этап кодирования.На данном этапе возникают ошибки, которые являются результатом дефектов проектирования, ошибок программистов и менеджеров в процессе разработки и отладки системы. Причиной ошибок являются:

  • бесконтрольность значений входных параметров, индексов массивов, параметров циклов, выходных результатов, деления на 0 и др.;
  • неправильная обработка нерегулярных ситуаций при анализе кодов возврата от вызываемых подпрограмм, функций и др.;
  • нарушение стандартов кодирования (плохие комментарии, нерациональное выделение модулей и компонент и др.);
  • использование одного имени для обозначения разных объектов или разных имен одного объекта, плохая мнемоника имен;- несогласованное внесение изменений в программу разными разработчиками и др.

Процесс тестирования.На этом процессе ошибки допускаются программистами и тестировщиками при выполнении технологии сборки и тестирования, выбора тестовых наборов и сценариев тестирования и др. Отказы в программном обеспечении, вызванные такого рода ошибками, должны выявляться, устраняться и не отражаться на статистике ошибок компонент и программного обеспечения в целом.

Процесс сопровождения.На процессе сопровождения обнаруживаются ошибки, причиной которых являются недоработки и дефекты эксплуатационной документации, недостаточные показатели модифицируемости и удобочитаемости, а также некомпетентность лиц, ответственных за сопровождение и/или усовершенствование ПО. В зависимости от сущности вносимых изменений на этом этапе могут возникать практически любые ошибки, аналогичные ранее перечисленным ошибкам на предыдущих этапах.

Все ошибки, которые возникают в программах, принято подразделять на следующие классы [7.12]:

  • логические и функциональные ошибки;
  • ошибки вычислений и времени выполнения;
  • ошибки вводавывода и манипулирования данными;
  • ошибки интерфейсов;
  • ошибки объема данных и др.

Логические ошибки являются причиной нарушения логики алгоритма, внутренней несогласованности переменных и операторов, а также правил программирования. Функциональные ошибки — следствие неправильно определенных функций, нарушения порядка их применения или отсутствия полноты их реализации и т.д.

Ошибки вычислений возникают по причине неточности исходных данных и реализованных формул, погрешностей методов, неправильного применения операций вычислений или операндов. Ошибки времени выполнения связаны с необеспечением требуемой скорости обработки запросов или времени восстановления программы.

Ошибки ввода-вывода и манипулирования данными являются следствием некачественной подготовки данных для выполнения программы, сбоев при занесении их в базы данных или при выборке из нее.

Ошибки интерфейса относятся к ошибкам взаимосвязи отдельных элементов друг с другом, что проявляется при передаче данных между ними, а также при взаимодействии со средой функционирования.

Ошибки объема относятся к данным и являются следствием того, что реализованные методы доступа и размеры баз данных не удовлетворяют реальным объемам информации системы или интенсивности их обработки.

Приведенные основные классы ошибок свойственны разным типам компонентов ПО и проявляются они в программах по разному. Так, при работе с БД возникают ошибки представления и манипулирования данными, логические ошибки в задании прикладных процедур обработки данных и др. В программах вычислительного характера преобладают ошибки вычислений, а в программах управления и обработки — логические и функциональные ошибки. В ПО, которое состоит из множества разноплановых программ, реализующих разные функции, могут содержаться ошибки разных типов. Ошибки интерфейсов и нарушение объема характерны для любого типа систем.

Анализ типов ошибок в программах является необходимым условием создания планов тестирования и методов тестирования для обеспечения правильности ПО.

На современном этапе развития средств поддержки разработки ПО (CASE-технологии, объектно-ориентированные методы и средства проектирования моделей и программ) проводится такое проектирование, при котором ПО защищается от наиболее типичных ошибок и тем самым предотвращается появление программных дефектов.

Связь ошибки с отказом.Наличие ошибки в программе, как правило, приводит к отказу ПО при его функционировании. Для анализа причинно-следственных связей «ошибкаотказ» выполняются следующие действия:

  • идентификация изъянов в технологиях проектирования и программирования;
  • взаимосвязь изъянов процесса проектирования и допускаемых человеком ошибок;
  • классификация отказов, изъянов и возможных ошибок, а также дефектов на каждом этапе разработки;- сопоставление ошибок человека, допускаемых на определенном процессе разработки, и дефектов в объекте, как следствий ошибок спецификации проекта, моделей программ;
  • проверка и защита от ошибок на всех этапах ЖЦ, а также обнаружение дефектов на каждом этапе разработки;
  • сопоставление дефектов и отказов в ПО для разработки системы взаимосвязей и методики локализации, сбора и анализа информации об отказах и дефектах;
  • разработка подходов к процессам документирования и испытания ПО.

Конечная цель причинно-следственных связей «ошибкаотказ» заключается в определении методов и средств тестирования и обнаружения ошибок определенных классов, а также критериев завершения тестирования на множестве наборов данных; в определении путей совершенствования организации процесса разработки, тестирования и сопровождения ПО.

Приведем следующую классификацию типов отказов:

  • аппаратный, при котором общесистемное ПО не работоспособно;
  • информационный, вызванный ошибками во входных данных и передаче данных по каналам связи, а также при сбое устройств ввода (следствие аппаратных отказов);
  • эргономический, вызванный ошибками оператора при его взаимодействии с машиной (этот отказ — вторичный отказ, может привести к информационному или функциональному отказам);
  • программный, при наличии ошибок в компонентах и др.

Некоторые ошибки могут быть следствием недоработок при определении требований, проекта, генерации выходного кода или документации. С другой стороны, они порождаются в процессе разработки программы или при разработке интерфейсов отдельных элементов программы (нарушение порядка параметров, меньше или больше параметров и т.п.).

Источники ошибок.Ошибки могут быть порождены в процессе разработки проекта, компонентов, кода и документации. Как правило, они обнаруживаются при выполнении или сопровождении программного обеспечения в самых неожиданных и разных ее точках.

Некоторые ошибки в программе могут быть следствием недоработок при определении требований, проекта, генерации кода или документации. С другой стороны, ошибки порождаются в процессе разработки программы или интерфейсов ее элементов (например, при нарушении порядка задания параметров связи — меньше или больше, чем требуется и т.п.).

Причиной появления ошибок — непонимание требований заказчика; неточная спецификация требований в документах проекта и др. Это приводит к тому, что реализуются некоторые функции системы, которые будут работать не так, как предлагает заказчик. В связи с этим проводится совместное обсуждение заказчиком и разработчиком некоторых деталей требований для их уточнения.

Команда разработчиков системы может также изменить синтаксис и семантику описания системы. Однако некоторые ошибки могут быть не обнаружены (например, неправильно заданы индексы или значения переменных этих операторов).

  • Стабилизатор luxeon ошибка h
  • Средства восстановления при ошибках на входе
  • Ст эффект исправление ошибок
  • Средства администрирования служб компонентов windows 10 ошибка
  • Ст машина сименс таблица ошибок